A Framework for Testing UML Activities
Based on fUML

Stefan Mijatov, Philip Langer, Tanja Mayerhofer, and Gerti Kappel

Business Informatics Group, Vienna University of Technology, Austria
{mijatov, langer, mayerhofer, gert i}@biq .tuwien.ac.at

Abstract. In model-driven engineering (MDE), models constitute the main de-
velopment artifacts. As a consequence, their quality significantly affects the qual-
ity of the final product. Thus, adequate techniques are required for ensuring the
quality of models. We present a testing framework, comprising a test specification
language and an interpreter, for validating the functional correctness of UML ac-
tivities. For this purpose, we utilize the executability of a subset of UML provided
by the fUML standard. As UML activities are employed for different purposes,
from high-level process specifications to low-level object manipulations, the pro-
posed testing framework not only allows to validate the correctness in terms of
input/output relations, but also supports testing intermediate results, as well as
the execution order of activity nodes. First experiments indicate that the proposed
testing framework is useful for ensuring the correct behavior of f{UML activities.

1 Introduction

In model-driven engineering (MDE), models are used to specify the structure and be-
havior of the system to be built. By using model transformations and code generation,
artifacts, such as source code, database schema, and deployment scripts, can be gener-
ated from the models. This helps developers to abstract from technical details and in-
crease their productivity by automating parts of the development process [1,13]. MDE
shifts the development process from being code-centric to being model-based. As a
consequence, it is of uttermost importance to ensure a high quality of the models. Oth-
erwise, every error not captured at the model level is propagated to the final product [4].

One important quality aspect of models is functional correctness. For validating
the functional correctness of models, precisely defined semantics of the used modeling
language is a prerequisite. The semantics of a subset of UML [8], one of the most
adopted modeling languages, has recently been precisely defined and standardized with
fUML [9]. fUML specifies a virtual machine for executing UML models compliant to
this subset, which consists of concepts for modeling classes and activities.

Although the semantics of f{UML is precisely defined, adequate means for system-
atically testing fUML models are missing. We argue that a unit testing framework for
fUML may provide the same benefits as for code-centric approaches, as it enables to
validate the functional correctness of models, helps to avoid regressions, and test cases
on model level may serve as input for testing the artifacts generated from the models.

Providing unit testing techniques for f{UML activities is a challenging task because
they can be specified for different purposes and on different levels of abstraction. Hence,

Proceedings of MoDeV'Va 2013 1



A Framework for Testing UML Activities Based on f{UML

different means for validating their correctness are required. For instance, activities
that serve as a high-level specification of processes cannot be tested adequately using
assertions on input/output relations; constraints regarding the execution order of process
steps modeled by activity nodes seem to be more adequate in such cases. For testing
activities specifying low-level object manipulations and computations, assertions on
input/output relations might be helpful. In addition, developers may also need to specify
assertions on mutable intermediate results.

In this paper, we propose a dedicated fest specification language and an accompa-
nying fest interpreter enabling the validation of the correct behavior of f{UML activities.
Using the test specification language the modeler can specify assertions on the execu-
tion order of the activity nodes, input and output values, and the runtime state of the
model. The test interpreter is based on the reference implementation of the f{UML vir-
tual machine, which is used to execute the activities under test and to obtain execution
traces that are used for evaluating the assertions defined in the test specification.

The remainder of this paper is structured as follows. In Section 2 we introduce a
motivating example used to present our model testing approach throughout this paper.
Section 3 gives an overview of fUML and the execution traces used for evaluating
test cases on fUML activities. In Section 4 our test specification language for fUML
activities and our test interpreter for evaluating them are presented. Related work is
addressed in Section 5. Section 6 concludes this paper with an outlook on future work.

2 Motivating Example

In this section, we introduce a simple example fUML model specifying the withdrawal
functionality of an automatic teller machine (ATM), which serves as running example
throughout this paper, and discuss some test cases for validating its correct behavior.
From these test cases, we derive the requirements that we aim to address with the pro-
posed testing framework for f{UML activities which is presented in Section 4.

An excerpt of the class diagram specifying the structure of the ATM system is de-
picted in Figure 1. An ATM card (class Card) has a number and a pin and is associated
with exactly one account (class Account) which has a unique number and a balance.
For realizing the withdrawal functionality, the classes ATM and Account have dedicated
operations, called withdraw, validatePin, and reduceBalance.

The activities specifying the behavior of the operations withdraw and reduceBal-
ance of the classes ATM and Account are shown in Figure 2. The activity specified
for the operation withdraw (cf. ATMWithdrawActivity in Figure 2) requires as input the
client’s card as well as the PIN and the amount of money to be withdrawn entered by
the client. First, it checks whether the PIN is valid by calling the operation validatePin.
If the PIN is valid (i.e., the operation validatePin provides true as output), the operation
reduceBalance is called for the account associated with the provided card. If this oper-
ation returns true, the ATMWithdrawActivity provides also true as output indicating the
successful withdrawal; otherwise it returns false. The activity specifying the behavior
of the operation reduceBalance (cf. AccountReduceBalanceActivity in Figure 2) takes
as input the amount of money to be withdrawn and checks whether it exceeds the ac-
count’s balance. In case the balance is not exceeded, the balance is accordingly updated
and true is returned; otherwise false is returned.

Proceedings of MoDeV'Va 2013 2



A Framework for Testing UML Activities Based on f{UML

ATM Card Account
+ withdraw(Card card, Integer pin, Integer amount) - number : Integer - number : Integer
: Boolean - pin: Integer . 1l - balance : Integer
+ validatePin(Card card, Integer pin) : Boolean
( ger pin) + reduceBalance(Integer amount) : Boolean

Fig. 1: Classes of the ATM system

~

result ATMWithdrawActivity

ReadSelf
self

successful :
Boolean

call_validatePin
(ATM::validatePin)

result

ValueSpecification

card :Card suc Fal

[true]

call_reduceBalance
(Account:reduceBalance)

jount :Integer

[AddStructuralFeatureValue]

setBalance

ValueSpecification result
successTrue

ValueSpecification
successFalse

«decisiopinput
Flow»

I
2

jount :Integer
9 < [true]

=
( [false]

Fig.2: Activities of the ATM system

For validating the correct behavior of the activity ATMWithdrawActivity, which spec-
ifies the withdrawal functionality of the ATM, we state the following test cases.

Test case 1. If the correct PIN is provided and the amount of money to be withdrawn
does not exceed the balance of the client’s account, the balance of the account should
be reduced by the withdrawn amount and the activity should return true. Furthermore,
the validation of the PIN should happen before the balance is reduced.

Test case 2. A withdrawal should also be possible if the amount of money to be with-
drawn is equal to the balance of the account.

Test case 3. If the amount of money to be withdrawn exceeds the balance of the account,
the balance must remain unchanged and the activity should return false.

A testing framework for fUML activities has to provide the means for expressing

and evaluating these and similar test cases. Therefore, it has to fulfill the following
requirements.
R1: Execution order. It should be possible to test the chronological order in which
activity nodes are executed during the execution of the activity under test. Also other
activities that are called from the activity under test should be considered. Furthermore,
it should be possible to state the relative execution order of activity nodes without hav-
ing to state the order of all activity nodes that are expected to be executed.

Proceedings of MoDeV'Va 2013 3



A Framework for Testing UML Activities Based on f{UML

R2: Input / output validation. The testing framework should enable to check whether
an input of an activity results in a given output. Further, the same should be possible for
activity nodes contained by activities to allow for testing intermediate results.

R3: State validation. Assertions regarding the runtime state of the tested model, con-
sisting of objects, their feature values, and links, should be possible for any point in
time as well as for time periods of the execution of the activity under test.

R4: Test input data. The testing framework should allow to specify input data for the
parameters of the activity under test in order to test different execution scenarios.

3 Foundational UML

The fUML standard [9] provides a formal definition of the execution semantics of a
subset of UML 2. This subset contains the structural and behavioral Kernel of UML, as
well as a major subset of the UML sublanguages Activities and Actions. Its semantics
is defined through an operational approach by the specification of a virtual machine
providing the capability of executing fUML-compliant models.

Whereas the standardized fUML virtual machine provides the facilities to execute
activities and retrieve the output values for their parameters, it lacks in providing means
for analyzing the performed model execution. To address this shortcoming, we extended
the reference implementation of the virtual machine' in previous work [7] with the func-
tionality of recording execution traces during the execution of activities. An excerpt of
our metamodel for capturing execution traces is depicted in Figure 3. A trace provides
information about the executed activities (class ActivityExecution), the executed activity
nodes (class ActivityNodeExecution), as well as the chronological order in which these
activity nodes have been executed (references chronologicalPredecessor, chronological-
Successor). Furthermore, the trace captures the input and output (classes Input, Output)
of the execution of actions (class ActionExecution) and records the call hierarchy among
activities (class CallActionExecution), as well as the input and output (classes InputPa-
rameterSetting, OutputParameterSetting) of activities. Also the evolution of the runtime
state, that is, objects and links existing at any specific point in time during the execution,
is captured by the trace: each modification of a value (class Valuelnstance) is recorded
by capturing a snapshot of the modified value (class ValueSnapshot). It is worth noting
that for each execution of an action or activity the trace captures which snapshot of a
value was provided as input to the execution and which snapshot resulted as an out-
put of the execution (references to ValueSnapshot). Furthermore, the trace captures the
destroyer and creator (references destroyer, creator) of values.

In summary, the trace of an executed activity enables to reason about the execution
order of activities and activity nodes, inputs and outputs, and the runtime state of the
executed model at a specific point in time of the execution. It therefore builds the crucial
basis for the proposed testing framework for fUML activities presented in the following.

4 Testing Framework

In this section we first present a dedicated test specification language for expressing
test cases on fUML activities and illustrate its usage on the ATM example introduced

"http://fuml.modeldriven.org/

Proceedings of MoDeV'Va 2013 4



A Framework for Testing UML Activities Based on f{UML

Trace * Valuelnstance ® ;* ValueSnapshot [ 1
. 1
runtimeValue : Value value : Value
. original 0.1

ParameterSetting

ActivityExecution

ParameterValue

$ 0.1 MNcallee 5*1 InputParameterSettingH' InputParameterVaIue|
*

*
* OutputParameterSeningH OutputParameterValue
] *
chronological|  ¢t;yityNodeExecution| 0.1 \|/caller
Successor

0.1 . Vi
node : ActivityNode | CallAclionExecuti0n| Input > InputValue

0.1 inputPin : InputPin

chronological
Output ‘%' OutputValue

Predecessor
outputPin : OutputPin

— - parameter : Parameter
activityExecutionID : Eint A A

activity : Activity

ActionExecution

destroyer 0..1

creator 0.1 *

Fig. 3: Trace metamodel for f{UML

in Section 2. Subsequently, we present a test interpreter capable of evaluating test cases
as well as the result from evaluating the ATM test cases.

We provide an implementation of our testing framework integrated with the Eclipse
Modeling Framework (EMF) [14]. For more detailed information about the implemen-
tation, we kindly refer the interested reader to our project website?.

4.1 Test Specification Language

Our test specification language for f{UML activities enables to specify a fest suite which
consists of import declarations, test scenarios, and test cases. An import declaration is
used for referencing elements of the f{UML model containing the activities under test.
Test scenarios allow to specify objects, their feature values, and links, which can be used
as input for the activities under test, as well as in state assertions (which are explained
below). Each test case has a name, refers to the activity under test, and is composed
of a set of assertions, which may either concern the execution order of activity nodes
or the runtime state of the model. An execution order assertion is used for validating
the execution order of activity nodes during the execution of the activity under test. In
such assertions, the proposed language also allows to test the execution order of nodes
contained by called activities and to accept any unspecified node before, in between, or
after specified nodes using wildcard characters. The wildcard character * stands for an
arbitrary number of activity nodes being executed, whereas _ stands for the execution
of exactly one arbitrary activity node. A state assertion validates the state of objects
at a certain point in time of the execution of the activity under test. For expressing
the point in time at which the state of an object should be validated, an activity node
has to be stated in combination with a temporal operator and a temporal quantifier.
The temporal operators after and before are used to define whether the snapshots of
an object captured before or after the execution of the stated activity node should be

Zhttp://www.modelexecution.org

Proceedings of MoDeV'Va 2013 5



A Framework for Testing UML Activities Based on f{UML

checked. The temporal quantifier always denotes that all snapshots captured before or
after the stated node should be checked, whereas the quantifier exactly denotes that only
the single snapshot captured directly before or after the execution of the stated node
should be checked. The properties of the object that shall be validated are defined in the
state expression of a state assertion, which can either be an object state expression for
validating the state of a complete object (i.e., all its properties), or it can be a property
state expression for validating the value of a single property of an object.

Listing 1 shows the specification of the test cases for the ATM system defined in
Section 2 using the proposed test specification language.

Listing 1: Test suite for the ATM system

1 import model.*

2 scenario TestData {

3 object atmTO : ATM {}

object accountTO : Account {
nurmber = 323454676;
balance = 800;

object cardTO : Card {
nurber = 323454676;
10 pin = 1234;

R S

12 link card account {card = cardTo; account = accountTo;}

13}

14 test testcasel activity ATMWithdrawActivity (card = TestData.cardTO, pin = 1234, amount = 300)
15 on TestData.atmIO {

16 var account = readAccount.result;

17 var successful = ATMWithdrawActivity.successful;
18 assertOrder *, call validatePin, *, call reduceBalance, *;
19 assertState always before call reduceBalance {
20 account : :balance = 800;

21

22 assertState always after successTrue {

23 account : :balance = 500;

24 successful = true;

25

26 }

27 test testcase2 activity ATMWithdrawActivity (card = TestData.cardTO, pin = 1234, amount = 800)
28 on TestData.atmTO { // only the differences to testcasel are shown

29 assertState always after successTrue {
30 account : :balance = 0;

31 successful = true;

32 }

33}

34 test testcase3 activity ATMWithdrawActivity (card = TestData.cardTO, pin = 1234, amount = 900)
35 on TestData.atmTO { // only the differences to testcasel are shown

36 assertState always after successFalse {
37 account : :balance = 800;

38 successful = false;

39

a0 }

After specifying the f{UML model which we want to test using an import declaration
(line 1), we define a test scenario (line 2—13) composed of one ATM object, one Account
object, one Card object, and one link between the Account and the Card object.

The first test case (line 14-26) tests the activity ATMWithdrawActivity and provides
as input the Card object defined in the test scenario and the Integer values 1234 and
300 for the parameters card, pin, and amount, respectively. In this test case, we first
declare a variable account (line 16), which refers to the object provided as output by the
action readAccount through its output pin result. This variable can now be used in state

Proceedings of MoDeV'Va 2013 6



A Framework for Testing UML Activities Based on fUML

assertions. In line 18, an execution order assertion is specified defining that the action
call_validatePin should be executed before call_reduceBalance, whereas accepting the
execution of any other activity node before, in between, and after these nodes using *.
The state assertion in line 19-21 checks that before the operation reduceBalance is
called, the balance of the account is always 800. The state assertion in line 22-25 checks
that after the execution of the last activity node sucessTrue the balance of the account
should always be 500 (i.e., it is and remains updated to 500 accordingly). Furthermore,
this state assertion defines that the output (parameter successful) should be true.

The second test case (line 27-33) implements, similar to testcasel, the assertions
regarding the correct behavior for a withdrawal of 800; hence, it is expected that the
account’s balance is updated to 0.

The third test case (line 34—40) tests the behavior of the activity ATMWithdrawAc-
tivity for the case that the amount to be withdrawn from the client’s bank account (900)
exceeds the account’s balance (800). Accordingly, we assert that the balance of the
client’s account is not modified and that the output of the activity is false.

4.2 Test Interpreter

For executing and evaluating test cases on fUML activities specified in the presented
test specification language we make use of the f{UML virtual machine, as well as of
execution traces obtained from executing the activities under test (cf. Section 3).

The process of executing and evaluating tests is shown in the Figure 4. The input
provided to the test interpreter consists of the f{UML model to be tested and the test suite.
Each test case in the test suite is evaluated by executing the activity under test using the
fUML virtual machine with the parameter values defined in the test case. From this
execution, we obtain an execution trace, which is used to evaluate each assertion of the
test case. Finally, a test report is generated which provides the test verdict.

To evaluate execution order assertions, we simply investigate the ActivityNodeExe-
cution instances contained in the execution trace, which represent the executed activity
nodes, as well as the links between them defined for the references chronologicalPrede-
cessor and chronologicalSuccessor.

These snapshots maintain all different versions of the object that existed during the
entire execution of the activity under test. In fUML, objects can only be modified by
certain kinds of actions, which all provide the modified object as output. Consequently,
in the execution trace, an ActionExecution instance that represents the execution of such
an action also refers to the ValueSnapshot instance representing the modified object

fUML Model

Caption:

Classes Activities 1

=8|~

7 7y \L ModelO

Artifact

Test Verdic

ailure

Task
Automated

Test Suite Execution

Execution Test >
Trace Evaluation

Test Cases Test
a1 Scenarios

te:

in/out relation
—

Fig. 4: Test interpreter

Proceedings of MoDeV Va 2013 7



A Framework for Testing UML Activities Based on f{UML

as output (cf. Output, OutputValue). Thus, to evaluate a state assertion, we obtain the
ValueSnapshot instances of the Valuelnstance representing the object of interest, which
are referenced as outputs by the ActionExecution instances that have been executed in
the time period specified in the state assertion (e.g., always after actionX). Whether the
modification took place within the respective time period can be easily derived from the
chronologicalPredecessor/Successor of the activity node defined in the state assertion.
The resulting set of snapshots is then checked concerning the specified condition.

When executing the test suite defined for the ATM system in Listing 1, the test
interpreter reports failures for all test cases.

For test case 1, a failure is reported for the state assertion defined in line 24-27
because the account’s balance was updated to -500. The bug causing this failure resides
in the activity AccountReduceBalanceActivity: the incoming edges of the input pins of
the action call_subtract have to be switched to calculate the account’s new balance.

When evaluating test case 2, the execution order assertion, as well as the second
state assertion (validating that the balance was set to 0) fail, because the decision node
of the activity AccountReduceBalanceActivity defines that a withdrawal is only possible
if the amount of money to be withdrawn is smaller than the account’s balance (amount
< account::balance). However, according to the test case, the withdrawal should also be
possible if the amount is equal to the account’s balance (amount < account::balance).

Test case 3 fails because no output value was provided for the output parameter
successful of the ATMWithdrawActivity. The bug leading to this failure was introduced
at the action successFalse of the activity ATMWithdrawActivity. This action has two
incoming control flow edges, whereas only one of them can provide a control token but
never both, which is, however, required to execute this action.

In summary, our testing framework fulfills the requirements identified in Section 2.
It enables to assert the execution order of activity nodes (requirement R1), to evaluate
the input and output of activities and actions (R2), as well as the runtime state of the
tested model at a specific point in time of the executing (R3), and it enables to define
test input data for testing different execution scenarios (R4).

5 Related Work

Gogolla et al. [2] propose a UML-based specification environment (USE) for analyzing
UML models, where the structure is specified with class diagrams and the behavior with
operations. Class invariants and pre- and post-conditions of operations can be specified
using OCL [10], which can then be validated on snapshots of the system state (i.e.,
objects and links existing at a certain point in time). The behaviors of operations are
defined using their own imperative language and are therefore executed as specified in
sequence diagrams leading to changes of the system state (i.e., snapshots).

Dinh-Trong et al. [3] present an approach for testing UML design models consist-
ing of class diagrams, interaction diagrams, and activity diagrams by simulating the
model’s behavior and validating OCL class invariants and pre- and post-conditions of
operations. In this approach a test case consists of the definition of the initial objects and
links of the system under test and a sequence of operation calls. For executing test cases,
Java code is generated from the UML model under test. The generated code simulates
the behavior of the defined activity diagrams which is specified with their own action
language JAL. For evaluating OCL constraints during the simulation, USE is applied.

Proceedings of MoDeV'Va 2013 8



A Framework for Testing UML Activities Based on f{UML

Pilskalns et al. [12] present an approach for testing UML models composed of class
and sequence diagrams. OCL class invariants and pre-/post-conditions of operations are
used to validate the correct behavior of models. To execute test cases, a UML model
is transformed into another format called Testable Aggregate Model (TAM) on which
symbolic execution is applied. The OCL constraints are validated after the execution of
each message defined in the sequence diagrams with USE.

The described approaches differ from our testing framework in the following re-
spects. (i) For defining behavior in UML models, the presented approaches use their
own formalisms. Thus, the execution semantics they apply is different from fUML’s
semantics. However, they are not restricted to the f{UML subset. (ii) The presented ap-
proaches only evaluate invariants and pre- and post-conditions defined within the UML
model for specified scenarios, whereas our approach enables the specification of arbi-
trary test cases that are separated from the UML model. (iii) The presented approaches
only provide the possibility to validate changes on the system state caused by the ex-
ecution of a whole operation, while our testing framework enables to also validate the
state changes caused by distinct actions contained by the activity defining the opera-
tion’s behavior. Furthermore, no validation of the execution order of operations or even
actions is possible in these approaches.

Regarding the specification of test cases, the UML testing profile (UTP) [11] has to
be named. It is an extension of UML, intended to support model-based testing by pro-
viding a standardized language for designing, visualizing, specifying, analyzing, con-
structing, and documenting the artifacts commonly required for testing software-based
systems. While UTP allows to specify test cases, compared to the test specification
language proposed in this paper, UTP is less expressive. For instance, execution order
assertions cannot be expressed using UTP.

6 Conclusion and Future Work

We presented ongoing research towards developing a testing framework for validating
the correct behavior of UML activities based on fUML. Our testing framework provides
a dedicated test specification language for specifying the expected behavior of f{UML
activities in a set of test cases as well as a test interpreter which enables to evaluate the
test cases by executing the activities under test and analyzing their actual behavior by
utilizing execution traces.

First experiments with the proposed testing framework indicate its usefulness for
ensuring the correct behavior of fUML models. In-depth case studies are necessary
in future work in order to confirm this first impression. The experiments revealed the
following interesting extensions of our testing framework left for future work.
Parallelism. f{UML activities provide modeling concepts for specifying concurrent ex-
ecution flows (e.g., fork nodes). The current implementation of our testing framework
only supports the evaluation of test cases for one possible sequential execution order of
concurrent flows and not all possible sequential execution orders.

Object-centric testing. Another possible extension of our framework is to support
object-centric testing. User should be able to specify state validation expressions with-
out referring to the activity under test directly, but by specifying how the state of the
system changes during the execution. This would enable to express test cases on the

Proceedings of MoDeV'Va 2013 9



A Framework for Testing UML Activities Based on f{UML

expected behavior of a fUML activity, without coupling the test case with the activity.
In this respect OCL might be a valuable extension of our testing framework.
Corrective feedback. Our testing framework provides as output the information re-
garding the success or failure of each assertion. An interesting line of future work is
to investigate techniques for slicing fUML models (e.g., [6]) based on failing assertion,
which enables to determine the actual cause of a failing assertion. Based on this slice,
recommendations for possible fixes could be computed.

Model-based testing. Another possible future research direction is to apply model-
based testing approaches to generate test cases for f{UML activities based on coverage
criteria. We are currently investigating the approach proposed by Holzer et al. [5] who
use UML activity diagrams for generating test cases for programs written in ANSI C.

References

1.
2.

10.

11.

12.

13.

14.

J. Bézivin. On the unification power of models. SoSyM, 4(2):171-188, 2005.

J. Briining, M. Gogolla, L. Hamann, and M. Kuhlmann. Evaluating and Debugging OCL
Expressions in UML Models. In Zests and Proofs, volume 7305 of LNCS, pages 156-162.
Springer, 2012.

. T. Dinh-Trong, N. Kawane, S. Ghosh, R. France, and A. Andrews. A Tool-supported Ap-

proach to Testing UML Design Models. In Proc. of the 10th IEEE Conf. on Engineering of
Complex Computer Systems (ICECCS), pages 519-528. IEEE Computer Society, 2005.

. R. France and B. Rumpe. Model-driven Development of Complex Software: A Research

Roadmap. In Proc. of the Workshop on the Future of Software Engineering (FOSE) @
ICSE’07, pages 37-54, 2007.

. A. Holzer, V. Januzaj, S. Kugele, B. Langer, C. Schallhart, M. Tautschnig, and H. Veith.

Seamless Testing for Models and Code. In Fundamental Approaches to Software Engineer-
ing, volume 6603 of LNCS, pages 278-293. Springer, 2011.

. K. Lano and S. Kolahdouz-Rahimi. Slicing of UML Models Using Model Transformations.

In Model Driven Engineering Languages and Systems, volume 6395 of LNCS, pages 228—
242. Springer, 2010.

. T. Mayerhofer, P. Langer, and G. Kappel. A Runtime Model for fUML. In Proc. of the 7th

Workshop on Models @run.time (MRT) @ MoDELS’12, pages 53-58. ACM, 2012.

. Object Management Group. OMG Unified Modeling Language (OMG UML), Superstruc-

ture, Version 2.4.1, August 2011. Available at: http://www.omg.org/spec/UML/2.4.1.

. Object Management Group. Semantics of a Foundational Subset for Executable UML Mod-

els fUML), Version 1.0, February 2011. Available at: http://www.omg.org/spec/FUML/1.0.
Object Management Group. OMG Object Constraint Language (OCL), Version 2.3.1, Jan-
uary 2012. Available at: http://www.omg.org/spec/OCL/2.3.1.

Object Management Group. UML Testing Profile (UTP), Version 1.2, April 2013. Available
at: http://www.omg.org/spec/UTP/1.2.

O. Pilskalns, A. Andrews, A. Knight, S. Ghosh, and R. France. Testing UML designs. Infor-
mation and Software Technology, 49(8):892-912, 2007.

D. C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. IEEE Computer,
39(2):25-31, 2006.

D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling Frame-
work. Addison-Wesley Professional, 2nd edition, 2008.

Proceedings of MoDeV'Va 2013 10



