
Distributed SPARQL Throughput Increase: On
the effectiveness of Workload-driven RDF

partitioning

Cosmin Basca and Abraham Bernstein

DDIS, Department of Informatics, University of Zurich, Zurich, Switzerland
{lastname}@ifi.uzh.ch

1 Introduction
The current size and expansion of the Web of Data or WoD, as shown by the stag-
gering growth of the Linked Open Data (LOD) project1, which reached to over 31
billion triples towards the end of 2011, leaves federated and distributed Semantic
DBMS’ or SDBMS’ facing the open challenge of scalable SPARQL query pro-
cessing. Traditionally, SDBMS’ push the burden of efficiency at runtime on the
query optimizer. This is in many cases too late (i.e., queries with many and/or
non-trivial joins). Extensive research in the general field of Databases has iden-
tified partitioning, in particular horizontal partitioning, as a primary means to
achieve scalability. Similarly to [2] we adopt the assumption that minimizing the
number of distributed-joins as a result of reorganizing the data over participating
nodes will lead to increased throughput in distributed SDBMS’. Consequently,
the benefit of reducing the number of distributed joins in this context is twofold:

A) Query optimization becomes simpler. Generally regarded as a hard prob-
lem in a distributed setup, query optimization benefits, at all execution levels,
from fewer distributed joins. During source selection the optimizer can use spe-
cialized indexes like in [5], while during query planning better query plans can
be devised quicker, since much of the optimization burden and complexity is
shifted away from the distributed optimizer to local optimizers.

B) Query execution becomes faster. Not having to pay for the overhead of
shipping partial results around, naturally reduces the time spent waiting for
usually higher latency network transfers. Furthermore, federated SDBMS’ incur
higher costs as they have to additionally serialize and deserialize data.

The main contributions of this poster are: i) the presentation of a novel
and näıve workload-based RDF partitioning method2 and ii) an evaluation and
study using a large real-world query log and dataset. Specifically, we investigate
the impact of various method-specific parameters and query log sizes, comparing
the performance of our method with traditional partitioning approaches.

2 Method Overview
Traditional approaches like Schism construct a graph representation where ver-
texes are tuples that participate in workload transactions. The graph is extended

1 http://linkeddata.org/
2 This work was partially supported by the Swiss National Science Foundation under

contract number 200021-118000.

to include all other tuples using a partition-trained classifier. Following this idea,
triples would be considered vertexes, while edges are created when any two triples
participate in the same query. This is however not feasible for RDF data.

Query
Partitions

View

Query
Triples
Index

Federator, or SPARQL
Broker endpoint

1) SPARQL logging

Triple
Partitions

View

Query Graph Partitioning

Triple Propagation & Replication

Partition C

Partition B

Partition A

SPARQL
Query

2) Query Space: Partitioning

3) Triple Space: Replication & Propagation4) Triple Space: Placement

Triples Distribution
Index

Fig. 1. A simple generalized view of the partitioning process.

Following this graph
representation in our
early attempts led to
very dense graphs,
which proved to be
too large for state of
the art graph parti-
tioning software like
Metis [4].3 Next, we
detail all steps seen in

Figure 1 except the simpler 1st phase where queries and their results are logged.

Data Representation & Graph Partitioning. Since mapping triples to ver-
texes does not scale well for RDF data, we pursued an intermediate representa-
tion: the Queries graph.

Q2

Q5Q3

Q4

Q1

100

20

10

150

50

Partition 2

Partition 1Dashed edges are replicated
i.e.: (Q1,Q4) and (Q1,Q3)

Size = 3000

Size = 1500Size = 5000

Size = 10000

Size = 200

Fig. 2. Basic query log-driven data representation.

Each query in the workload be-
comes a vertex, while edges be-
tween queries are formed when
some triples participate in more
than one query, with the num-
ber of common triples as edge
weights (Figure 2). Finally, we
apply Metis on the newly formed
queries graph, forcing balanced partitions as a result of the graph-cut operation.
Replication. After performing the graph-cut, there will still be distributed joins
even on the workload queries (i.e., query Q1 will require a distributed join while
query Q2 not). A straight-forward solution is to replicate the triples that reside
on the border between partitions. We proceed with identifying the minimum set
of triples that needs to be replicated, copying the extra triples from the smaller
sized query (i.e., copy extra triples from query Q1 over to Partition 2).

Propagation. While the process outlined so far guarantees that each query in
the workload can be executed without a single distributed join

?

?

OS P?

?

? ?

?

?

<?, ?, S > <S, ?, ? > <O, ?, ? >

?

?

?

?

?

?
?

?

Fig. 3. Visual depiction of the propagation patterns.

there are no guarantees for fu-
ture unknown queries. A method
of expanding the set of all triples
which participate in all workload
queries is needed. For this we rely
on the principle of (Spatial) Lo-
cality of Reference [3] adapted to
the logical graph representation.
In effect we propagate along the edges in the original RDF data graph to iden-
tify new triples “related” to existing triples which participated in all workload

3 The resulting input edge file amounted to approx. 150GB on disk, crashing Metis.

queries. Hence, we perform an n-hop4 edge propagation matching the follow-
ing triple patterns given a triple <s,p,o> (also depicted Figure 3): a) siblings:
< s,?,?>, b) outgoing edges: <o,?,?> and c) incoming edges: <?,?,s>. The re-
maining dataset triples which have not been considered so far, are randomly
distributed to the K selected partitions, or by hashing by subject.

3 Results & Conclusions
We make use of the USEWOD Data challenge [1] log file to extract 400k valid
and well formed SPARQL SELECT queries that produce at least 1 result, all
other log entries are discarded. We use a local instance of the Virtuoso RDF-
store to resolve them against DBpedia 3.5.1. Furthermore, we assume a perfect
distributed query optimizer, able to find the best possible query decomposition.
Measurements were conducted on a node with 72GB of RAM, 8 Cores @2.93GHz.

We compare our method against random partitioning, expert (manual) par-
titioning5 and hash partitioning. For the latter we hash on all possible combina-
tions of a triple: S, P, O, SP, SO, PO and SPO.6 Given the small to average size of
the DBpedia dataset (ca. 43.6 million triples), we fixed the number of partitions
to K = 8, simulating a small to medium sized cluster. Furthermore, we randomly
sampled the workload, with sizes consisting of 1k, 5k, 10k, 25k, 50k and 100k
queries from the total of 400k logged. The number of propagation hops was set
to 0, 1 and 2 respectively while replication was enabled in all cases.

1.55	
 2.76	
 5.72	
 8.87	

9.78	

26.01	

34.29	

59.08	

72.63	

12.13	

28.64	

45.08	

39.47	

65.44	

76.26	

0.00	

10.00	

20.00	

30.00	

40.00	

50.00	

60.00	

70.00	

80.00	

90.00	

0	
 10000	
 20000	
 30000	
 40000	
 50000	
 60000	
 70000	
 80000	
 90000	
 100000	

Pe
rc
en

ta
ge
	
 o
f	
 T
ri
pl
es
	
 A
ss
ig
ne

d	

to
	

Pa
r3
3
on

s	

fr
om

	
 T
ot
al
	
 (P

ar
3
3
on

ed
	
 +
	

Re
pl
ic
at
ed

	
 +
	
 P
ro
pa

ga
te
d)
	

Training	
 Workload	
 Sample	
 Size	
 (#	
 queries)	

Me/s	
 random	
 0	

Me/s	
 random	
 1	

Me/s	
 random	
 2	

Fig. 4. The % of triples assigned to partitions from total triples, for each training query set.

As we can visually observe in Figure 4 that although the increase in num-
ber of triples reached through the partitioning process (excluding the triples not
connected at all) is significant from 50k to 100k queries, there are diminishing re-
turns as the expansion process starts to slow down. Indeed doubling the number
of queries to log, yields approximatively a 10% increase at this point. Therefore,
we observe that a training log size of 50k queries represents an optimal point.
Performance Impact of Graph Partitioning. Even-though the general
problem of graph partitioning is known to be NP-hard, the approximating algo-
rithm implemented in Metis performs very well, finalizing the queries graph cut
in 0.17 seconds for 1k queries and 0.71 seconds for 100k queries.

4 Multiple hops only enabled for in & out edges to avoid an expensive avalanche effect.
5 Each large dump (if > 1M triples) to own partition, remainder grouped together.
6 We use of the cityhash family of hash functions, due to low-collision rate and speed.

http://www.openlinksw.com/wiki/main/VOS/VOSDownload
https://code.google.com/p/cityhash/

3.66	
 3.82	

3.96	

4.40	

8.45	
 8.66	

1.34	

1.70	

2.35	
 2.15	

5.02	

6.14	

3.34	

0.8	

1.8	

2.8	

3.8	

4.8	

5.8	

6.8	

7.8	

8.8	

9.8	

0	
 10000	
 20000	
 30000	
 40000	
 50000	
 60000	
 70000	
 80000	
 90000	
 100000	

Pe
rf
or
m
an

ce
	
 Im

pr
oo

ve
m
en

t	

N
or
m
al
iz
ed

	
 to
	

Sl
ow

es
t	
 (
#	

D
is
tr
ib
ut
ed

	
 Jo
in
s)
	

Training	
 Workload	
 Sample	
 Size	
 (#	
 queries)	

Me/s	
 hash	
 S	
 2	

Me/s	
 hash	
 S	
 1	

Me/s	
 random	
 2	

Me/s	
 random	
 1	

Hash	
 S	

Expert	
 (Manual)	

Hash	
 P	

Me/s	
 random	
 0	

Hash	
 SP	

Hash	
 O	

Hash	
 SO	

Hash	
 PO	

Random	

Hash	
 SPO	

Fig. 5. The performance improvement relative to the lowest performing method (hash SPO).

Number of Hops Impact when Propagating. Figure 5 plots the relative
performance improvement over the lowest performing method. Non-workload
driven partitioning methods appear as horizontal lines. The worst performing
ones are the Hash SPO method with Random & Hash PO/SO exposing simi-
lar performance levels. Hashing by subject Hash S is performing best, followed
closely by the Expert (manual) distribution method. This could suggest that
the majority of the workload queries are dominated by star-shaped basic graph
patterns and contain few joins.7 When using random distribution of remain-
ing triples our method performs unsatisfactory for smaller workload sizes, but
becomes substantially better by 50k queries. At 100k queries it exposes a 6.14
performance factor being 2.81 and 3.1 times better than Hash S and Expert re-
spectively. When remaining triples are distributed based on subject hashes, the
method outperforms all other methods at all workload sizes. At best (Metis hash
S 2) our method is between 3.6 and 8.66 times better than the lowest performing
and up to 5.32 times better than hashing by subject. In essence the best case
partitioning would produce on average of 0.10 distributed joins per query.

References

1. B. Berendt, L. Hollink, V. Hollink, M. Luczak-Rsch, K. H. Mller, and D. Vallet.
Usewod2011 - 1st international workshop on usage analysis and the web of data. in
20th international world wide web conference (www2011), hyderabad, india, 2011.

2. C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a workload-driven approach
to database replication and partitioning. Proceedings of the VLDB Endowment,
3:48–57, Sept. 2010.

3. P. J. Denning. The locality principle. Communications of the ACM, 48, July 2005.
4. G. Karypis and V. Kumar. MeTis: Unstructured Graph Partitioning and Sparse

Matrix Ordering System, Version 4.0. http://www.cs.umn.edu/∼metis, 2009.
5. Y. Yan, C. Wang, A. Zhou, W. Qian, L. Ma, and Y. Pan. IEEE Xplore - Efficient

Indices Using Graph Partitioning in RDF Triple Stores. In ICDE2009: IEEE 25th
International Conference on Data Engineering, 2009., pages 1263 – 1266, 2009.

7 A fact we intend to investigate in depth in the near future

http://www.cs.umn.edu/~metis

	Distributed SPARQL Throughput Increase: On the effectiveness of Workload-driven RDF partitioning

