
Domain Specific Analysis of Statemachine
Models of Reactive Systems

Karolina Zurowska

Queen’s University
School of Computing

Kingston, ON, Canada
zurowska@cs.queensu.ca

Abstract. Analysis of models is an important aspect of the Model
Driven Development (MDD) paradigm. Even though many analysis meth-
ods exist (e.g., model checking), they are not easily applicable in the con-
text of MDD tools such as IBM Rational Software Architect Real Time
Edition (IBM RSA RTE) and MDD languages such as UML-RT. The
major reason for this inapplicability is that they typically require MDD
models to be translated to a formal notation, which does not directly
support key model features. The research direction proposed in this pa-
per deviates from the standard approaches – it brings analysis “close”
to MDD models and introduces domain-specific analysis of UML-RT
models. To this end we use a formal representation that preserves the
important aspects of the models. This removes the translational effort
and, in addition, enables the use of MDD-specific abstractions aiming
to support better understanding of models and to improve the scalabil-
ity of verification. We will define abstractions for data (using symbolic
execution), for structure and for behavior. The approach will be imple-
mented as a set of plugins to IBM RSA RTE and evaluated on a variety
of UML-RT models.

1 Introduction

The analysis of models early in the development process is one of the promises of
the Model Driven Development paradigm. Such analysis should facilitate better
understanding of developed systems and should enable formal verification. How-
ever this poses many challenges for MDD models, because they have complex
dynamic structures and complex behaviors [17]. Additionally, industrial MDD
models are large and scalability is essential.

The majority of the analysis techniques proposed in the literature reuse for-
mal verification tools such as SPIN or NuSMV [16, 8, 15]. This can be advan-
tageous, because the tools are mature and implement optimizations, however a
translation to a formal language of a model checker is required. This step requires
simplifications in models such as flattening of hierarchies, omitting communica-
tion details or encoding object-orientation. The goal of our work is to provide
more dedicated, domain-specific analysis [19], similar to SLAM or JPF projects



(early efforts by the JPF team to use Promela/Spin were eventually abandoned).
This approach reduces the “semantic gap” between the language of a checker
and the language of a model. The direct benefit is minimal translational effort,
more indirect ones include support for verification methods that are tailored to
MDD models. The dedicated approaches to analysis are less often researched,
and ours is the first one designed specifically for UML-RT models.

In our approach we introduce a formal representation, which shares impor-
tant characteristics with MDD models such as hierarchical components, strong
encapsulation, message-based communication and state machines. Preserving
these features enables definition of “domain specific” abstractions. We propose
three types of abstractions: symbolic execution to deal with data, structural ab-
straction to deal with complex hierarchical structures and state aggregation for
state machines. Abstractions simplify the state space for better understanding,
but we also use them to improve model checking algorithms. The improvements
are thanks to lazy composition, i.e. exploring only those parts of a model that
influence the satisfaction of a property.

2 Background and motivation

The language we use in this work as an example of a MDD language is the
UML-RT from IBM RSA RTE [1]. A model in this language consists of capsules.
A capsule may contain parts, which are instances of other capsules. Capsules
communicate using typed ports and the type of a port (called a protocol) gathers
messages sent or received through the port. The behavior of a UML-RT capsule
is given with a UML-RT State Machine. UML-RT State Machines contain action
code, written in, e.g., Java that updates attributes or sends messages.

Analysis of a UML-RT model (or a model that is similar to it) should increase
understanding and should allow for verification of properties of the model. In
order to achieve this, the model can be executed in IBM RSA RTE, but the
execution is limited to one path, i.e., to one set of input values. This gives some
insight, but is insufficient to check properties concerning all possible executions,
which is necessary to fully understand and to verify models. The first possibility
is to reuse existing model checkers, and to translate the model to e.g. Promela,
the input language of the SPIN model checker [15]. Although this enables exhaus-
tive checking, a translation dealing with a sufficiently large subset of UML-RT is
complex and difficult to test, and the analysis results are not directly available
back in the original model.

The alternative and less followed approach, which we take, is to build a
dedicated analysis tool. The disadvantages of such an approach are the effort
to develop tools and more limited use of optimizations techniques present in
models model checkers (e.g. BDDs). However, the advantages are straightforward
translation and directly usable results. Additionally, the domain specific analysis
can directly exploit structure and semantics of models. Our hypothesis is that
this allows for more modular and, in turn, more scalable analysis and verification.



Fig. 1. The overview of the analysis process.

3 Proposed approach

The analysis approach that we propose for UML-RT models is summarized in
Figure 1. There are three major parts: representation, abstraction and verifica-
tion; we describe them below.

The formal representation part of the process is responsible for translat-
ing UML-RT models into the formal representation: communicating Functional
Finite State Machines (FFSMs). FFSMs have similar features as UML-RT. A
model consists of a set of modules. A module may contain parts with types of
other modules. Actions are used to communicate between parts. We support
asynchronous communication, hence modules use queues. The behavior of mod-
ules is given with state machines, in which transitions have guards and effects
assigned to them. Effects include updates of attributes, sending actions and pos-
sibly changes to the structure of the model. Effects are obtained by symbolic
execution of action code and by using the results of this execution to represent
the code. (see [21] for details). The semantics of FFSMs is given with a labeled
transition system (LTS), called an execution LTS. A state in such an execution
LTS contains current execution information, i.e., values of the attributes, current
states, as well as contents of all queues for all parts in the model.

The goal of using abstractions is to reduce the size of the state space. Each
type of abstraction is identified with a set of execution rules and these rules are
used to generate the execution LTS. We support the following types of abstrac-
tions:

1. Symbolic execution. In this type of abstraction concrete values of variables
are replaced with symbolic ones (as in [11]). In order to distinguish between
branches of execution, path constraints are included in an execution LTS.
This type of abstraction is very useful to deal with data and to combine
execution states that are different only due to the values of input variables.

2. Structural abstraction. This type of abstraction ignores parts of a model
that are irrelevant with respect to the performed analysis. The abstracted
parts are treated as if they were removed from a model, but actions that are



delivered by the abstracted parts are assumed to be available at all times.
Therefore an execution LTL for structural abstraction is an overaproxima-
tion. In this type abstraction the user selects the parts to be abstracted away
or it is done automatically based on a verified property (see below).

3. State aggregation. This type of abstraction aggregates states of a state ma-
chine by combining them into one state, for instance to deal with hierarchical
states in state machines. Therefore, as in case of a previous abstraction type,
this abstraction is also an overaproximation. The decision which states to
aggregate is left to the user, who may use existing hierarchies of states as
guidance.

The verification part of our approach includes the specification of proper-
ties of models and model checking algorithms. The properties of models are
expressed with an extension of Computation Tree Logic (CTL) [6]. In the pro-
posed extension atomic propositions include models characteristics such as being
in a particular state, a certain queue containing specific actions and certain at-
tributes having certain values. Because the application of execution rules is done
step-wise, the checking of CTL formulas can be performed on-the-fly. To this end,
the standard labeling algorithm for CTL properties [6] is extended to use the
labels from the previous execution steps. Finally, we extend the model checking
to use lazy composition. Initially, parts not mentioned in the checked formula
are abstracted. All other parts are executed, for instance, symbolically. If one of
executed parts requires an action, which can be generated by some abstracted
part then this part is explored. This means that applied execution rules are
updated and in the next step the execution of the extra part is included.

4 Implementation and evaluation

The process presented in Figure 1 is implemented as a set of Eclipse plugins.
The main objectives of the evaluation of our approach are to assess its scalability
and applicability. In order to achieve that we will use:

- custom UML-RT models to check the approach in the presence of increasing
complexity (e.g., with increasing number of internal parts in the model). In
this way we can observe how the verification methods scale.

- PBX model (adapted from a model obtained from our industrial partner)
to check how abstractions can support better understanding of a complex
model and how verification methods can be used in such a model. The PBX
model consists of three subsystems and each subsystem has up to 6 different
parts. Code generated from those subsystems has between 3500 and 6000
lines per subsystem.

5 Current status and results

Up until now we have explored symbolic execution in the context of UML-
RT models [21, 22]. We also defined a model checking algorithm that uses lazy



composition [20]. In the latter work we showed how exploiting the structure of
models can improve the scalability of the analysis; in a few cases we were able
to reduce the state space to 10% of the original state space.

Currently we are working on the implementation of the process shown in
Figure 1. We implemented the transformation from UML-RT to FFSMs, the ex-
ecution engine and the model checker. We are now finishing the implementation
of rules and are moving towards more thorough evaluation.

6 Related work

The current practice of analysis and verification of MDD and UML-based mod-
els builds mostly on model checking. The proposed works are primarily con-
cerned with the translation of models to the input languages of existing model
checkers. For instance, UML State Machines are analyzed using SPIN [16],
UML Activity Diagrams using nuSMV [8] and Statecharts, after translation to
Java, using Java Pathfinder [14, 3]. There also exist translations of UML-RT
to Promela/SPIN [15] and to the AsmL language used in SpecExlorer [12]. In
contrast to those works the research proposed here is based on a more straightfor-
ward translation, which reduces the semantic gap between languages of models
and model checkers [19].

Beside translations to model checkers, there are approaches built around
UML-like state machines. Giese et al. [9] explore compositional aspects of mod-
els based on parallel composition and synchronous communication between UML
Statecharts. This approach is implemented in the FUJABA tool suite [5] and uses
compositional verification inspired by the popular assume-guarantee paradigm [2].
Our approach goes beyond the compositionality and also explores abstraction to
improve scalability of the analysis.

Abstractions have been used to improve model checking techniques, but they
are usually limited to data abstractions [7, 13, 10]. Another data-driven abstrac-
tion is symbolic execution, which, in its original version [11], simply replace
concrete values of variables with expressions that represent them. Symbolic ex-
ecution has been applied also to state based models. For instance, to State-
charts [18] or UML State Machines [4] or, after translation to Java using SPF [3].
The proposed research uses symbolic execution only as one of the abstractions
and symbolic execution is defined for modular and hierarchical models as already
introduced [21, 22].

Acknowledgments

Author wishes to acknowledge the support of Dr. Juergen Dingel, NSERC, IBM
Canada, and Malina Software.

References

1. IBM Rational Software Architect, RealTime Edition, Version 7.5.5.,
http://publib.boulder.ibm.com/infocenter/rsarthlp/v7r5m1/



2. Alur, R., Henzinger, T., Mang, F., Qadeer, S., Rajamani, S., Tasiran, S.: MOCHA:
Modularity in model checking. In: Computer Aided Verification. pp. 521–525 (1998)

3. Balasubramanian, D., Pasareanu, C., Whalen, M., Karsai, G., Lowry, M.: Improv-
ing symbolic execution for statechart formalisms. In: MoDeVVa’12 (2012)

4. Balser, M., Baumler, S., Knapp, A., Reif, W., Thums, A.: Interactive verification
of UML state machines. In: ICFEM 2004 (LNCS Vol.3308). pp. 434 – 48 (2004)

5. Burmester, S., Giese, H., Hirsch, M., Schilling, D., Tichy, M.: The FUJABA real-
time tool suite: model-driven development of safety-critical, real-time systems. In:
ICSE ’05

6. Clarke, E.M., Grumberg, O.J., Peled, D.A.: Model checking. Cambridge, Mass. :
MIT Press (1999)

7. Clarke, E., Grumberg, O., Long, D.: Model checking and abstraction. ACM Trans-
actions on Programming Languages and Systems 16(5) (1994)

8. Eshuis, R.: Symbolic model checking of UML activity diagrams. ACM Trans. Softw.
Eng. Methodol. 15(1), 1–38 (2006)

9. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the composi-
tional verification of real-time uml designs. In: ESEC/FSE 2003. pp. 38–47 (2003)

10. Ioustinova, N., Sidorova, N.: Abstraction and flow analysis for model checking open
asynchronous systems. In: Software Engineering Conference, 2002. (2003)

11. King, J.: Symbolic execution and program testing. Communications of the ACM
19(7), 385 – 394 (1976/07)

12. Leue, S., Stefanescu, A., Wei, W.: An AsmL Semantics for Dynamic Structures
and Run Time Schedulability in UML-RT. Tech. rep., University of Konstanz,
Germany (2008), http://kops.ub.uni-konstanz.de/volltexte/2008/5781/

13. Manna, Z., Colón, M., Finkbeiner, B., Sipma, H., Uribe, T.: Abstraction and mod-
ular verification of infinite-state reactive systems. In: Requirements Targeting Soft-
ware and Systems Engineering (1998)

14. Mehlitz, P.: Trust your model - verifying aerospace system models with Java
pathfinder. In: IEEE Aerospace Conference (2008)

15. Saaltink, M., Meisels, I.: Using SPIN to analyse RoseRT models. Tech. rep., ORA
Canada (1999)

16. Schafer, T., Knapp, A., Merz, S.: Model checking UML state machines and collab-
orations. Electronic Notes in Theoret. Comp. Science 55(3) (2001)

17. Selic, B., Gullekson, G., Ward, P.T.: Real-time Object Oriented Modeling and
Design. J. Wiley & Sons (1994)

18. Thums, A., Schellhorn, G., Ortmeier, F., Reif, W.: Interactive Verification of Stat-
echarts. In: INT 2004 (LNCS Vol.3147) (2004)

19. Visser, W., Dwyer, M., Whalen, M.: The hidden models of model checking. Soft-
ware and Systems Modeling 11(4), 541–555 (2012)

20. Zurowska, K., Dingel, J.: Model checking of uml-rt models using lazy composition.
In: Models’13 - to appear (2013)

21. Zurowska, K., Dingel, J.: Symbolic execution of UML-RT state machines. In: SAC
Software Verification Track (2012)

22. Zurowska, K., Dingel, J.: Symbolic Execution of Communicating and Hierarchically
Composed UML-RT State Machines. In: NASA Formal Methods 2012


