

Integrating Tools for Supporting Software Project Time

Management: An Ontology-based Approach

Glaice Kelly da Silva Quirino, Ricardo de Almeida Falbo

Ontology and Conceptual Modeling Research Group (NEMO), Computer Science

Department – Federal University of Espírito Santo (UFES) – Vitória, ES – Brazil.

gksquirino@inf.ufes.br, falbo@inf.ufes.br

Abstract. Project Management is a complex process involving several

activities and a large volume of information. There are several tools offering

partial solutions for supporting this process, increasing the need for

integrating some of them, in order to provide a fuller support to the Project

Management process. This paper presents an integration initiative aiming at

semantically integrating dotProject, a web-based project management

application, to ODE, an Ontology-based software Development Environment.

This integration initiative focuses on the project time management, mainly for

supporting the following activities: definition of project activities, allocation

of human resource to these activities, and scheduling. This initiative was

conducted partially following OBA-SI, an Ontology-Based Approach for

Semantic Integration, and it was done using a domain ontology built from a

Software Process Ontology Pattern Language.

Keywords. Project Management, Semantic Integration, Ontologies, Semantic

Interoperability, Ontology Pattern Language.

1. Introduction

Project Management is a process that aims at establishing and evolving project plans,

defining activities, resources and responsibilities for the project, as well as providing

information to assess the actual achievement and progress against the plans, in order to

control the project execution [ISO/IEC 2008]. In order to support this process, several

tools are needed, such as tools for project control, software process definition, resource

allocation and scheduling. Ideally, these tools should work together, exchanging data

and services. The use of several tools to support the same process without some degree

of integration between them brings many problems such as rework and inconsistency.

 ODE (Ontology-based Software Development Environment) [Falbo et al. 2005]

is a process-centered Software Engineering Environment (SEE), which has been

developed grounded on ontologies. ODE has several tools, some of them supporting the

Project Management process, such as tools to support software process definition,

resource allocation, estimation, and risk analysis. However, there are still project

management activities that are not supported by ODE, such as project scheduling and

tracking.

 In order to increase the support offered by a SEE, two main approaches are

typically used: (i) developing new tools already integrated to the SEE; (ii) integrating to

47

the SEE tools already available. In the first approach, the same group develops new

tools as integrated pieces of the SEE, continuously expanding its functionality. In the

second approach, the focus is on integrating tools produced by others. The main

challenge in this case is to establish a common understanding of the meaning of the

terms used by the tools, and to solve semantic conflicts between these tools and the SEE

in which they should be integrated.

 In the context of the ODE Project, the first approach was predominant in the first

years of the project. This approach was in line with the main design premise originally

established for the project, namely: if the tools in a SEE are built based on ontologies,

integration can be more easily achieved, since the same set of ontologies is used for

building different tools supporting related software engineering activities [Falbo et al.

2005]. However, more recently, we realized that adopting only this approach is not

enough. Nowadays there are many free software tools available, and sometimes it is

more appropriate to integrate an existing one to ODE, instead of developing a new tool.

Moreover, this is especially important for allowing software organizations continue to

use some tools to which they are already accustomed, preserving their organizational

culture. Thus, we started to work also in integrating existing tools to ODE. The first

effort in this direction was done to integrate Subversion (a version control system) to

ODE [Calhau and Falbo 2010]. Since ODE is an ontology-based SEE, the integration

approach adopted focus on the use of ontology as an interlingua to map concepts and

services used by the different enterprise applications, in a scenario of access to data and

services via a shared ontology, as pointed by Jasper and Uschold (1999).

 Aligned to this new direction of the ODE Project, we decided to improve the

support to Project Management in ODE by means of integrating a tool that could

provide functionalities for scheduling software projects. Since the current version of

ODE runs in the Web platform, we looked for a web-based free project management

tool that provides such functionality, and, after comparing some of them, we decided to

select dotProject
1
. dotProject is a free open source web-based project management

system, which basically provides functionalities for managing tasks, schedules and

communication with contacts. As pointed in the main page of dotProject
1
, it does not

provide all the functionalities required for managing projects.

 However, each application (ODE and dotProject) runs independently and

implements its own data and process models. These models are not shared between

applications, leading to several conflicts, including technical, syntactical and, especially,

semantic conflicts. As pointed by Izza (2009), this heterogeneity is considered one of

the major difficulties in the integration problem. In this context, the adoption of an

approach that helps reduce the complexity of this task is important.

 In [Calhau and Falbo 2010], Calhau and Falbo developed OBA-SI (Ontology-

Based Approach for Semantic Integration), an approach to semantic integration of

systems that concentrates efforts on requirements analysis and conceptual modeling. In

this approach, semantic integration is performed in a high abstraction level, promoting

semantic agreement between the systems at the conceptual level. For this, ontologies are

used to assign semantics to items shared between systems, proposing an integration

1
http://docs.dotproject.net/index.php?title=Main_Page

48

process independent of technology and covering three layers of integration: data,

services and process. Once OBA-SI is very aligned with the premises of ODE Project

(using ontologies for building and integrating tools), we decided to adopt it in our

integration initiative. However, since dotProject does not provide an API (Application

Programming Interface) providing services, we decided to address integration only in

the data layer.

 In this paper, we present the semantic integration of dotProject to ODE,

following OBA-SI. First, we defined the integration requirements, defining the

integration scenario. Our focus is on integrating functionalities supporting the Project

Time Management process, as defined in the PMBOK [PMI 2008], which involves the

following activities: define project activities, sequence activities, estimate activity

resources, estimate activity duration, and develop schedule. Second, we developed an

ontology addressing this universe of discourse to be used to map the concepts and

relations of both systems. This ontology, called Project Time Management Ontology

(PTMO), was built by assembling patterns of the Software Process Ontology Pattern

Language (SP-OPL) [Falbo et al. 2013]. Besides, we retrieved the structural conceptual

models of the tools to be integrated. ODE’s conceptual model was already available;

dotProject’s conceptual model, on the other hand, had to be excavated. With the

ontology and the conceptual models of the tools to be integrated in hands, we

established mappings between them, in order to assign semantics to the structural

models of the tools. As a result, we achieved an integration model, which were used to

design a mediator. Finally, we implemented the mediator application, integrating

dotProject to ODE.

 This paper is organized as follows. In Section 2, we present a brief review of the

literature on topics relevant to the context of this work, namely: Project Management

and Systems Integration. In Section 3, we present the PTMO ontology, discussing how it

was built from SP-OPL. In Section 4, we present the semantic integration of dotProject

to ODE, using OBA-SI. Section 5 discusses related works. Finally, in Section 6, we

present the final considerations of this paper.

2. Project Management and Semantic Integration

According to the PMBOK [PMI 2008], “Project management is the application of

knowledge, skills, tools and techniques to project activities in order to meet project

requirements”. It is a complex process that involves several sub-processes, among them

the project planning is a major one. The PMBOK groups planning related activities in

the Planning Process Group, which involves the processes performed to establish the

project scope, define its goals, and develop the course of actions required to attain them.

This group includes processes for Scope Management, Time Management, Cost

Management, Quality Management, Human Resource Management, Communication

Management, and Risk Management, among others.

 As pointed in the introduction of this paper, ODE provides partial support for

some of these processes, namely: Scope Management, Time Management, Quality

Management, and Risk Management. Thus, we have worked to improve this support by

means of developing new tools to ODE, or integrating existing tools to it. In this paper

our focus is on the Project Time Management process, which includes five very inter-

49

related activities [PMI 2008]: define project activities, sequence activities, estimate

activity resources, estimate activity duration, and develop schedule. ODE provides only

partial support to this process, since it does not help in developing schedules. To

improve this support, we decided to integrate dotProject to ODE.

 However, when integrating these systems, conflicts arise. They were developed

by different groups, in different points in time, and they have no concern with

integration. Thus, they can be said heterogeneous, autonomous and distributed systems

[Izza 2009]. Heterogeneous refers to the fact that each application implements its own

data model defining its concepts in its own way. Autonomous means that each

application runs independently of the other. Distributed means that they implement their

data model in their own data repository and this repository is not shared with the other

tool [Izza 2009].

 In particular, there are semantic conflicts, and integration in the semantic level

should take the intended meaning of the concepts in a data schema or in operation

signatures into account [Izza 2009]. Basically, semantic conflicts occur because

applications do not share a common conceptualization. In this context, ontologies can be

used to deal with meaning and semantic heterogeneities. Ontologies can be used as an

interlingua to map concepts and services used by the different systems, in a scenario of

access to data and services via a shared ontology [Jasper and Uschold 1999]. Moreover,

semantic integration should occur at the knowledge level [Park and Ram 2004],

considering that applications must share the meaning of their terminologies.

 Among the various approaches for integrating systems that consider semantics to

integrate systems, there is OBA-SI (Ontology-Based Approach for Semantic Integration)

[Calhau and Falbo 2010]. This approach considers that the integration process is

analogous to the software development process, consisting of phases of requirements

gathering and analysis, design, implementation, testing and deployment. OBA-SI

focuses on the integration analysis phase, in which the semantics may be set. During this

phase, semantic mappings are made between the conceptual models of the tools being

integrated, using an ontology to assign meaning. This ontology should be a reference

ontology, i.e., a solution-independent specification making a clear and precise

description of the domain entities for the purposes of communication, learning and

problem-solving [Guizzardi 2007].

 The integration process of OBA-SI begins with integration requirements

elicitation phase, when the goals and requirements must be established. In this phase, we

need to define the activities of the business process to be supported, the systems to be

integrated to support them, and the domain where the integration takes place. The output

of this phase is the integration scenario. Once defined the integration scenario,

integration analysis can be performed. Figure 1 shows the activities involved in this

phase. First, the conceptual models of the tools to be integrated should be retrieved, as

well as a reference ontology of the domain where the integration takes place should be

selected or developed. Following, concepts and relations of the conceptual models of the

tools to be integrated should be mapped to the concepts and relations of the ontology.

These mappings are said vertical mappings. Once the structural models are semantically

annotated, the integration model is developed. This model is mainly based on the

domain ontology, but it can also include elements of the tools being integrated that do

50

not have a counterpart in the ontology. These elements, if present in both tools, should

be directly mapped, by means of horizontal mappings [Calhau and Falbo 2010].

Figure 1. OBA-SI Analysis Phase

 With the integration model in hand, an integration solution can be designed and

implemented. There are several ways to design and implement an integration solution,

and OBA-SI does not commit to any specific integration solution, although it proposes

some guidelines for maintaining the semantic consistency in these steps.

 In order to integrate dotProject to ODE adopting OBA-SI, we needed a reference

domain ontology regarding project time management. Since several planning-related

ODE’s tools were developed based on the version of the Software Process Ontology

presented in [Falbo and Bertollo 2009], we decided to use it. However, this ontology

was reengineered in [Bringuente et al. 2011] to become aligned to the Unified

Foundational Ontology [Guizzardi et al. 2008], and more recently it was defined as an

Ontology Pattern Language (OPL)
2
 [Falbo et al. 2013]. Thus, we decided to build a

Project Time Management Ontology (PTMO) by assembling patterns of the Software

Process Ontology Pattern Language (SP-OPL).

3. Using the Software Process Ontology Pattern Language to Develop a

Project Time Management Ontology

 SP-OPL is an OPL for the Software Process application domain. The main

problem areas addressed by SP-OPL are Standard Software Process Definition, Project

Process Definition and Scheduling, Resource Allocation, and Software Process

Execution. In the next section, we discuss how we developed PTMO from SP-OPL.

 SP-OPL has three entry points
3
, depending on the focus of the ontology

engineer. Considering our purposes, our entry point was the SPP (Software Process

Planning) pattern, which considers the planning of the project process from scratch (i.e.,

without being based on a standard software process). The SPP pattern represents how a

software process is planned in terms of sub-processes and activities, as well as it deals

2
 An OPL aims to provide holistic support for using Domain-related Ontology Patterns (DROPs) in

ontology development for a specific application domain. It provides explicit guidance on what

problems can arise in that domain, informs the order to address these problems, and suggests one or

more patterns to solve each specific problem [Falbo et al. 2013].

3
 Each entry point allows the ontology engineer to focus on certain problems (and thus using certain

patterns), disregarding others [Falbo et al. 2013].

51

with activity sequencing [Falbo et al. 2013]. Once defined the project activities, it is

necessary to schedule the project and define the human roles required for performing the

activities. To handle these aspects, the patterns PSCH (Process Scheduling) and HRP

(Human Role Planning) were selected. The first defines the time window for project

processes and activities, while the second defines the human roles responsible for

performing a project activity [Falbo et al. 2013].

 Human resource allocation was treated by reusing the PTD (Project Team

Definition) and TDHRA (Team-dependent Human Resource Allocation) patterns. The

PTD pattern regards the human resources that are member of a project team; the

TDHRA pattern deals with allocating human resources to project activities, considering

team allocation constraints. These patterns are in the Resource Allocation group of

patterns [Falbo et al. 2013].

 Finally, regarding process execution, we reused the PAET (Process and Activity

Execution and Tracking) and HRPAT (Human Resource Participation and Tracking)

patterns. The first registers the occurrences of processes and activities, taking into

account the planned processes and activities, allowing to track the execution against to

what was previously planned; the second registers the participation of human resources

in activity occurrences, taking into account the existence of a prior allocation of these

resources to planned activities [Falbo et al. 2013].

 Figure 2 shows the conceptual model of the PTMO, resulting from the assembly

of these patterns. This conceptual model is written in OntoUML, a UML profile that

enables modelers to make finer-grained modeling distinctions between different types of

classes and relations according to ontological distinctions put forth by the ontology of

endurants of the Unified Foundational Ontology (UFO-A) [Guizzardi 2005]. Thus, the

stereotypes shown in Figure 2 represent types of classes and relations as defined in

UFO-A.

 Project Processes are defined for a Project. There are two types of Project

Processes: General Project Process and Specific Project Process. The first is the overall

process defined for the Project. It consists of Specific Project Processes, thus allowing

defining sub-processes. The second is composed by Project Activities, which may be,

Simple Project Activity or Composite Project Activity. These activities are to be

performed by human resources playing certain Human Roles. For example, a

requirements specification activity defined for a project requires a requirements engineer

to perform it. Once the project processes and activities are defined for a project, it is

possible to establish the start and end dates for them, giving rise to Scheduled Processes

and Scheduled Activities, respectively.

 A Human Resource Allocation is the assignment of a Scheduled Activity to a

Human Resource for playing a specific Human Role. A Human Resource Allocation

depends on a Project Team Allocation, which allocates the Human Resource to the

Project Team and indicates the role he/she will play in this team.

 When scheduled processes and activities are executed, they generate Process and

Activity Occurrences, respectively. Analogously to project processes, there are two types

of processes occurrences: General Process Occurrence, which corresponds to the

execution of the process as a whole, and the Specific Process Occurrence, which

52

corresponds to the execution of a particular project process. Similarly, there are two

types of Activity Occurrences: Simple Activity Occurrence, which is an atomic action,

and Composite Activity Occurrence, which is composed of other activity occurrences.

Finally, when activities are performed (Activity Occurrence), they involve various

Human Resource Participations, which refers to the participation of a single Human

Resource.

 Considering the start and end dates of Scheduled Processes and Activities,

Human Resource Allocations, Process and Activity Occurrences, and Human Resource

Participations, it is possible to track the project progress, contrasting what was planned

(scheduled) with what actually happened (occurrences and participations).

Figure 2. Project Time Management Ontology

4. Semantic Integration of` Software Project Management Tools

Once defined the integration scenario and the reference ontology, the required structural

conceptual models had to be retrieved. Two different approaches were used. Since ODE

was developed at NEMO, its structural conceptual model was available. On the other

hand, the conceptual model of dotProject had to be excavated.

 Figure 3 presents a fragment of ODE’s structural conceptual model. It is

presented only partially, due to space limitations. In ODE, a General Project Process is

defined for a Project. This General Project Process is decomposed into Specific Project

Processes that, in turn, are decomposed into Activities. During project activity

definition, several process assets (resources, artifacts required and produced and so on)

are defined for each activity, as well as sub-activities and dependencies between

activities. All this information is registered in the Activity Definition class, which

register also the scheduled start and end dates for the activity. For each activity, human

resources can be allocated (HRAllocation), according to the demands informed during

the process definition (HRDemand). When an activity is initialized, its actual start date

is registered in the Activity Execution class, which represents the actual occurrence of

53

the previously planned activity. When a human resource spends some hours performing

an activity to which she has been allocated, the Expended Effort must be registered.

Figure 3. A fragment of ODE’s Class Diagram

 With respect to dotProject, we had to excavate its structural conceptual model.

This was done by analyzing its database schema database and its graphical interface.

Figure 4 shows a fragment of the structural conceptual model resulting from this step.

As this figure shows, in dotProject, a Project has Tasks, to which Contacts can be

allocated. Tasks can have sub-tasks and may depend on other tasks. Any events

associated to a task can be registered by means of Task Logs.

Figure 4. A fragment of dotProject’s Class Diagram.

 After retrieving the conceptual models of the tools, the next step is to assign

semantics to their concepts and relationships by mapping them to concepts and relations

of the reference domain ontology. These mappings, said vertical mappings [Calhau and

Falbo 2010], allows comparing the concepts of the systems involved. Table 1 shows

part of vertical mappings established to link the concepts of ODE and dotProject to the

concepts of the PTMO ontology.

 Project in ODE and dotProject are directly mapped to the concept of Project in

PTMO, as well as Human Resource in ODE and Contact in dotProject that are directly

mapped to the concept of Human Resource in PTMO. However, most of the concepts

used in the tools are not directly mapped to a concept in PTMO. Contrariwise, in most

cases, we need to consider attributes or relationships between classes to establish the

same semantics of a concept in PTMO. For instance, the concept of Simple Project

Activity in PTMO corresponds to a Task that does not have subtasks associated to it in

54

dotProject (Task.subactivity = null). In ODE, in turn, there are two concepts (Activity

and ActivityDefinition) that map to the concept of Project Activity in PMTO. In order to

know if a project activity is a simple or a composite project activity, it is necessary to

see if the ActivityDefinition defines sub-activities for the corresponding Activity.

Table 1. Vertical Mapping of concepts

PTMO Ontology ODE dotProject

Project Project Project

Human Resource Human Resource Contact

Human Resource Allocation HRAllocation ---

Project Activity Activity + ActivityDefinition Task

Simple Project Activity Activity + ActivityDefinition, if

ActivityDefinition.subactivity = null.

Task, if Task.subtask = null.

Composite Project Activity Activity + ActivityDefinition, if

ActivityDefinition.subactivity != null.

Task, if Task.subtask!=null

Scheduled Activity Activity + ActivityDefinition, if

(ActivityDefinition.scheduledStartDate

!= null and Activity.ActivityExecution

= null).

Task, if (Task.startDate!=null

and Task.startDate >

currentDate)

Activity Occurrence Activity + ActivityExecution Task, if (Task.startDate != null

and Task.startDate ≤

currentDate)

 These types of mappings (direct and indirect) can also be observed in the case of

vertical mappings between relationships, as shown in Table 2. The relationship “Human

Resource Allocation – refers to – Scheduled Activity” in PTMO is directly mapped to

the relationship “HRAllocation – related to – Activity” in ODE; whereas for mapping

the whole-part relation between Composite Project Activity and Project Activity in

PTMO to ODE, we need to cross two associations: “ActivityDefinition – defines assets

of – Activities” and “Activity – is sub-activity of – ActivityDefinition”.

Table 2. Vertical mapping of relationships

Ontology ODE dotProject

Human Resource Allocation –

refers to – Scheduled Activity

HRAllocation – related to –

Activity
Contact – allocated to – Task

Human Resource – has – Human

Resource Allocation

Human Resource – has –

HRAllocation

Composite Project Activity – is

composed by – Project Activity

ActivityDefinition – defines assets

of – Activity; and Activity – is sub-

activity of – ActivityDefiniton

Task – parent – Task

 Once the structural models were semantically annotated, integration modeling

started. In this step, first, the integration model was developed. The integration model is

basically the conceptual model of the ontology plus some concepts arising from

dotProject and others coming from ODE that do not have a counterpart in the ontology

model. Due to space limitations, we do not present the integration model here.

55

 Regarding the concepts added to the integration model, Activity Occurrence Log,

for instance, was added to represent the dotProject’s class Task Log, since, through task

logs, it is possible to register the participations of human resources in activities (Human

Resource Participation in PTMO).

 With the integration model in hands, horizontal mappings were performed. In

this step, the concepts that do not have a counterpart in the ontology model, and thus

were introduced only in the integration model, were mapped. For instance, Activity

Occurence Log in the integration model was mapped to Task Log in dotProject, and the

relationship “describes” between Activity Occurence Log and Activity Occurence was

mapped to the relationship “describes” between Task Log and Task.

 Once established the horizontal mappings, the integration analysis phase is

concluded, and we can start to design and implement the integration solution. For ODE

and dotProject to communicate, it is necessary that the shared elements are translated.

For doing that, we develop a mediator, which is responsible for translating data

between the systems, as shown in Figure 5. The mediator is located inside ODE,

making easier the access to ODE’s database. In order to access dotProject’s database,

we implemented an interface for external communication, called dpClient
4
, which

behaves as an API to dotProject, since did not find any API available for dotProject that

fits the purpose of our work.

Figure 5. General Architecture of the solution for integrating dotProject to ODE

5. Related Works
Ontologies have been recognized as an important instrument for semantically

integrating software applications [Izza 2009]. In the context of project management,

Cheng et al. (2003) have used the Process Specification Language (PSL) Ontology for

integrating Primavera P3, MS Project, Vite SimVision and 4D Viewer. Analogously to

OBA-SI, the integration process used for building a distributed integration infrastructure

also involves mappings between the concepts and relations of the involved systems and

the concepts and relations of the PSL ontology. Moreover, there were also direct and

indirect mappings, such as in our case (see examples given in the previous section).

Although there are several similarities, there are also differences. The PSL Ontology

deals with types of activities and activity occurrences. PTMO coverage, in turn, is

4
https://github.com/glaice/dpclient

56

wider. It deals with the concepts of commitments (Project Process and Project Activity)

and appointments (Scheduled Process and Scheduled Activities), in addition to the

concept of occurrences (Process Occurrence and Activity Occurrence) as defined in

UFO-C [Guizzardi et al. 2008]. Thus, it is possible to make finer distinctions, especially

because the concepts of commitments and appointments are very important in project

management. Regarding the technological solution for the integration, Cheng et al.

develop wrappers for each application. The PSL wrappers are used to retrieve and

transfer information between the applications, using PSL files. Not all scheduling and

resource information is exchanged between the applications, since the granularity of the

information may be different. Analogously, in our approach, the mediator is responsible

for translating information from ODE to dotProject, using PTMO as an interlingua.

However, in our case, changes made in dotProject do not reflect in ODE, since we have

implemented the information exchange only from ODE to dotProject.

 Concerning the methodological aspect, another work of semantic integration

using OBA-SI is presented in [Calhau and Falbo 2010]. In their work, Calhau and Falbo

integrated the version control system Subversion (SVN) to ODE. Access to SVN is

worked by means of the svnkit library
5
. To translate data between the tools, a mediator

stores information about the mappings between concepts and relationships of the tools

being integrated and an ontology about the Software Configuration Management

domain. Since in this work we also followed OBA-SI, the approach is quite similar.

6. Conclusions

This paper presented an initiative of semantically integrating dotProject, a web-based

project management system, to ODE, an ontology-based Software Development

Environment. This initiative was conducted partially following OBA-SI [Calhau and

Falbo 2010], an Ontology-Based Approach for Semantic Integration, and it was done

using a Project Time Management Ontology (PTMO), which was built from the

Software Process Ontology Pattern Language [Falbo et al. 2013]. For implementing an

integration solution, we developed a mediator responsible for exporting data from ODE

to dotProject, allowing visualizing schedules in ODE, and thus providing a more

complete support to the project management process in ODE.

We should highlight some limitations of our work. First, semantic integration is

worked only in the data layer. Moreover, it occurs only from ODE to dotProject, i.e.,

data from ODE’s database are passed to dotProject, but changes in dotProject’s database

are not reflected in ODE. Ideally, the integration should occur in both directions, and in

other integration layers, especially in the service/message layer [Izza 2009]. Thus, there

is room for adding new features to this work, or even integrating other tools in order to

provide a wider support to the Project Management process.

Acknowledgments - This research is funded by the Brazilian Research Agencies

FAPES/CNPq (PRONEX Grant 52272362/11).

5
 http://svnkit.com/

57

References

Bringuente, A. C. O., Falbo, R. A., Guizzardi, G. (2011), “Using a Foundational

Ontology for Reengineering a Software Process Ontology”. Journal of Information

and Data Management, vol. 2, n. 3, pp. 511-526.

Calhau, R.F., Falbo, R.A. (2010), “An Ontology-Based Approach for Semantic

Integration. Proceedings”, Proc. 14
th

IEEE International Enterprise Distributed

Object Computing Conference, Vitória, Brasil.

Cheng, J., Gruninger, M., Sriram, R. D., and Law, K. H., (2003), “Process Specification

Language for Project Scheduling Information Exchange”, International Journal of IT

in Architecture, Engineering and Construction, vol. 1, n. 4, pp. 307 - 328.

Falbo, R. A., Ruy, F.B., Moro, R. (2005), “Using Ontologies to Add Semantics to a

Software Engineering Environment”. In: Proc. 17
th

 International Conference on

Software Engineering and Knowledge Engineering - SEKE'2005, Taipei, China.

Falbo, R. A., Bertollo, G. A (2009), “Software process ontology as a common

vocabulary about software processes”. International Journal of Business Process

Integration and Management (IJBPIM), v. 4, p. 239-250.

Falbo, R. A., Barcellos, M.P., Nardi, J.C., and G. Guizzardi (2013), “Organizing

Ontology Design Patterns as Ontology Pattern Languages,” Proc. 10th Extended

Semantic Web Conference, Montpellier, France.

Guizzardi, G. (2007), “On Ontology, Ontologies, Conceptualizations, Modeling

Languages and (Meta) Models”, In: Vasilecas, O., Edler, J., Caplinskas, A. (Org.).

Frontiers in Artificial Intelligence and Applications, Databases and Information

Systems IV, IOS Press, Amsterdam.

Guizzardi, G. (2005) Ontological Foundations for Structural Conceptual Models,

University of Twente.

Guizzardi, G. Falbo, R.A. Guizzardi, R.S.S. (2008) “Grounding Software Domain

Ontologies in the Unified Foundational Ontology (UFO): The case of the ODE

Software Process Ontology”, Proceedings of the XI Iberoamerican Workshop on

Requirements Engineering and Software Environments, Recife, Brazil.

Izza, S. (2009) “Integration of industrial information systems from syntactic to semantic

integration approaches”, Enterprise Information Systems, Vol. 3, No. 1, February,

pp. 1-57.

ISO/IEC (2008), ISO/IEC 12207: Systems and software engineering — Software life

cycle processes, 2
th

 edition.

Jasper, R., Uschold, M. (1999), “A Framework for Understanding and Classifying

Ontology Applications”, Proceedings of the IJCAI99 Workshop on Ontologies and

Problem-Solving Methods, Stockholm, Sweden.

Park, J.; Ram, S. (2004), “Information Systems Interoperability: What lies Beneath?”,

ACM Transactions on Information Systems, vol. 22, pg. 595-632.

PMI (2008), A Guide to the Project Management Body of Knowledge (PMBOK Guide),

4
th

 edition, Project Management Institute, Inc.

58

http://eil.stanford.edu/psl/publications/PSL_Paper.pdf
http://eil.stanford.edu/psl/publications/PSL_Paper.pdf

