
Designing and Creating a Web Site Based on RDF Content

Eero Hyvönen, Markus Holi, and Kim Viljanen
Helsinki Institute for Information Technology (HIIT), University of Helsinki

P.O. Box 26, 00014 UNIV. OF HELSINKI, FINLAND,
FirstName.LastName@cs.Helsinki.FI

http://www.cs.helsinki.fi/group/seco/

Abstract

This paper presents a method and a tool for designing
and automatically creating an HTML web site for publish-
ing Semantic Web content represented in RDF(S). The idea
is to specify the needed RDF to HTML transformation on
two separate levels. On the HTML level, the layout of the
pages can be described by an HTML layout designer by us-
ing templates and tags. On the RDF level, the semantics of
the tags are specified by a system programmer in terms of
logical rules based on the RDF(S) repository. The idea is to
apply logic for defining the semantic linkage structure and
the indices of the page repository. The method has been im-
plemented as a tool called SWeHG for generating a static,
semantically linked site of HTML pages from an RDF repos-
itory. As real life case applications, web exhibitions gener-
ated from museum collection metadata are presented.

1. Two Views of the Semantic Web

The notion of the Semantic Web1[1, 3] has two interpre-
tations. From the machine’s viewpoint, the Semantic Web
manifests itself as a distributed source of interpretable meta-
data concerning resources, such as web pages2, documents,
photos, and real world object. The metadata descriptions
are given in terms of ontologies using frameworks and lan-
guages such as RDF(S)3 and OWL4. From the human’s
viewpoint, the Semantic Web looks like the current web,
i.e., it is a repository of HTML pages, but empowered with
more useful semantics-based links, search engines, and in-
telligent web services.

A central question in the development of Semantic Web
applications is how the content represented for the machine

1 http://www.w3.org/2001/sw/
2 See, e.g., http://dmoz.org.
3 http://www.w3.org/RDF/
4 http://www.w3.org/2001/sw/WebOnt/

Figure 1. Rendering RDF(S) content as an
HTML web site.

can be transformed for the human to view, i.e., how ma-
chine interpretable RDF(S) or OWL content proliferating
the web can be rendered to the human end-user as a search-
able and browsable HTML web site or space. In this pa-
per we present a new approach and tool named “Semantic
Web HTML Generator” (SWeHG) [9] to address this prob-
lem (cf. figure 1). The idea is to specify the structure and
the layout of an HTML web site in terms of a set of HTML
templates using a tag language. The templates can be used
by a web layout designer who does not know the details of
the underlying RDF(S) content or Semantic Web technolo-
gies. The semantics of the tags, i.e., the machine’s view on
the RDF level, is specified by a Semantic Web program-
mer in terms of logic predicates. A benefit of separating the
HTML and RDF levels is that ontological details and vari-
ance can be hidden from the HTML designer. By modifying
the semantics of the tag, content represented using different
ontological structures can be mapped on the same HTML
tags that the HTML designer is capable of using. The tag
definitions can be re-used directly in applications based on

similar ontologies and annotation schemas. The templates
provide a declarative description of the web site structure,
indices, and linkage. By modifying the templates alone in
HTML, the same RDF(S) content can more easily be ren-
dered in different ways in different applications to human
end-users.

In the following, we first discuss two examples of seman-
tically indexed and linked HTML web sites generated by
SWeHG. The layout specifications with the corresponding
tag definitions needed for the RDF to HTML transforma-
tion are then discussed. After this, the transformation pro-
cess and its implementation are presented. In conclusion,
experiences of our research and experimentation are sum-
marized, related work is described, and directions for fur-
ther research are outlined.

2. Example Applications

2.1. Helsinki University Museum

The virtual exhibition of a photo archive in the Helsinki
University Museum5 was generated. The archive contained
629 photographs about the promotion ceremonies of the
University of Helsinki. The content of the archive was trans-
formed into RDF(S) format in an other application project
[7] and was used as it is by SWeHG. The domain knowledge
consists of six ontologies with 329 promotion-related con-
cept classes, such as “Person” and “Building”, 125 proper-
ties, and 2890 instances, such as “Linus Torvalds” and the
“Entrance of Cathedral of Helsinki”.

In the photo annotation schema, the subject of a photo-
graph is represented by a collection of ontology classes and
individuals that appear on the image6. For example, if Linus
Torvalds appears in a photo on a particular street, then the
photo record is related directly with the corresponding per-
son and street resources with a property corresponding to
dc:subject. However, the relation between photos and
subjects can be indirect, as well, involving traversal through
several RDF arcs in the underlying knowledge base. For ex-
ample, Linus Torvalds is present in a photograph as a Hon-
orary Doctor. Then only an instance of such a role is asso-
ciated with the image. The person instance in not directly
linked with the image, but indirectly through the role in-
stance. SWeHG predicate definition facility is very handy
in hiding such annotation schema specific details from the
HTML designer: the persons can be associated with im-
ages either directly or indirectly through roles. The crite-
rion for association can be defined freely and conveniently
by a declarative predicate.

5 http://www.helsinki.fi/museo/
6 The annotations also include other metadata, such as the photogra-

pher, free text descriptions, some technical information of the images,
etc.

Figure 2. A photo exhibition generated with
SWeHG.

Using SWeHG to publish the archive provides the end-
users with two services. First, the photos can be found along
the different orthogonal views based on the ontologies. Sec-
ond, the photos can be browsed by using the links created
between semantically related photos. The links are grouped
based on the semantics of the link. For example, there is a
link group that points to other photos taken of the same per-
son.

2.2. Espoo City Museum

Figure 2 presents the home page of the exhibition “Es-
poo City Museum on the Semantic Web” that was generated
using SWeHG for the museum7. Seven RDF(S) ontologies
are used with some 10,000 classes and individuals and the
metadata is described in terms of 38 properties. The RDF(S)
repositories where originally created for the semantic por-
tal MuseumFinland [6]. In this work, we could re-use the
semantic recommendation predicates and the inference rule
base developed for the original system, and the exhibition
could be generated in a day or two.

In the RDF(S) repository, each ontological property of
the collection objects in the exhibition, such as “material”
is associated with a domain ontology of its own. For exam-
ple, artifact, material, and technique ontologies have been
defined based on the Finnish MASA Thesaurus [10] of key-
words used in several museums for indexing data. The on-
tology MAO [8] created based on MASA contains some
6600 classes organized in a taxonomy. There is also a lo-
cation ontology that defines geographical concepts such as
“country” and “town”. Their instances are individual areas

7 The exhibition is on the web at
http://www.cs.helsinki.fi/group/seco/swehg/ekmdemo/

and places. The places are related with each other by a part-
of meronymy. In the same way, an agent ontology defines
concepts such as “person” and “company”, whose instances
are active individuals. There is also an ontology for time pe-
riods and an ontology of collections in different museums.
Still another ontology of “activities and processes” contains
a taxonomy of concepts such as “wedding” and “fishing”.
It is used to provide the end-user with an event-based view
to cultural artifacts by associating them with correspond-
ing events through annotations and logical rules. Each ob-
ject’s metadata and annotations are given in an RDF card,
that points to different classes and instances of the ontolo-
gies by the respective URIs through RDF properties. Some
of the properties in an RDF card have literal values, and
some point to resources by using URIs.

The created HTML site consists of some 1200 resource
web pages (RPage) describing objects in the museum’s col-
lection database, pages indexing the contents along differ-
ent classifications, and a short user’s guide. On the left in
figure 2, three frames containing indices for the underly-
ing content are seen. The alphabetical index (“Aakkostettu
hakemisto”) contains links to the RPages in alphabetical or-
der. By selecting a link, the respective RPage is shown on
the right. In figure 2, the user has selected a link to an RPage
depicting perfume bottles. Before making a selection, the
user’s guide was shown in the same frame. The classified
index (“Hakemisto aiheittain”) is based on the RDFS tax-
onomy of the underlying cultural MAO ontology [8] that
was used when creating the collection metadata. When se-
lecting a concept, the rightmost frame shows links to its sub-
concepts together with links to RPages whose objects are di-
rectly related to the concept. By selecting a subconcept link
there, the taxonomy can be browsed further downward; by
selecting a link to an RPage, the corresponding collection
object with its metadata can be viewed in the frame. The
third index “Hakemisto tapahtumittain” classifies the col-
lection objects by associating them with the different events,
processes or activities in which the objects are used or oth-
erwise related to.

By using the indices, the user can find collection ob-
jects of interest. An alternative way is to use a conventional
search engine. In the upper right corner of figure 2 a form
for using Google to search for the pages in the repository is
seen. The hit list will be shown in the rightmost frame.

After finding an PRage of interest, the collection can be
browsed by using the semantic links generated between re-
lated collection items. For example, in figure 2 links to ob-
jects manufactured at the same location, objects of similar
material etc. can be clicked. The semantic links are gener-
ated based on the underlying ontologies, metadata, and log-
ical recommendation rules.

The museum can publish the content by just copying the
pages into a public HTML directory. This is of practical im-

R

R R

RRR

1

2
3

4 5 6

R7

RDF
repository

templates
+

rules

HTML repository

HPage

IPage1 IPage2

R1Page R2Page R3Page 4RPage R5Page

Figure 3. Transforming an RDF repository
into HTML pages.

portance, since museums typically do not have competent
IT personnel, servers, and resources to create and maintain
semantic portals of their own.

To sum up, the output of SWeHG is a semantically linked
space of HTML pages of the following kind: 1) Resource
pages (RPage) depict selected resources with their meta-
data. 2) Index pages (IPage) classify RPages along concep-
tual hierarchical classifications, that will be called facets or
views [11]. By using IPages, RPages can be found along dif-
ferent facets. 3) A home page (HPage) defines the entrance
page to the HTML repository.

3. Specifying the Transformation

Figure 3 depicts the RDF to HTML transformation. The
RDF graph is on the left. Each

���
corresponds to a re-

source corresponding to a data entry in the RDF repository.
In our example, the data entries are collection objects with
their metadata. On the right, the HPage has links to vari-
ous IPages classifying the underlying RPages that are re-
lated with each other by semantic links.

The transformation is based on descriptions on two lev-
els: 1) The layout of the HTML pages is described on the
HTML level by templates using custom tags. 2) The seman-
tics of the tags is defined on the RDF level in terms of logi-
cal rules based on the input RDF(S) content. The idea is that
an HTML designer can design the layout of the page repos-
itory to be generated by using tags without knowing details
of the underlying RDF structures, RDFS ontologies, and
Prolog programming. RDF(S) related knowledge as well
as programming capability in Prolog is needed only for
the system programmer when defining the tags. The same
tag definitions can be re-used in applications conforming to

similar ontological schemas.
SWeHG provides the HTML designer with three major

tags: getProperty, getLinks, and getView. The tag <getProp-
erty name=� > is used for rendering a label related to the
resource underlying an RPage. For example, the metadata
property values of the bottles and the photo in figure 2 are
rendered in this way. The relation � can be specified by the
system programmer on the RDF level freely by a binary log-
ical predicate.

The tag <getLinks> is used for rendering links between
RPages. For example, the tag
<swehg:getLinks name="SameLocation"

listType="ul" listStyle="text-size: 10;"/>

could expand into the following HTML code linking
photographs taken at the same location:
<ul style="text-size: 10;">

View from Eiffel-tower

Cafe Parisienne ...

On the RDF level, the criterion SameLocation for the
linkage could be defined by the predicate below8. It asso-
ciates the attribute SameLocation with the HTML link
label ’Same Place’ and the predicate photosWithSame-
Location defining the link relation.
swehg_relation_rule(’SameLocation’,
’Same Place’, photosWithSameLocation).

photosWithSameLocation(Context, Target) :-
photo(Context), photo(Target),
rdf(Context, _:place, Location),
rdf(Target, _:place, Location),
not(Context == Target).

The tag <getView> renders into a hierarchical index-like
view of category resources used in IPages. Each category is
associated with a set of subcategories and additional indi-
viduals of the categories. A view is defined by specifying
1) the root resource selector, 2) a binary subcategory rela-
tion predicate, and 3) a binary relation predicate that maps
the hierarchy categories with the individuals used as leaves
in the view. For example, the tag
<swehg:getView
roots="buildings" branches="subclass"
leaves="photoOf" listType="ul" />

expands recursively into a hierarchical unordered tree
(ul), where the leaves are links to photo record resources
related to different building categories. The predicate defi-
nitions defining the meaning of the attribute values can be,
for example, the following:
buildings(URI) :-
rdf(URI, rdf:type, ’http://some.org#building’).

subclass(SubCategory, SuperCategory) :-
rdf(SubCategory, rdfs:subClassOf, SuperCategory).

8 The examples are presented in SWI-Prolog (http://www.swi-
prolog.org) syntax. Here RDF triples are presented as rdf(Subject,
Predicate, Object). Underscore “_” is an unnamed variable.

photoOf(Class, Record) :-
rdf(Instance, rdf:type, Class),
rdf(Record, dc:subject, Instance).

Here buildings selects the class building as
the view root, and the hierarchy is expanded along the
rdfs:subClassOf property. The photoOf predi-
cate relates each building type � of this tree with a set of
photo record resources which are used as the leaf cate-
gories of � . These are rendered as HTML links to the cor-
responding RPages. The tag definitions could also be
much more complex than this, depending on the struc-
ture of the RDF(S) repository, and the desired output. The
view expansion into HTML can be controlled with the
help of additional tag attributes for, e.g., ordering the cate-
gories.

The following is an example of a complete RPage tem-
plate. It could be used for rendering the images using the
HTML img-tag and links to related RPages:

<swehg:template selector="photo">
<html>
<body>
<h2><swehg:getProperty name="Title_Of_Photo"/></h2>
<p><img src="<swehg:getProperty

name="PhotoURL"/>" /></p>
<h3>Photos from the same place:</h3>
<swehg:getLinks predicate="sameLocation"

listType="ul"/>
</body>
</html>
</swehg:template>

The tag attribute selector in the tag
<swehg:template> tells the criterion for selecting con-
text resources from the RDF repository. Each context re-
source will have an RPage of their own on the HTML
level. The attribute value, here photo, is the name of a
unary Prolog predicate called selector that should evalu-
ate true for context resource URIs.

An example of a complete IPage template is given below
using the view definitions above:

<swehg:template>
<html>
<body>
<h1>Building index</h1>
<swehg:getView

roots="buildings"
branches="subclass"
leaves="photoOf"
orderby="order_alphabetically"
listType="ul"/>

</body>
</html>
</swehg:template>

4. Web Site Generation

The process for transforming an RDF(S) repository into
HTML pages is defined by the algorithms 1 and 2. The in-
put of the procedure is a set of HTML templates, and an
RDF(S) repository. The output is an HTML page repository
conforming to the templates. The transformation is based

RDF(S)
repository

HTML
templates

Processing
instructions

Prolog
predicates

Page content XML

Layout
XSL

 HTML
pages

Link
Analysis

report
HTML

INPUT OUTPUT

Template
processor

XML page
generator

Linkage
analyzer

XSL
transformer

SWeHG

Figure 4. Internal architecture of SWeHG.

on a set of logical rules for selectors, properties, links, and
views.

The pages are generated using the HTML templates one
after another. If a template is associated with a selector, then
it is expanded into a set of RPages corresponding to the se-
lected context resources, else it is expanded once without a
reference to a context resource. In the latter case, the HPage
and IPages are created. When generating an HTML page,
the tags are expanded into HTML in the ways described in
the previous section.

Algorithm: RDF2HTML

Data: Templates T, RDF(S) repository R
HTMLPageRepository H = empty;
foreach Template t in T do

if t has a selector rule S then
foreach RDF Resource r in R do

if S(r) == true then
h = createHTMLpage(r, t);
add h to H;

end
end

end
else

h = createHTMLpage(T);
add h to H;

end
end

Algorithm 1: Main procedure for the RDF to HTML
transformation

Figure 4 depicts the architecture of our implementation.
The main program is a Perl script which first builds an
XSLT 9 template out of the HTML templates using the mod-
ule “Template processor”. This module also writes out a set

9 http://w3.org/TR/xslt

Algorithm: createHTMLpage

Data: Template t, Context Resource r
Result: HTML page
String H = t;
foreach Tag in H do

h = executeRule(Tag.rulename, r);
replace Tag in H with h;

end
return H;

Algorithm 2: Algorithm createHTMLpage for render-
ing an HTML template. Tag.rulename returns the name
of the rule, e.g., “getProperty”.

Figure 5. An analysis page created by
SWeHG.

of “Processing instructions” into a separate Prolog source
code file. These instructions link template tags with the Pro-
log predicates used in them as attribute values. The mod-
ule “XML page generator” is a Prolog program that applies
the predicates used in the HTML tags with respect to the
RDF repository according to the Processing instructions.
The result is a set of XML files describing the page con-
tents. These XML files are then transformed using Apache
Xalan10 and with the help of the XSLT templates generated
earlier into the final HTML pages.

The intermediate XML files in figure 4 are also used
as a basis for the “Linkage analyzer” module that tries to
identify the following potential problems: Self loops (a link
that points to the page itself), Bad links (link pointing to a
non existing page), Dead ends (an RPage with no outbound
links), No way in (an RPage with no inbound links from
any RPages or IPages), Not in index (an RPage with no in-
bound links from any IPage), and Unused rules (rules that
are newer referred to when generating the HTML reposi-
tory). The analysis results are represented as HTML pages.
This helps the designer in debugging the specifications.

Figure 5 depicts a portion of the result from the analyzer.

10 xml.apache.org/xalan-j/

On this page the number of in-coming and out-going links
can be seen for each RPage together with a status explana-
tion. The analyzer has found out that the page with label
“Aikaisempien yleisten ...” is not connected with any other
page or index. Furthermore, the page “Airueet” has one in-
coming and two outgoing links but was not included in any
index. This kind of connectivity information is vital when
debugging the logical rules that produce the HTML pages.

5. Discussion

5.1. Benefits and Limitations

Our initial experiences indicate that the presented RDF
to HTML transformation method is feasible. HTML tem-
plates can be created fairly easily and can be adapted to
different RDF repositories. Moreover, changes in ontology
versions do not affect the usage of the templates on the
HTML level in any way. The idea of using logic and Pro-
log for defining the semantics of the tags seems powerful.
Complicated semantic link relations and views can be de-
fined and modified easily thanks to the declarative nature
of logic programming. By using generic rules it is possible,
in principle, to create tag definitions that will apply to any
RDF repository. In contrast to view-based search systems,
such as [11, 5], the views are projected from the RDF(S)
ontologies. The main benefit is that arbitrary mappings be-
tween view categories and data resources can be flexibly de-
fined. The system infers the mapping between views and re-
sources which gives it an “intelligent” flavor. Furthermore,
the HTML pages are linked semantically with each other ac-
cording to the ontologies, metadata, and rule base used. To
the end-user, the underlying hidden associations between
collection objects is a most interesting aspect of cultural col-
lections. The nature of the associations can be explained to
the user by the labels of the links.

The tag definitions are not application specific, and can
be used also in different applications that use the same
RDF(S) content. For example, we could use the linkage
rules, the selector rules, and the rules generating the views
of the indices of the “Espoo City Museum on the Semantic
Web” developed originally for a semantic portal [6]. On the
other hand, the tag language of SWeHG is limited, and it can
not be extended easily. Also, the set of different HTML out-
puts that the tags produce is limited at the moment. The out-
put varies from simple strings to lists of links. In addition,
SWeHG does not offer sufficient tools for testing the tag
definitions before the actual transformation. A preview or
debug function would be useful, because when the RDF(S)
database is large, then the transformation process is long.

SWeHG generates static pages in a batch process before
publishing them on the web. This approach has the follow-
ing benefits when compared with dynamic semantic portals:

The page repository can be published easily by just copying
it into a public HTML directory. SWeHG can be adapted to
different contents conforming to different ontologies. The
publication process is independent from semantic portal
providers—no special server software is needed. The pages
need no special maintenance. The static pages are indexed
and searched for by general search engines. The pages can
be viewed efficiently. Data security problems are minimal.
The properties of the resulting HTML page set can be ana-
lyzed efficiently.

On the other hand, the static approach taken in SWeHG
also has, of course, its limitations. First, static pages can not
adapt their content dynamically to different user or patterns
of usage. Second, dynamic systems can be connected more
easily with other services providing additional functionality.
Third, if the RDF repository, the rules, or the HTML tem-
plates change, the site has to be regenerated usually from
scratch. Dynamic systems can adapt better to such changes.
Fourth, if the RDF repository is large and many templates
are used, then the number and size of generated pages can
be large.

Clearly, both the dynamic and static approaches have
their own virtues and application possibilities.

5.2. Related Work

Logic and dynamic link creation on the semantic web
have been discussed, e.g., in [4, 2]. Our approach is differ-
ent in it’s use of HTML templates and Prolog for describing
the static HTML output. In the RDF Twig tool11 the RDF to
HTML transformation is based on XSLT. A problem here is
that an RDF graph can be serialized in many ways in XML.
Different applications may produce different XML serial-
izations of the same RDF graph, and thus a number of XSLT
templates would have to be written for a single graph. In our
approach only actual changes in the graph structures are rel-
evant, because in SWI-Prolog, by which we define the log-
ical rules, the RDF graph is processed purely as triplets. In
Spectacle12 the RDF to HTML transformation is based on
APIs. Then the user must write programs that use the API,
and also an application server is needed. In contrast, our ap-
proach is based on tags, is declarative, and the result is a set
of static pages whose linkage structure is inferred by logi-
cal linking predicates.

5.3. Directions for Future Work

SWeHG is a research prototype. More work and testing
is still needed in order to evaluate and enhance the usability
and extendability of system in different applications. More

11 http:/rdftwig.sourceforge.net/
12 http://www.aidministrator.nl/spectacle/

work is also needed in optimizing the efficiency of the code
and in providing better development tools for the HTML de-
signer and system programmer using the system.

Acknowledgments

A. Valo contributed significantly to the implementation
of SWeHG. Also M. Kiesilä, V. Komulainen, R. Köppä-
Laitinen, and J. Muhonen participated in the implementa-
tion project. Our work was mainly funded by the National
Technology Agency Tekes, Nokia Corp., TietoEnator Corp.,
the Espoo City Museum, the Foundation of the Helsinki
University Museum, the National Board of Antiquities, and
the Antikvaria-group of some 20 Finnish museums.

References

[1] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic
web. Scientific American, 284(5):34–43, May 2001.

[2] P. Dolong, N. Henze, and W. Neijdl. Logic-based open hy-
permedia for the semantic web. In Proceedings of the Int.
Workshop on Hypermedia and the Semantic Web, Hypertext
2003 Conference, Nottinghan, UK, 2003.

[3] D. Fensel, J. Hendler, H. Lieberman, and W. Wahlster, edi-
tors. Weaving the Semantic Web. The MIT Press, 2002.

[4] C. Goble, S. Bechhofer, L. Carr, D. De Roure, and W. Hall.
Conceptual open hypermedia = the semantic web? In
Proceedings of the WWW2001, Semantic Web Workshop,
Hongkong, 2001.

[5] M. Hearst, A. Elliott, J. English, R. Sinha, K. Swearingen,
and K.-P. Lee. Finding the flow in web site search. CACM,
45(9):42–49, 2002.

[6] E. Hyvönen, M. Junnila, S. Kettula, E. Mäkelä, S. Saarela,
M. Salminen, A. Syreeni, A. Valo, and K. Viljanen.
Finnish Museums on the Semantic Web. User’s perspec-
tive on museumfinland. In Proceedings of Museums and
the Web 2004 (MW2004), Arlington, Virginia, USA, 2004.
http://www.archimuse.com/mw2004/papers/hyvonen/ hyvo-
nen.html.

[7] E. Hyvönen, S. Saarela, and K. Viljanen. Ontoga-
tor: combining view- and ontology-based search with
semantic browsing. In Proceedings of the XML
Finland 2003 conference. Kuopio, Finland, 2003.
http://www.cs.helsinki.fi/u/eahyvone/publications/ xmlfin-
land2003/yomXMLFinland2003.pdf.

[8] E. Hyvönen, M. Salminen, S. Kettula, and M. Junnila. A con-
tent creation process for the Semantic Web, 2004. Proceed-
ing of OntoLex 2004: Ontologies and Lexical Resources in
Distributed Environments, May 29, Lisbon, Portugal (forth-
coming).

[9] E. Hyvönen, A. Valo, K. Viljanen, and M. Holi. Publishing
semantic web content as semantically linked HTML pages.
In Proceedings of XML Finland 2003, Kuopio, Finland,
2003. http://www.cs.helsinki.fi/u/eahyvone/publications/
xmlfinland2003/swehg_article_xmlfi2003.pdf.

[10] R. L. Leskinen, editor. Museoalan asiasanasto. Museovi-
rasto, Helsinki, Finland, 1997.

[11] A. S. Pollitt. The key role of classification
and indexing in view-based searching. Techni-
cal report, University of Huddersfield, UK, 1998.
http://www.ifla.org/IV/ifla63/63polst.pdf.

