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Abstract. In order to enable the semantic web as well as other time
critical semantic applications, scaleable reasoning mechanisms are indis-
pensable. To address this issue, in this paper we propose a rule-based
reasoning algorithm which explores the highly parallel hardware of mod-
ern processors. In contrast to other approaches of parallel reasoning, our
algorithm works with rules that can be defined depending on the applica-
tion scenario and thus is able to apply different semantics. Furthermore
we show how vector-based operations can be used to implement a perfor-
mant match algorithm. We evaluate our approach by applying the ρdf,
RDFS and pD* rule sets to different data sets and compare our results
with other recent work. The evaluation shows that our approach is up
to 9 times faster depending on the rule set and the used ontology and is
able for example to apply the ρdf rules to an ontology with 2.2 million
triples (and 1.3 million inferred triples) in less than 6 seconds.

Keywords: rule-based reasoning, GPU, parallel reasoning, Rete algo-
rithm

1 Introduction

The use of ontologies is widely spread whether they are used in scientific ap-
plications or to enable the semantic web. One key characteristic of ontologies
is the possibility to reason about the given data and to create new knowledge
by inferring facts that are implicitly given by the ontology. Depending on the
size and the structure of the data, the reasoning process may be very resource
consuming, especially with regard to the continuously growing amount of data
of the semantic web. On the other side, applications using ontologies for example
in the field of ambient assisted living [1] [2] or smart spaces [3] [4] [5] may be
time critical and need to process incoming data very fast.

Different approaches exist to speedup the reasoning process and to provide
scalable solutions for different levels of expressivity, varying from improvements
on the reasoning process itself to distributed reasoning over clusters of compu-
tational units. Especially the number of approaches using parallel structures has



increased in the past few years. The ELK reasoner [6] for example takes advan-
tage of multi-core and multi-processor systems of modern computers to perform
OWL EL3 reasoning. Other approaches rely on a distributed cluster and use the
MapReduce framework to perform RDFS and pD* (also know as OWL Horst)
[7] reasoning on RDF graphs with millions of triples [8] [9].

While these approaches perform very well for a predefined set of rules that
define the strength of the semantics and thus the expressivity of the resulting
ontology, the use of a cluster of machines for computation may not always be
desirable due to the high costs. In addition the predefined set of rules that is
implemented may not always be exactly what is needed for a specific application.
In this paper we present an approach which uses the massively parallel hard-
ware of a modern graphic processor unit (GPU) to apply a set of freely defined
rules to an RDF-based ontology. While a single core of a GPU has not as much
computation power like on a CPU, a GPU provides much more processors that
are able to perform simple computation tasks in parallel. Thus it makes sense to
exploit this highly parallel hardware and to break down the complex workload
into fine grained tasks for parallelisation. Our approach uses an adapted version
of the Rete algorithm [10] and thus implements a forward chaining rule engine,
which is able for example to materialise the complete finite RDFS closure as well
as to apply the pD* rules in a scaleable manner on a single machine. Also this
approach is more flexible than most other reasoners, because it is not dedicated
to a predefined semantic, we achieve a very high performance due to the paral-
lelisation of the time consuming steps. In addition our approach is not required
to be executed on a GPU, but also can be executed on a multicore CPU.

The main contribution of this paper will be to show how the Rete algorithm
can be used to reason on ontologies in a highly parallel manner. The use of a
rule-engine-based approach allows us to provide a reasoner that is not dedicated
to one predefined semantic nor to a specified rule order, and thus can be used for
different rule sets of various complexity and semantics. We are also going to in-
troduce a concept for an efficient vector-based match algorithm which is one key
factor for the performance of our reasoner, called AMR (act-mobile reasoner).
In the next section we are starting with taking a deeper look on the related work
on high performance and parallel reasoning. In section 3 we describe the Rete
algorithm and show, how it can be used for parallel inferencing on parallel pro-
cessors. We will also provide more details on the OpenCL4 programming model
and show how this has an impact to our approach. To evaluate our concept we
use different rule sets applied to some well known ontologies of different sizes.
Finally we are going to discuss our results and give a conclusion.

3 http://www.w3.org/2007/OWL/wiki/EL
4 OpenCL: open standard for parallel programming of heterogeneous systems,

http://www.khronos.org/opencl/
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2 Related Work

Particularly with regard to large ontologies of hundreds of millions of triples
recently the use of clusters for applying finite rules like for RDFS or OWL Horst
semantics were a focus of interest in the research community. In [9] and [8]
the authors presented WebPie, an inference engine based on the open-source
MapReduce implementation Hadoop, which is able to compute RDFS as well as
the pD* semantics on data sets containing billions of triples. The parallelisation is
achieved by encoding the necessary rules as a set of Map and Reduce operations
which are executed in a given order while the distribution of the workload is
handled by Hadoop. Other papers propose similar approaches also based on
MapReduce differing in the implemented semantics like OWL 2 EL [11] or Fuzzy
pD [12]. Another approach relying on multiple computing machines is presented
in [13], where a divide-conquer-swap strategy is applied. The input data is stored
on a shared location and divided into smaller chunks which are processed by a
grid of compute nodes. The results are exchanged between those nodes for further
processing. Just like the previous mentioned approaches, the strategy relies on
a predefined semantic. Another strategy for parallel reasoning is presented in
[14] where the input data is also partitioned and processes running on a cluster
computing the finite RDF schema closure for each partition.

Besides the use of a cluster to increase the scaleability, other approaches try
to take advantage of the parallel structures of a single machine like available
through modern multicore CPUs and GPUs. [15] and [16] for example propose
an approach for concurrent classification (TBox) and parallel ABox reasoning for
OWL 2 EL. Another interesting reasoning mechanism is presented in [17], where
the ρdf vocabulary, which represents a subset of the RDFS rules, is encoded to
be applied highly parallel on the graphic processor. While this approach does
not only consider ABox or TBox information of an ontology and shows great
performance, it still relies on a pre-defined semantic. Nevertheless, this work is
most related to our work and will be used for evaluation in section 4.

As outlined by the discussed approaches, many scaleable solutions exists for
reasoning on a cluster as well as on a single machine which support different
semantics. Nevertheless, as far as we know, there is no scaleable solution using
parallel inferencing for a general purpose reasoning process, where the semantic
can be defined by the application in terms of simple rules, irrespective of whether
these semantics are based on a RDFS or OWL profile or include application
specific rules.

3 Parallelising Rule Execution

3.1 OpenCL programming model

OpenCL is a heterogeneous programming framework that allows to develop ap-
plications that execute across a range of device types and supports a wide range
of parallelism. While the device refers to the typically parallel processors like a
multicore CPU or a GPU, the host can be seen as the outer control logic that
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prepares the execution of logic on the device. The logic executed on the device
is called kernel and thus is that part of an OpenCL program, that typically is
executed in parallel. To parallelise an application, the workload needs to be par-
titioned into small chunks where each chunk can be computed by the same code
in parallel. Each chunk is handled by a work-item which runs in its own thread
and has a unique global identifier which can be used to identify that part of the
input data, that shall be processed by a work-item. In addition, work-items are
grouped into work-groups which have a limited size but can share local mem-
ory which can be accessed much faster than global memory. Nevertheless, local
memory is very limited such that it needs to be used wisely. To achieve a high
performance it is important to have a kernel with as less control structures that
might be evaluated by two work-items in a different way as possible, because
this would lead to idling threads during the parallel execution.

3.2 The Rete algorithm

What distinguishes the AMR reasoner from the aforementioned parallel reason-
ers is that we do not know which rules shall be applied to an ontology and
thus can not provide dedicated methods that each implement one rule. Thus,
we have to implement a generic rule engine which is able to handle ontological
data. One widely used algorithm for this complex task was provided by Charles
L. Forgy [10], the Rete Match algorithm, which is able to find all the objects
matching a given pattern. The Rete algorithm builds a network of nodes where
each node corresponds to a pattern occurring on the left hand side (LHS) of a
rule (that part, that defines the match conditions). Thus, each pattern on the
LHS corresponds to a match condition such as (?p rdfs:domain ?c). For each
single pattern an alpha node is created, while more than one pattern on the LHS
in addition leads to at least one beta node. Thus, a beta node always has more
than one pattern. For each node a list of matching objects is stored which is
created by propagating the working memory and thus the input data through
the network.

Considering the following rules from the RDFS semantic:

(?x ?p ?y)→ (?p rdf:type rdf:Property) (R1)

(?x ?p ?y) (?p rdfs:domain ?c)→ (?x rdf:type ?c) (R2)

The Rete algorithm would create one alpha node from the left hand side of the
first rule R1, and one more alpha node for the second pattern of the second rule
R2. Because the first pattern of R2 is equal to the pattern of R1, both rules
would share one node. Because R2 consists of two patterns, in addition one beta
node would be created connecting the two other alpha nodes. Further considering
the following working memory from a simple university example, which contains
three triples consisting of a subject, predicate and object (s, p, o):

Bob uni:publishes Paper1 (WM1)
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Alice uni:publishes Paper2 (WM2)

uni:publishes rdfs:domain Researcher (WM3)

The Rete network resulting by parsing R1 and R2 to alpha- and beta nodes and
propagating the working memory through the network can be seen in figure 1.

α1

WM1
WM2
WM3

WM3

WM1
WM2

WM3
WM3

α2

β1

Fig. 1: Rete network for rules R1 and R2 after the working memory has been
propagated

The Rete network in figure 1 has three nodes in total, while the final node
of R1 is α1 and the final node of R2 is β1. A final node always represents a
complete rule such that the results stored by that node can be used to fire the
corresponding rule. Thus, R1 would fire three times and produce two new triples
(and one duplicate) while R2 would fire two times and produce also two new
triples. The final working memory would be extended by the following triples:

uni:publishes rdf:type rdf:Property (WM4)

rdfs:domain rdf:type rdf:Property (WM5)

Bob rdf:type Researcher (WM6)

Alice rdf:type Researcher (WM7)

The new triples would also be propagated through the network until no new
triples are derived and the rule engine has finished his job (fixpoint iteration).

3.3 Definitions

As can be seen from the previous introduction, the Rete algorithm basically
performs three steps to apply rules to a working memory: an alpha-match, a
beta-match and the rule firing. Before continuing, we have to define some terms
that are used throughout this paper:

Definition 1. An alpha node specifies a node of the Rete network that directly
corresponds to one pattern of a rule. An alpha node always has exactly one
pattern that consists of three (pattern-)terms.
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Definition 2. A beta node specifies a node of the Rete network that has exactly
two parents (p1 and p2). The parents in turn may be alpha- or beta nodes.
Depending on the position of a beta node in the network, it has a depth >= 1
that is calculated by the longest distance to an alpha node.

Definition 3. The pattern-width defines the number of terms of the pattern
of one node. Thus, an alpha node always has a pattern-width of 3. A beta node
whose parents are both alpha nodes has a pattern-width of 6 and so on.

Definition 4. The matches of a node are referred to as a set A. Accordingly
the number of matches is defined by |A|.

Definition 5. Match-conditions are created for each node and define a func-
tion C(m, ...) with m ∈ A, that evaluates to true if a triple or a set of triples (in
case of a beta node) conform to the pattern of that node.

3.4 Rete on Parallel Hardware

To parallelise the overall reasoning process, different strategies were proposed by
other approaches which essentially consists of data partitioning and rule parti-
tioning [18]. While data partitioning means the dividing of the data into smaller
units and the independent processing of each unit, the rule partitioning approach
applies only a subset of the overall rules to the complete data set. Both types
of parallelisation require a synchronisation of the results and especially the data
partitioning approach may produce duplicates. Nevertheless, these drawbacks
might be unavoidable in a cluster-based environment where each of the parallel
processes runs in an independent environment.

Using the parallel structures on a single computer, a parallelisation can take
place on a different level than rule or data partitioning. This is because in the
case of a single computer a synchronisation of interim results of the parallel
threads can be performed much more efficient by a single host application. Fur-
thermore, to achieve a high performance for example on a GPU it is important
to have lots of tasks that can be computed independently and where each task
consists only of a small workload. In order to take these considerations into
account, our approach parallelises the reasoning process on a deeper level. For
alpha-matching, one kernel is executed where for each triple that needs to be
considered a single thread (work-item) is created. This thread checks whether
the corresponding triple matches one or more of the alpha node patterns and
creates a list containing the matching nodes. Thus, each thread needs to iterate
over all of the alpha nodes. Finally the resulting list can simply be transformed
to create a match-list for each alpha node containing the matching triples. That
means that the number of threads that are executed in parallel is equal to the
number of triples available for processing.

Because of its complexity, the beta-match is handled in a different way. Just
like the rule partitioning approach it would not be desirable to simply execute one
thread for each beta node in parallel because of the low number of nodes and the
high computation load. On the other side the number of match-steps, that need
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to be computed heavily rises with the number of matches of the parents of one
beta node. Considering the example from figure 1, for β1 only 3x1 possibilities
needed to be computed. If α1 and α2 both had ten matches, the number of
possible combinations would arise to 100. By taking this complexity as well as
the fact, that the GPU is able to handle millions of work-items in a very efficient
way, into account, it is a natural way to apply the parallelism for the beta-step
during this match-algorithm. That means, that for each match of one parent of
a beta node a work-item is created which iterates over all matches of the second
parent of the beta node. Thus, the number i of work-items is defined by:

Def : i = |Ap1|, with |Ap1| >= |Ap2| (1)

and the number of iterations j each work-item has to perform by:

Def : j = |Ap2|, with |Ap2| < |Ap1| (2)

Finally the match-algorithm for a beta node is defined as:

C(mi,mj), mi ∈ Ap1, mj ∈ Ap2 (3)

where mi denotes the parallelism and i corresponds to the rank of the thread.
By defining |Ap1| >= |Ap2| and |Ap2| < |Ap1| we ensure, that the number of
parallel threads is at least as high as the number of iterations each thread has
to perform, which can be computed more efficient on the GPU. Furthermore the
match-algorithm needs to be performed for Ap1 ×Ap2.
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Fig. 2: Parallelise the match process

Figure 2 shows an example where Aβ1 shall be computed. Because |Aα1| =
2000 and |Aα2| = 700 it follows that C(m1,m2) needs to be executed 1.4 million
times. To do this, 2000 work-items are created (from each match of α1) where
each work-item iterates over 700 matches (from α2) and validates C(m1,m2).
This task needs to be performed for each beta node, while the beta-match of
nodes of the same depth can also run in parallel.

39



3.5 Applying the OpenCL Programming Model

Programming parallel hardware with OpenCL imposes some restrictions. First
of all, strings can not be computed in an efficient way and thus are not suitable
for a fast match-algorithm. Thus, all triple terms s, p, and o are transformed
into integer values, where each term is mapped to one value. Non literal terms
are mapped only once such that there is only one index for each term, even if
it is used a multiple times within the ontology. Furthermore, the memory used
by a kernel needs to be allocated before kernel execution with the consequence,
that each alpha- and beta-step has to be performed twice. The first time, only
the number of matches is calculated (called match-count) while for the second
execution the number of matches is used to allocate the required memory for all
matches and thus the final results can be created. Finally, the overall reasoning
process consists of an alpha-count where the resulting triples of an alpha match
are calculated, an alpha-match, where the final results of the alpha-step are
created and an beta-count and beta-match for each depth (see definition 2 in
section 3.3). The last step is to fire the rules using the working memories of
the final nodes and to create new triples. Eventually the algorithm iterates over
the complete process until no new triples are derived (fixpoint). In addition the
beta-count processes as well as the beta-match processes can be executed at
the same time for all beta nodes of one depth (non blocking operations). This
allows an out-of-order execution where the GPU may define the order of given
commands to optimise the throughput and is the reason, why we first start all
beta-count and beta-match operations and read the result back in a following
loop.

3.6 Vector-based Matching

The most computation intensive task during the reasoning process is the beta-
matching. Thus it is essential to speed this task up and make the computation as
simple as possible. To achieve this, our approach uses a vector-based operation
to check, if a combination of triples matches the pattern of a beta node. Vector-
based operations can be computed by a GPU in a very efficient way which is
why it is desirable to use them. To do this, first of all we use so called unrolled
kernels for rules with up to four patterns (which is for example the max pattern-
width occurring in the OWL Horst rule set). This means, that instead of using
loops iterating over a defined number of items (where in this case the number
of items depends on the number of patterns that a beta node has) we just write
the command to execute as often as it is needed. The kernels on the other hand
are executed by using a kernel implementation depending on the characteristics
of the beta node. This also allows us to exactly know the pattern-width of each
parent of a beta node during kernel implementation which is the basis for the
vector-based match algorithm.

(?x ?p ?y) (?p rdfs:domain ?c)→ (?x rdf:type ?c) (R2)
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Recapturing rule R2, where the final beta node has two alpha nodes as par-
ents, an unrolled kernel can be executed which assumes a pattern-width of three
for both parents. Furthermore it can be seen, that to verify a match only the
second term of the first pattern and the first term of the second pattern needs
to be checked, such that the value for ?p in the first pattern is equal to the value
of ?p of the second pattern. To do this, in each work-item a vector v1 is created
such that those elements from m1, that need to be compared to elements of
m2, are placed at the location in v1 where their corresponding element of m2

is located. In addition the elements in v1 need to be negated such that a later
performed addition can result in a null vector if the elements of both vectors
are equal except of their sign. Besides v1, another vector u is created which has
the same number of elements than v1 and is filled with elements equal to 1 at
those positions, where the second pattern holds an element that needs to be
considered to verify a match. All other elements of u are defined as 0. Finally
the loop which runs over all matches of Ap2 only has to create a vector v2 which
holds all elements of m2. This vector is used to verify for a match as follows:

(v2 ∗ u) + v1 (4)

This operation is performed in a component based manner (meaning that a con-
current, component based multiplication as well as a component based addition
is performed) and results in a null-vector, if a match was found. Otherwise, at
least one element of the resulting vector is unequal to 0. Furthermore only a
simple operation and a minimum of data transfer is necessary within the inner
loop of a kernel, which allows a very efficient execution even for a large |Ap2|.

To continue the example illustrated in figure 1 the working memory of α1
and α2 looks like depicted in figure 3. To improve the readability, not only the

α1

WM1
WM2
WM3

Bob uni:publishes Paper1
Alice uni:publishes Paper2
uni:publishes rdfs:domain Researcher

(1, 2, 3)
(4, 2, 5)
(2, 6, 7)

α2

WM3 uni:publishes rdfs:domain Researcher (2, 6, 7)

Fig. 3: Working memory of α1 and α2

working memory reference (row 1) is given, but also the data (row 2) as well as
the internal representation of that data (row 3). The internal representation, like
described before, is a mapping of each subject, predicate and object to an integer
value, which is used for computation. Based on the aforementioned description,
three parallel threads would be executed to calculated Aβ1. Because every item
in the working memory of α1 matches the pattern (?x ?p ?y) and every item
in the working memory of α2 matches the pattern (?p rdfs:domain ?c) (see
rule R2) the only calculation necessary to see, if a combination of an α1 and an
α2 match also is a match of the beta node β1, is to compare the corresponding
?p values. To do this, in each thread a constant vector v1 is created using the
corresponding match of α1. Looking at the first thread, v1 holds the negated
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?p-value of the WM1 element, which is positioned at the first vector component,
because the corresponding ?p-element of the α2 match is also positioned at the
first element. This results in v1 = (−2, 0, 0). Because only the first component
of the vectors need to be considered for R2 (only the ?p elements have to be
compared), the vector u is created as u = (1, 0, 0). Now, for each element of
Aα2 a vector v2 is created which simply holds the numeric representation of the
corresponding triple such that v2 results in v2 = (2, 6, 7). The final (component
based) calculation is as follows:2

6
7

 ∗
1

0
0

 +

−2
0
0

 =

0
0
0

 (5)

Using the same calculation to match WM3 against WM3 (WM3 is a match of
α1 as well as of α2) would not result in a null vector and thus would not be a
match: 2

6
7

 ∗
1

0
0

 +

−6
0
0

 6=
0

0
0

 (6)

In addition to the unrolled and vector based kernels, we also implemented kernels
that can be used with a pattern-width larger than 4 which allows to write even
more complex rules with an arbitrary size.

4 Evaluation

4.1 ρdf, RDFS and OWL Horst

Because our approach is able to handle a given set of rules independent of the
semantic that those rules belong to, we used three different rule sets with a vary-
ing complexity, which often were implemented by other reasoners in a manual
way. The ρdf vocabulary [19] is a simplified version of the RDFS semantic which
consists of all rules of RDFS with at least two rule body-terms. This semantic
imposes a more efficient reasoning, while the results of the missing rules are
supposed to be created on the fly by a reasoner, if resources are queried. These
rules were also implemented by the MapReduce-based approach presented in
[9] as well as the by the GPU based approach proposed in [17]. Due to space
restrictions, we also refer to [17] for the ρdf rules.

The second rule set consists of the complete RDFS rules like defined by
the W3C5. This rule set consists of 13 rules with one or two antecedents and
is used in several other publications for evaluation purpose [14] [8]. The last
rule set formally known as pD* was proposed by Herman J. ter Horst which
incorporates RDFS and D entailment and extends these semantics with some
basic support for OWL [7]. It provides a complete set of entailment rules and
has become a promising ontology language for the semantic web because of its

5 http://www.w3.org/TR/rdf-mt/#RDFSRules
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expressiveness on the one side and its relatively low computation complexity on
the other side. For a complete overview of the 22 rules (some of them can be
combined as they share the same antecedents resulting in 16 rules) we refer due
to space restrictions to [8].

4.2 Test Environment

To achieve comparable results we choose ontologies with various sizes that were
already used to evaluate other approaches. Thus, we are using the Vicodi6 on-
tology which is an ontology of European history used for semantical indexing of
historical documents [20]. The TBox is of a moderate size while the ABox con-
tains a large number of instances. In total, the ontology consists of 146,280 triples
and thus is compared to our second ontology, known from the Lehigh University
benchmark (LUBM)7, a small sized ontology. LUBM is a benchmark ontology
and defines an TBox for a university scenario. A generator allows to generate
university data sets while the number of universities that are created can be de-
fined as an input. Thus, we created 3 LUBM data sets with 268,794 triples which
contains two universities (LUBM2), a LUBM5 ontology with 727,265 triples and
a LUBM10 ontology with 1,480,366 triples. To use another large ontology we
used the DBPedia8 3.7 which is a lightweight ontology containing structured
data extracted from Wikipedia. For this data set we used a similar setup like
described by [17] containing the DBpedia Ontology, Infobox Types and Infobox
Properties. We also limited the size of the data set in a similar way by scaling
the instance triples by 1/8th, 1/16th, and 1/32nd of the original size.

Our implementation is Java based and integrates with Jena9 applications.
Thus, we use the Jena framework to parse the ontologies and create our own
data structures for the reasoning process by reading an ontology graph from
Jena. To be able to use OpenCL from our Java application, we use jocl10 as
Java bindings. The tests are performed on a work station with a 2.0 GHz Intel
Xeon processor with 6 cores and an AMD 7970 gaming graphic card with 3GB
of memory running an Ubuntu 12.04. In order to compare our results to other
approaches, we performed the same tests with the ρdf rule set with the GPU
based reasoner proposed in [17]. In the following we refer to that reasoner as
grdfs reasoner. Other parallel reasoners also implementing the complete RDFS or
OWL Horst rules on a single computer considering the ABox as well as the TBox
were not available. We also run our experiment using the non-vector-based kernel
and compare the results with the vector-based version. For each experiment the
total time except data transformation (i.e. loading the Jena-graph to AMR and
file parsing for grdfs) were measured, which also includes the non parallel rule
firing. A dedicated kernel execution time on the GPU is not given due to the

6 http://www.vicodi.org/about.htm
7 http://swat.cse.lehigh.edu/projects/lubm/
8 http://dbpedia.org/About
9 http://jena.apache.org/

10 http://www.jocl.org/
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execution of multiple kernels which are launched asynchronously such that no
precise information are available. Furthermore each test was performed ten times
while the average is presented.

4.3 Results and Comparison

The first experiment shows the impact of using the vector-based operations
during the beta-match. Therefore we used all three LUBM data sets and executed
it using the pD* rule set with the naive implementation of the kernel and with the
vector-based kernel. Notice that both kernels are unrolled and the only difference
is, that the second kernel uses vector operations instead of calculating each
element in a single step. We choose the pD* vocabulary because it is the most
computation intensive one of the three used rule sets.
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2 268,794 38,584 6.05 s 3.72 s 1.63
5 727,265 102,618 40.01 s 23.69 s 1.69

10 1,480,366 207,677 160.80 s 95.39 s 1.69

Fig. 4: Comparison of non-vector-based operations (nvb) and vector-based (vb)
operations

The results in figure 4 show that the vector-based kernel provides a constantly
better performance. The calculation using the vector-based method is round
about 1.7 times faster than using the naive implementation which simply applies
the comparison for two matches of the corresponding parent-nodes using single
operations. On a different hardware (MacBook Pro) even a speedup of more
than 4 could be measured using the vector-based operation.

The next test shall show the scaleability of our approach. Therefore we use
the Vicodi ontology as well as the LUBM2 ontology and run our algorithm on
the CPU of our test environment. The CPU has less cores than the GPU and
is not that fast, but OpenCL allows us to use only a defined number of cores
of the CPU. This way it is possible to show the speedup which is achieved by
increasing the number of used cores. Because the used CPU has 6 cores where
each core can run 2 threads through hyper-threading (resulting in 12 virtual
cores), we applied the pD* vocabulary to the input data using 1 to 12 cores.

As can be seen from figure 5 the speedup nearly doubles with a doubling
of the number of used processors for both datasets until 6 cores are used. The
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Fig. 5: Scaleability test using the Vicodi and the LUBM2 ontology on the CPU

other 6 cores still contribute to a better performance, but the impact is not that
reasonable anymore. We assume that this is because two (virtual) cores always
share some resources on one processor and thus do not provide such a speedup
as is would be achieved if each core had physically exclusive resources.

Finally we want to compare our results to other approaches. For this we
performed a set of tests with the GPU based grdfs reasoner proposed in [17]
as well as with AMR. Both reasoners used the same hardware like described
before. Because the grdfs reasoner implements the ρdf semantic, the tests were
only performed using the corresponding rules. While we can not prove that our
implementation works correct, we still get exactly the same results using the
general purpose rule engine provided by the Jena framework for ontologies with
a limited size which that rule engine is able to handle. The largest ontology we
were able to test with Jena using the ρdf vocabulary was the LUBM2 ontology
with 268,794 triples (and 146 entailed triples), which took about 27 minutes,
while our approach entails exactly the same triples in about 270 ms. We also
tested for example the Vicodi ontology using the Jena framework and the RDFS
vocabulary which took about 12 minutes and inferred 127,886 triples to a total
of 274,233. Our approach again provides exactly the same results using the GPU
in less than a second. The final results of our tests including parallel and serial
work (the complete reasoning process excluding parsing) are listed in table 1.

triples AMR grdfs entailed AMR entailed grdfs speedup

LUBM2 268,794 276 ms 1,383 ms 146 22 5.02
LUBM5 727,265 447 ms 3,153 ms 146 22 7.05
LUBM10 1,480,366 676 ms 6,207 ms 146 22 9.22
DBPedia 1/32 1,087,364 3,061 ms 7,554 ms 1,087,364 1,085,309 2.47
DBPedia 1/16 2,276,510 5,931 ms 14,681 ms 1,936,950 1,934,887 2.48
DBPedia 1/8 4,523,729 10,954 ms 27,739 ms 3,083,513 3,081,433 2.53

Table 1: Reasoning time for different data sets using AMR and grdfs reasoner
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The experiment shows that our approach provides a speedup of a factor of
up to 9.2 compared to the grdfs reasoner. While the speedup for the LUBM data
sets is more significant than for the DBPedia data sets, it is still more than two
times faster. The different speedup factor results from the fact that using the
DBPedia data sets many new triples are inferred, such that up to 60% of the
reasoning time of the AMR reasoner is needed for the serial implemented rule
firing, which also includes operations like dictionary lookup to not infer duplicate
triples.

Further results from other work for comparison can be used for example from
[14], where the authors evaluated an approach to parallelise the RDFS closure
using an Opteron blade cluster, each server in the cluster having two dual-core
2.6 GHz AMD Opteron processors. The LUBM10k/1024 data set from that
paper has a slightly smaller size and a similar complexity like the LUBM10 data
set used for this paper. While the approach from [14] took about 2 seconds in
total to calculate the closure using a cluster of 128 cores, our approach calculates
the RDFS closure on a single machine in about 3 seconds. On a MacBook Pro
with a Core i7 processor, which has a less powerful GPU but due to the CPU a
faster architecture for serial calculations, the same test could even be finished in
less than 2.6 seconds using the AMR reasoner. Nevertheless, the approach from
[14] is able to handle much larger data sets.

5 Discussion and Future Work

The results in section 4.3 show that our approach offers a good and scaleable
performance using a single computer, also for data sets with millions of triples.
Nevertheless, there are still restrictions regarding the size of an ontology. On
the one hand for a performant execution the main memory of the host com-
puter needs to be large enough to hold the complete ontology as well as inferred
matches and data structures that are used for the rule execution. On the other
hand the use of integers for the created index structures limits the number of
processable triples. This limitation is even stronger regarding the matches-arrays
of the single nodes which easily needs to hold a multiple of elements as triples
are available. To overcome this issues, the use of 64bit datatypes as well as ap-
propriate collection types to hold the triples and matches should be considered.
In addition the use of collection oriented matching like describe in [21] could
be considered, where matches are calculated and stored in a collection-oriented
way instead of using single tuples. Furthermore a partitioning strategy could
be implemented that allows to distribute the workload of large ontologies over
multiple GPUs as well as over multiple machines. Thus, a combination of the
cluster-based approach used in [14] and the low level parallelisation like described
in this paper might be an interesting approach. Another optimisation might be
possible by parallelising the rule firing, too, which will require thread safe data
structures and a concept to detect duplicates.

Besides optimisations regarding the performance and the ability to handle
larger data sets, in the future we are also going to investigate how we can ex-

46



tend the functionality of our rule-based system to also support operants like
greaterThan(?x, ?y) within a rule body. This way our system would offer much
more flexibility for scenarios with application specific rules like used in different
kinds of smart environments like [2] [5].

6 Conclusion

In the past most of the approaches to parallelise the reasoning process have fo-
cused on distributing the workload over multiple machines to use a large number
of processors. Only a few approaches already considered the use of the parallel
structures available on a single machine. All approaches have in common, that
they implement a defined set of rules and can not be configured in an application
specific way. In this paper we proposed a rule-based approach that is indepen-
dent from a specific semantic and uses the parallel structures of modern CPUs
as well as of GPUs. The high performance is achieved by parallelising the Rete
algorithm and breaking the match-steps into fine grained tasks which can be
computed highly parallel. We also introduced a vector-based operation to com-
pute the beta matches, which easily doubles the performance of the algorithm
running on a GPU. Finally our results show, that the approach scales well with
the number of used cores and can apply a set of rules to an ontology in a very
performant way. Thus the parallelisation of a generic rule-based approach to ap-
ply rules on ontological data can be very efficient, if the workload is partitioned
into an adequate number of units which can be computed highly parallel.

References
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