A pattern-driven approach to biomedical
ontology engineering

Jennifer D. Warrender and Phillip Lord

School of Computing Science, Newcastle University, Newcastle-upon-Tyne, UK

Abstract. Developing ontologies can be expensive, time-consuming, as
well as difficult to develop and maintain. This is especially true for
more expressive and/or larger ontologies. Some ontologies are, however,
relatively repetitive, reusing design patterns; building these with both
generic and bespoke patterns should reduce duplication and increase reg-
ularity which in turn should impact on the cost of development.

Here we report on the usage of patterns applied to two biomedical ontolo-
gies: firstly a novel ontology for karyotypes which has been built ground-
up using a pattern based approach; and, secondly, our initial refactoring
of the SIO ontology to make explicit use of patterns at development
time. To enable this, we use the Tawny-OWL library which enables full-
programmatic development of ontologies. We show how this approach
can generate large numbers of classes from much simpler data structures
which is highly beneficial within biomedical ontology engineering.

1 Introduction

Ontologies are used widely in biomedicine for many purposes, including instance
classification, schema reconciliation, or as a controlled vocabulary [1]. The range
of ontology purposes are reflected in their sizes. Systemized Nomenclature of
Medicine (SNOMED)! has over 290,000 concepts which presents scalability chal-
lenges when querying the ontology. The Gene Ontology (GO)? is about 1/10th
of this size, at 30,000 terms, while ontologies such as the Dublin Core (DC)? or
Simple Knowledge Organization System (SKOS)* have less than 100 terms each.

In some cases, the formal semantics of ontologies has been used with compu-
tational reasoning systems. However, ontologies vary in the use of the expressive-
ness of their language. Perhaps the most common is to use just subsumption and
existential restrictions (effectively the OWL2 EL profile) of which the GO is a
well-known example. Whilst SKOS is an example of the OWL Full profile. Other
ontologies use most of the constructs within the OWL language [2]. While there
have historically been many ontology languages, in the life sciences the two most
common are probably OBO format [3] and OWL [4]. Several mappings between
these two exist [5].

! http://www.ihtsdo.org/snomed-ct/

2 http://www.geneontology.org/

3 http://dublincore.org/

* http://www.w3.org/ TR /skos-primer/



There are a variety of methodologies and approaches that exist for ontology
engineering, some of which include the use of patterns. Patterns are templates
that encourage best practice; these were originally popularised in the context
of software engineering [6], but there has also been considerable research on
Ontology Design Patterns (ODP). ODPs are formal, reusable and successful
modelling solutions to recurrent modelling problems that are used for creating
and maintaining ontologies [7]. Two well-known ODPs are:

— value partition [8], a good practice ODP that is used to model attributes
of objects that can only have a predefined set of values.

— sequence [9], a domain modelling ODP. This ODP is used to model a se-
quence of events, one after the other.

There are many tools available for ontology construction, one of which is
Protégé®. Amongst others, Protégé had supported the value partition pattern
through the use of graphical wizards®.

As well as ODPs which address generic concerns cross-cutting a number of do-
mains, a need has also been recognised for patterns within a single ontology. One
mechanism for expressing these patterns is OPPL2 — a pre-processing language,
also available as a Protégé plugin, which can be used to automate addition or
transformation of ontology terms derived by a declarative rule language [10]. A
similar idea is found with “Safe Macros”, where patterns are expressed as anno-
tation properties within the ontology, which may be expanded to logical axioms
with a post-processor [11]. Other tools use patterns to leverage alternative data
entry environments, generally spreadsheets. For example, RightField [12] and
Populous [13] enable constrained data entry using an Excel spreadsheet, and
then use OPPL to expand this data into OWL expressions. Quick term tem-
plates [14] similarly uses spreadsheets and the mapping language, M? [15].

However, ontology development using GUI based tools is time-consuming
due to the necessity of GUI interaction when there are major modelling changes.
Therefore, a number of text based/programming environment tools for ontology
construction have been developed. Examples include Tawny-OWTL [16] (Clojure),
Thea-OWL [17] (Prolog) and InfixOWL [18] (Python), all of which can generate
OWL. These tools enable the development of ontologies within a programmatic
environment. These also provide a mechanism for the use of patterns; repetitive
ontology construction tasks can be automated. Next, we give a brief introduction
to Tawny-OWL, and introduce the idea of using a programmatic environment
for localised pattern development, which are (predominately) useful within a
single ontology.

2 Patternising the Pizza Ontology
Tawny-OWL [16] is a library written in the lisp dialect Clojure, wrapping the
OWL API [19]. It is designed to be used more as a textual user interface for on-

® http://protege.stanford.edu/
5 http://protegewiki.stanford.edu/wiki/Protege_Wizards



tology development, rather than an API for ontology manipulation. Clojure pro-
vides an evaluative environment, which means that Tawny-OWL can be used to
add (or remove) entities to an ontology incrementally and interactively. Tawny-
OWL has complete support for OWL2. including data types. It also provides
direct access to reasoners, which combined with unit testing and a versioning
system enables continuous integration of ontologies. Tawny-OWL has been de-
signed to be convenient for building simple ontologies without in-depth knowl-
edge of Clojure, however, fully programmatic use of Tawny-OWL will require
this knowledge.

The syntax of Tawny-OWL is relatively straight-forward, having been mod-
elled after Manchester Syntax [20]. Consider, for example, this definition (List-
ing 1) from the Pizza Ontology’ recast into Tawny-OWL syntax (aka tawny-
pizza)®, which we use here as an exemplar of Tawny-OWL and patterns.

(defclass Pizza
:label "Pizza"
:subclass (owl-some hasTopping PizzaTopping)
(owl-some hasBase PizzaBase))

Listing 1. A basic class definition.

As Tawny-OWL is built on a full programming language it is also capable of
expressing arbitrarily complex patterns. It provides support for two design pat-
terns which are so commonly used that it they are rarely recognised as a pattern,
the first being the closure axiom [21]. In Listing 2, we show an expression which
returns the two existential, and one universal restrictions necessary to describe
the toppings for a Margherita pizza. Covering axioms are also supported.

;; A - Usage
(some-only hasTopping TomatoTopping MozzarellaTopping)

;; B - As Manchester Syntaz
hasTopping some TomatoTopping
hasTopping some MozzarellaTopping
hasTopping only

(MozzarellaTopping or TomatoTopping)

Listing 2. A closed restriction.

Currently, Tawny-OWL has preliminary support for other general purpose
ontology design patterns, in the form of the value partition ODP. The usage of
this Tawny-OWL pattern can be seen in Listing 3, which generates four classes,
a disjoint axiom and an object property.

(value-partition
Spiciness
[Mild Medium Hot])

Listing 3. Example value partition usage in the Pizza Ontology.

" http://owl.cs.manchester.ac.uk/co-ode-files /ontologies/pizza.owl
8 Available from https://github.com/phillord/tawny-pizza



Closure axioms and the value partition are currently the only generic patterns
used in the Pizza ontology. We do use a localised pattern, which we called “named
pizza” where a particular pizza is defined by an enumeration of its ingredients
(Listing 4). This pattern also makes use of the closure pattern described earlier.

(defn generate-named-pizza [& pizzalist]
(doseq [[named & toppings] pizzalist]
(owl-class
named
:subclass NamedPizza
(some-only hasTopping toppings))))

Listing 4. Example of localised patterning in the Pizza Ontology. In this example,
owl-class, and some-only are parts of OWL, hasTopping is an object property,
pizzalist, named and toppings are variables, while defn and doseq are parts of Clo-
jure.

The syntactic concision of this pattern, as shown in Listing 5, is advantageous
as a pizza can have many toppings. A secondary advantage is to ensure consis-
tency of all the named pizza definitions, as well as supporting maintainability
should we wish to change these definitions. Tawny-pizza is currently an example
usage — in real usage, we would probably read this data from a spreadsheet, or
a simpler flat file, similar to tools such as RightField.

[CajunPizza MozzarellaTopping OnionTopping PeperonataTopping
PrawnsTopping TobascoPepperSauce TomatoTopping]

[CapricciosaPizza AnchoviesTopping MozzarellaTopping
TomatoTopping PeperonataTopping HamTopping CaperTopping
O0liveTopping]

Listing 5. Example Named Pizza inputs.

In this section, we have introduced Tawny-OWL and shown how it enables
the application of patterns; however, this has been in the context of the pizza on-
tology which is only an exemplar ontology, rather than one intended for real use.
In the next section we consider the use of patterns in the Karyotype Ontology.

3 Patternising a novel ontology

Next we are going to describe the usage of patterns applied to a novel ontology
for karyotypes which has been built ground-up. Here, we show that the ontology
would be difficult to write by hand, and therefore that ontology construction is
aided by Tawny-OWL and the use of patterns. The Clojure code for the Kary-
otype project is available at https://github.com/jaydchan/tawny-karyotype.
First, we introduce karyotypes which are a description of all the chromo-
somes in a cell. Humans have 46 chromosomes, in 23 pairs. Locations along the
chromosome can be identified by their patterns of chromosome bands which are
visible under light microscopy. A karyotype describes the total number of chro-
mosomes, the sex chromosomes and any chromosomal abnormalities (if any).



Abnormalities are described by their kind (e.g. insertion, deletion) and the lo-
cation they affect defined relative to the visible bands. Human karyotypes are
normally represented in string format, as defined by the International System for
human Cytogenetic Nomenclature 2009 (ISCN2009) [22]. For example, the kary-
otype 46,XY is a normal male karyotype. However, current ISCN strings can be
complicated, lack formal interpretation, and are not computationally amenable
(trivially, they cannot even be represented in ASCII as they include meaningful
underlining, used to distinguish homologous chromosomes). As a result, these
ISCN strings can be hard to parse, validate and query. This is also true for the
ISCN specification.

In order to overcome these problems, we have developed the Karyotype On-
tology [23]. For this work, we made use of a pragmatic methodology to model
karyotypic information, meaning we made no distinctions unless required by the
use cases identified in the ISCN2009. The karyotype ontology demonstrates the
requirement for a pattern driven approach, as it is highly repetitive; almost all
of the entities are part of at least one pattern.

Our initial construction of the Karyotype Ontology involved the use of a
partonomic structure, built in Manchester Syntax. A resulting definition of hu-
man chromosome 1 can be seen in Listing 6. This ontology, however rapidly
became unmanageable simply because of the number of restrictions on each
chromosome. This is made more complex still because banding patterns are vis-
ible at 5 different resolutions, each containing more bands than the last.

Class: NormalHumanChromosomel
SubClass0f:

HumanAutosome

hasPart exactly 1 HumanChromosomeBandlpTer

hasPart exactly 1 HumanChromosomeBand1p36.3

hasPart exactly 1 HumanChromosomeBand1p36.2

(23 other hasPart relations removed)

hasPart exactly 1 HumanChromosomeBandiqgTer
Listing 6. Incomplete chromosome definition for a normal Human Chromosome 1
using strict partonomy.

The use of Tawny-OWL enables these concepts to be generated to a standard
pattern. Listing 7 shows an expression using the humanbands pattern, for a (small!)
subset of the human chromosome bands. Additionally, we have specialised and
inverted the hasPart relationship to isBand0f and isSubBandOf, as this produces
smaller classes with fewer restrictions, which is simpler to work with®. The OWL
ontology which is generated as a result is shown in Listing 8 as Manchester
Syntax.

(humanbands HumanChromosomel

9 At the current time, we are uncertain whether this small change in semantics will
impact the reasoning we may wish to perform. If we need to invert, or add both
the forward and inverse relationship at a later date, the programmatic nature of
Tawny-OWL makes this easy to achieve



["p36.3" "p36.33" "p36.32" "p36.31"])

Listing 7. Incomplete chromosome definition for a Human Chromosome 1 showing
the input format of the human bands pattern.

;; A - Generic chromosome 1 band definitions
Class: HumanChromosomelBand
SubClassO0f:

HumanChromosomeBand
isBand0f some HumanChromosomel

Class: HumanChromosomelBandp
SubClassO0f:
HumanChromosomelBand

;; B - Chromosome 1 band definition
Class: HumanChromosomeBand1p36.3
SubClassO0f:

HumanChromosomelBandp

;; C - Chromosome 1 sub-band definition
Class: HumanChromosomeBandlp36.31
SubClassO0f:

HumanChromosomelBandp
isSubBand0f some HumanChromosomeBandlp36.3

Listing 8. Elided output from Listing 7.

The bulk of the karyotypes ontology consists of entities which are part of this
pattern, the total size of which is shown in Table 1. In practice, building this
ontology manually would have been impractical, particularly from a maintain-
ability point of view. Therefore, to aid construction we tested tools such as OPPL
and Populous. However, both had difficulties because of the split between dif-
ferent source files and forms for expressing the patternised and non-patternised
sections of the ontology. This contrasts with Tawny-OWL which uses a single
syntax, and also provides testing and reasoning services again within a single
syntax.

Table 1. Human Chromosome model statistics.

Class Type Biological Object Number of Classes
Chromosome 24 27

Centromere 24 25

Telomere 48 25

Bands and Sub-bands 1213 1286

Total Number 1309 1363




The humanbands pattern is not the only pattern in KO. While canonical chro-
mosomes are expressed as a partonomy, this is not sufficient to express all ab-
normal karyotypes. As a simple example, a karyotype can be defined by its loss
of a chromosome, as opposed to its congenital absence: the karyotype 45,X,-Y is
a male karyotype where the Y chromosome has been lost; although partonomi-
cally identical to the karyotype 45,X, it is considered different as the latter is a
congenital absence.

Therefore, karyotypes are expressed as events, similar to the way ISCN strings
are modelled. Using the event-based change approach, a 45,X female is described
as 46,XN, with a deletion of a sex chromosome (see Listing 9), in this case N
represents an unknown sex chromosome, as opposed to 45,X,-Y which is derived
from a 46,XY male.

(defclass k45_X
:label "The_ 45,Xpkaryotype"
:subclass ISCNExampleKaryotype
(owl-some derivedFrom k46_XN)
(deletion 1 HumanSexChromosome))

Listing 9. The karyotypic definition for 45,X.

Within the Karyotype Ontology, we define an event as a concept, supported
by a usage pattern and a function which generates a restriction according to this
pattern. One simple example is the inverse event pattern and its usage is shown
in Listing 10.

;5 A - Inverstion pattern
(defn inversion [n bandl band2]
(exactly n hasEvent
(owl-and Inversion
(owl-some hasBreakPoint
bandl band2))))

;; B - Usage
(inversion 1 2p21 2g31)

;; C - As Manchester Syntaz
hasEvent exactly 1
(Inversion and (hasBreakPoint some 2p21 2g31))

Listing 10. The pattern, usage and resultant OWL used to define inverse events.

While the large, partonomic section of the karyotype is now complete, the
ontology is still being developed. In time, we intend to extend the ontology and
expect that the generators will be become the main “user interface” to the work,
in order to present an end-user syntax. Patterns have, therefore, been useful in
the development of the Karyotype Ontology, and will be so in downstream usage.



4 Patternised development of an existing ontology

While the development of the Karyotype Ontology shows that patterns have been
useful in this one context, this does not demonstrate that it is generally useful;
therefore, in this section, we apply a similar development methodology to an
existing ontology, namely SIO. We show that, while in the Karyotype Ontology
we see a few patterns generating many entities, in SIO we see the reverse; there
are many patterns generating relatively few entities in the ontology construction.
As with Karyotype Ontology, we can exploit patterns in downstream usage.

Semanticscience Integrated Ontology (SIO) [24] is a simple upper level OWL
ontology for the integration of types and relations that provides rich descriptions
of objects, processes and their attributes. It defines 1395 classes, 202 object prop-
erties, 1 data property and 8 annotation properties [25]. We chose SIO as it is
explicit in promoting the use of ODPs to describe and associate numerous entities
e.g. qualities and capabilities. In this paper, SIO is used to refer to the existing
ontology, whilst tawny-sio refers to the Tawny-OWL recasting of SIO. The Clo-
jure code for tawny-sio project is available at https://github.com/jaydchan/tawny-
sio.

SIO has not been developed in Tawny-OWL and therefore is only available
as an OWL file. To enable the development of a patternised form of SIO, first
rendered this OWL file into Tawny-OWL syntax. SIO uses numeric IDs as the
fragment of its URL. While there are good reasons for this, it means that the
fragment is unsuitable at a code level as a memorable identifier for the entity.
Therefore Tawny-OWL provides a Clojure-safe syntactic transformation of the
rdfs:label. Hence, SIO_000395 becomes to_regulate, with a few specific replace-
ments for tawny-sio concepts that transform to reserved words (e.g. “true” and
“false”).

We now describe how patterns have been applied to tawny-sio. A generic
pattern was identified that is useful for most of the tawny-sio classes (Listing 11),
which supports a SIO standard that (almost) all classes have a name, parent and
textual description. The sio-class enforces this, as well as providing syntactic
sugar.

(defn sio-class [name parent description & frames]
(apply owl-class
(list* (make-safe name)
:subclass parent
:label name
:annotation (desc description)
frames)))

Listing 11. A common pattern for tawny-sio classes. name, parent, description and
frames are variables.

The sio-class function makes use of a second pattern, namely the description
pattern which adds a standardized annotation using the Dublin Core ontology,
as show in Listing 12.

(def dc-description (iri "http://purl.org/dc/terms/description"))



(defn desc [description]
(annotation dc-description
(literal description :lang "en")))

Listing 12. The description pattern for tawny-sio classes.

The exceptions to the sio-class pattern, are the concepts that model the
chemical elements (atoms). An alternative pattern is used for these; the encoding
of this pattern is shown in Listing 13. As this pattern is specialised for atoms,
the superclass is “hard-coded” into the pattern.

;; A - See-also pattern
(defn see-also [valuel]
(annotation seelAlso
(literal value :type :RDF_PLAIN_LITERAL)))

;; B - Auziliary function
(defn owl-atom-annotation-maybe [cls chebi]
(if-not (nil? chebi)
(add-annotation
cls (see-also chebi))))

;5 C - Atom pattern
(defn owl-atom [name chebil
(owl-atom-annotation-maybe
(owl-class (make-safe name)
:subclass atom
:label name)
chebi))
Listing 13. The atom generator function. owl-atom is used to distinguish from atom
which is used by Clojure.

One interesting outcome of encoding this pattern concerns ChEBI [26] an-
notations. Most SIO elements have a seeAlso annotation that links the atom
to its equivalent ChEBI ID. However, elements 112 to 118 lack this annotation,
although 112 aka Copernicium aka ununubium can be found with ChEBI value
CHEBI:33517. Encoding this pattern, forces us to deal with these exceptions
explicitly.

5 Patterns for downstream usage

The SIO wiki pages includes many exemplar ODPs that can be used in conjunc-
tion with SIO. One such ODP is the biochemical pathway pattern. This ODP
includes a variation of the sequence ODP [9]. The biochemical pathway ODP
(see Listing 14), as well as other ODPs, has been encoded into tawny-sio and
available for downstream usage.

;; A - Precedes pattern
(defn biochemical-pathwayO [reactions]



(owl-and (first reactions)
(owl-some precedes (rest reactions))))

;; B - Biological pathway pattern
(defn biochemical-pathway [name reactions]
(owl-class name
requivalent
(owl-and pathway
(owl-some has_proper_part
(biochemical-pathway0 reactions))
(owl-some has_proper_part reactions))))

;; C - Usage

(biochemical-pathway "glycosis"
[hexokinase_reaction
phosphoglucose_isomerase_reaction

oD

;; D - As Manchester Syntaz
Class: ’glycolysis’
EquivalentTo:
’pathway’
and ’has proper part’ some
(’hexokinase reaction’ and ’precedes’ some
(’phosphoglucose isomerase reaction’ and ’precedes’
and ’has proper part’ some ’hexokinase reaction’
and ’has proper part’ some ’phosphoglucose isomer reaction’

Listing 14. The Clojure function and auxiliary function for biochemical pathway
pattern, its usage and resulting OWL class. name and reactions are variables.

The biochemical-pathway generator function is not actually used as part of
tawny-sio; SIO is intended for use as an upper and middle ontology, and does
not, therefore, model any pathways itself. Instead SIO documents the pattern
for downstream users. However, there is no computational representation of this
pattern. Within tawny-sio, we can provide such a representation which is not
only descriptive but which can be used to computationally generate specific
pathways. As we have also described with the Karyotype Ontology, this pattern
becomes a part of the “user interface” of the ontology. As well as this pattern,
we now have generators for molecule, enzyme and biochemical reaction patterns.

As with the atoms, encoding these exemplar ODPs has highlighted some in-
teresting issues. For example, the target_role class associated with the biochem-
ical pathway ODP!? is missing from SIO. Further investigation of the missing
target_role class, shows that the actual role class is reactant_role [27]. The
process of the computable encoding of the patterns, is in itself a useful process
for quality control and consistency of the ontology.

0 http://code.google.com/p/semanticscience/wiki/ODPBiochemistry



In this section, we have shown how suggested usage patterns for an ontology
can become part of the ontology.

6 Discussion

In this paper, we discuss the use of generalised and localised patterns in on-
tology engineering. We describe the use of patterns in three distinct ontologies:
tawny-pizza, an exemplar recasting of the pizza ontology into Tawny-OWL; the
Karyotype Ontology, a novel ontology built for describing karyotypes using an
event-based approach; and tawny-sio, a fork of an existing upper ontology de-
scribing scientific objects, processes and their attributes. We demonstrate that
for the Karyotype Ontology, most entities are part of one or more localised pat-
terns. For SIO, the localised patterns encourage consistency and can be made
available for downstream users.

There are other tools for ODPs such as OPPL2 and safe macros. However,
Tawny-OWL has the advantage that a single syntax is used for both the pat-
ternised and non-patternised parts of the ontology. The basic syntax of Tawny-
OWL is similar to Manchester Syntax, is “unprogrammatic” and should be us-
able by non-programmers, without significant, additional effort, especially when
compared to the equivalent Java code.

Tawny-OWL currently provides support for three well-known existing pat-
terns: value partition, closure and covering axioms. These patterns have been
used in tawny-pizza (see Section 2) and are available for use in other ontolo-
gies. However, as it is fully programmatic, Tawny-OWL can encode patterns,
localised to the scope of a single ontology. These localised patterns are useful
as they enable a concise syntax, ensure consistency and support maintainabil-
ity should the need for change arise. The Karyotype Ontology is predominantly
made up of a variety of localised patterns — examples include the humanbands
pattern and inversion pattern (see Section 3). Currently the ontology is still be-
ing developed and our patterns are incomplete. For example, karyotypic events
such as deletions and insertions affect a sequence of bands, which are currently
not modelled in our ontology. There are 3 ways we could achieve this: firstly to
utilise a variant of the sequence design pattern [9]; secondly the assignation of
ordinal numbers to the chromosome bands as a datatype; and, finally, we could
use a pattern in Clojure which expands to all the affected bands. A priori, it is
difficult to determine which of these will work best, particularly with respect to
non-functional characteristics such as reasoning time. The use of Tawny-OWL
will enable us to test this by generating multiple test versions of the ontology.
With 800 classes this would otherwise be impractical.

We have demonstrated that patterns have benefited in both tawny-pizza and
in the construction of the Karyotype Ontology. However, we wish to under-
stand whether patterns are generally useful. Therefore, we have also applied this
methodology to SIO, which we chose after the construction of Tawny-OWL, and
which was built without knowledge of Tawny-OWL.



We find that patterns are less useful within tawny-sio than the Karyotype
Ontology. However, a number of patterns were identified and their use could
increase the consistency and concision of this ontology. Furthermore, there are
additional patterns, which whilst not themselves used in tawny-sio, are poten-
tially useful for downstream users of tawny-sio.

The utility of the pattern approach will depend on the nature of the ontology.
For example, a structurally simple ontology may use few patterns. However, we
note that patterns are not limited to the logical component of OWL; within
tawny-sio we have used a number of annotation patterns.

While the use of general ontology design patterns is well documented, the use
of localised patterns is less so. In this paper, we have described the application
of Tawny-OWL to three ontologies which have allowed us to test the utility of
this form of pattern. It appears to be a promising methodology which could
substantially impact ontology engineering.

References

1. Stevens, R., Lord, P.: Application of Ontologies in Bioinformatics. In Staab, S.,
Studer, R., eds.: Handbook on Ontologies. International Handbooks on Information
Systems. Springer Berlin Heidelberg (2009) 735-756

2. Warren, P.: Ontology Users Survey Summary of Results. Technical report, The
Knowledge Media Institute (KMi), The Open University (2013)

3. Mungall, C., Ruttenberg, A, Horrocks, I, Osumi-Sutherland,
D.: OBO Flat File Format 1.4 Syntax and Semantics [DRAFT].
http://oboformat.googlecode.com/svn/branches/2011-11-29/doc/obo-
syntax.html

4. W3C OWL Working Group: OWL 2 Web Ontology Language Document Overview
(Second Edition). http://www.w3.org/TR/owl2-overview/ (2012)

5. Tirmizi, S., Aitken, S., Moreira, D., Mungall, C., Sequeda, J., Shah, N., Miranker,
D.: Mapping between the OBO and OWL ontology languages. Journal of Biomed-
ical Semantics 2(1) (2011) 1-16

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1995)

7. Egaa, M., Rector, A., Stevens, R., Antezana, E.: Applying Ontology Design Pat-
terns in Bio-ontologies. In Gangemi, A., Euzenat, J., eds.: Knowledge Engineer-
ing: Practice and Patterns. Volume 5268 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2008) 7-16

8. Rector, A.: Representing Specified Values in OWL: value partitions and value sets.
http://www.w3.org/TR/swbp-specified-values/ (2005)

9. Drummond, N., Rector, A., Stevens, R., Moulton, G., Horridge, M., Wang, H.H.,
Seidenberg, J.: Putting OWL in order: Patterns for sequences in OWL. Concrete
(2006) 1-10

10. Egana Aranguren, M., Stevens, R., Antezana, E.: Transforming the Axiomisation
of Ontologies: The Ontology Pre-Processor Language. Nature Precedings (Dec
2009)

11. Mungall, C., Ruttenberg, A., Osumi-Sutherland, D.: Taking shortcuts with OWL
using safe macros. Nature Preceedings (2010)



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Wolstencroft, K., Owen, S., Horridge, M., Krebs, O., Mueller, W., Snoep, J.L.,
du Preez, F., Goble, C.: RightField: embedding ontology annotation in spread-
sheets. Bioinformatics 27(14) (2011) 20212022

Jupp, S., Horridge, M., Iannone, L., Klein, J., Owen, S., Schanstra, J., Stevens, R.,
Wolstencroft, K.: Populous: A Tool for Populating Templates for OWL Ontolo-
gies. In Burger, A., Marshall, M.S., 0001, P.R., Paschke, A., Splendiani, A., eds.:
SWAT4LS. Volume 698 of CEUR Workshop Proceedings., CEUR-WS.org (2010)
Rocca-Serra, P., Ruttenberg, A., O’Connor, M.J., Whetzel, P.L., Schober, D.,
Greenbaum, J., Courtot, M., Brinkman, R.R., Sansone, S.A., Scheuermann, R.,
Scheuermann, R., Peters, B.: Overcoming the ontology enrichment bottleneck
with Quick Term Templates. Appl. Ontol. 6(1) (January 2011) 1322

OConnor, M., Halaschek-Wiener, C., Musen, M.: Mapping Master: A Flexible
Approach for Mapping Spreadsheets to OWL. In Patel-Schneider, P., Pan, Y.,
Hitzler, P., Mika, P., Zhang, L., Pan, J., Horrocks, 1., Glimm, B., eds.: The Semantic
Web ISWC 2010. Volume 6497 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2010) 194208

Lord, P.: The Semantic Web takes Wing: Programming Ontologies with Tawny-
OWL. OWLED 2013 (March 2013)

Vassiliadis, V., Wielemaker, J., Mungall, C.: Processing OWL2 ontologies using
Thea: An application of logic programming. In: OWLED 2009. (2009)

Ogbuji, C.: InfixOWL: An Idiomatic Interface for OWL. In Dolbear, C., Rutten-
berg, A., Sattler, U., eds.. OWLED. Volume 432 of CEUR Workshop Proceedings.,
CEUR-WS.org (2008)

Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL ontologies.
Semant. web 2(1) (January 2011) 11-21

Horridge, M., Patel-Schneider, P.F.: OWL 2 Web Ontology Language Manch-
ester Syntax (Second Edition). http://www.w3.org/TR/owl2-manchester-syntax/
(2012)

Stevens, R.: Closing Down the Open World: Covering Axioms and Closure Axioms.
http://ontogenesis.knowledgeblog.org/1001 (2011)

Shaffer, L., on Human Cytogenetic Nomenclature, 1.S.C.; Slovak, M., Campbell,
L.: ISCN 2009: An International System for Human Cytogenetic Nomenclature
(2009). Karger (2009)

Warrender, J.D., Lord, P.: The Karyotype Ontology: a computational representa-
tion for human cytogenetic patterns. BioOntologies 2013 (2013)

Dumontier, M.: SIO - semanticscience - The Semanticscience Integrated On-
tology (SIO) - Scientific Knowledge Discovery - Google Project Hosting .
http://code.google.com/p/semanticscience/wiki/SIO Accessed: 2013-09-27.
Dumontier, M., Baker, C.J.O., Baran, J., Callahan, A., Chepelev, L., Cruz-Toledo,
J., Duck, G., Klassen, D., McCusker, J.P., Samwald, M., Villanueva-Rosales,
N., Wilkinson, M., Hoehndorf, R.: The Semanticscience Integrated Ontology
(SIO) for Biomedical Research and Knowledge Discovery. Draft available at
http://code.google.com/p/semanticscience/wiki/SIO (2013)

Hastings, J., de Matos, P., Dekker, A., Ennis, M., Harsha, B., Kale, N., Muthukr-
ishnan, V., Owen, G., Turner, S., Williams, M., Steinbeck, C.: The ChEBI reference
database and ontology for biologically relevant chemistry: enhancements for 2013.
Nucleic Acids Research 41(D1) (2013) D456-D463

Boelling, C., Dumontier, M., Weidlich, M., Holzhtter, H.G.: Role-based represen-
tation and inference of biochemical processes. In Cornet, R., Stevens, R., eds.:
ICBO. Volume 897 of CEUR Workshop Proceedings., CEUR-WS.org (2012)



