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ABSTRACT
Livelock/deadlock is a well known and important problem
in both hardware and software systems. In hardware verifi-
cation, a livelock is a situation where the state of a design
changes within only a smaller subset of the states reachable
from the initial states of the design. Deadlock is a special
case in which there is only one state in a livelock. However,
livelock/deadlock checking has never been actively used in
hardware verification in practice, mainly due to the com-
plexity of the computation which involves finding strongly
connected components.
This paper presents a practical abstraction-based live-

lock/deadlock checking algorithm for hardware verification.
The proposed livelock/deadlock checking works on FSMs
rather than the whole design. For each FSM, we make an
abstract machine of manageable size from the cone of influ-
ence of the FSM. Once a livelock is found on an abstract
machine, the livelock is justified on the concrete machine
with trace concretization. Experimental results shows that
the proposed abstraction-based livelock checking finds real
livelock errors in industrial designs.

1. INTRODUCTION
Livelock/deadlock is a well known and important problem

in both hardware and software systems. In hardware verifi-
cation, a livelock is a situation where the state of a design
changes within only a subset of the states reachable from
the initial states of the design. In a state transition graph, a
livelock is a set of states from which there is no path going
to any other states that are reachable from the initial state.
Since deadlock is a special case in which there is only one
state in a livelock, deadlock checking can be done by livelock
checking. Thus, livelock implies both livelock and deadlock
in this paper. However, livelock checking1 has never been
actively used in hardware verification in practice, mainly due
to the complexity of the computation which involves find-
ing SCCs (Strongly Connected Components). Thus, livelock
checking has been on hardware designer’s wish list to verify
their designs.
There have been many approaches on finding SCCs [13,

27, 28, 3, 20, 12]. Among these work, Xie and Beeral pro-
posed a symbolic method finding terminal SCCs (in short,
TSCCs) using BDDs (Binary Decision Diagrams [4]) in [27].
In a state transition graph, a TSCC is an SCC that does
not have any outgoing edges to any state outside the SCC.
Thus, a TSCC becomes a livelock group when the TSCC

1Livelock checking is different from liveness checking and
the difference will be explained in Section 2.3.

has any incoming edges to the SCC in the state transi-
tion graph representing a hardware design. However, even
though the method in [27] is an improved method from its
previous work [13] in symbolic approaches, it is still infea-
sible to apply the method to the industrial designs, simply
due to the capacity problem of symbolic methods. In gen-
eral, any BDD-based method can handle only up to several
hundred latches without any abstraction or approximation
techniques, whereas there can be millions of latches in in-
dustrial designs.

In this paper, we first present an improved BDD-based
algorithm finding TSCCs from[27] in the following aspects.
First, initial state is taken into account in finding TSCCs.
Especially, the improved algorithm handles multiple initial
states efficiently. Secondly, unreachable TSCCs are distin-
guished from reachable TSCCs which are more interesting to
designers. Thirdly, we provide more intuitive state classifi-
cation as main, transient, and livelock groups as opposed to
transient and recurrence classes in [27]. In our classification,
a set of transient states is further classified into main and
transient groups. Recurrence class in [27] is mapped into
livelock group in our classification. Main group is an SCC
that contains the initial state. Transient group is a set of
states that belong to neither main nor livelock group. There
is one or zero main group in a design per one initial state.

This paper also presents a practical approach for checking
livelock using abstraction techniques. The proposed live-
lock checking works on FSMs(Finite State Machines)2 rather
than the whole design. For each FSM, we make an abstract
machine (by localization reduction [15]) of manageable size
by the improved BDD method from the COI(Cone of Influ-
ence) of the FSM. Once a livelock is found on an abstract
machine, the livelock is justified on the concrete machine
with trace concretization using SAT (Satisfiability[9]) and
simulation. When there is no livelock on the abstract ma-
chine, there is no guarantee for no livelock on the concrete
machine. However, the bigger the abstract size is, the more
confidence we have that no livelock exists on the concrete
machine. The key benefit of this abstraction-based livelock
checking is that it enables finding real livelock groups that
cannot be found by tackling whole design directly.

Once an FSM is given, its COI is first computed. Then,
an abstract machine is computed by finding N influential
latches from the COI. Influential latches are the latches that
are likely related with the FSM. N is either pre-defined or a
user-defined number of latches in the abstract machine, or

2FSMs are either automatically extracted [26] or any sets of
sequential elements that are user-specified.



gradually increased. In general, N is up to a few hundred
latches. Influential latches are computed mainly by approx-
imate state decomposition [6]. However, in many cases, the
size of COIs is too big for even approximate state decom-
position. Thus, a structural abstraction is applied by using
connectivity and sequential depth before approximate state
decomposition. This structural abstraction reduces the COI
to a manageable size by approximate state decomposition.
There is another important hardware property called tog-

gle deadlock. A state variable has a toggle deadlock if the
state variable initially toggles and the state variable becomes
a constant after a certain number of transitions. However,
notice that this is not a constant variable since it initially
toggles. Toggle deadlock may or may not happen depending
on input stimuli in simulation. Therefore, toggle deadlock is
also an important property to check with formal approaches.
Experimental results shows that the proposed abstraction-

based approach finds real livelock and toggle deadlock errors
from industrial designs.
The contributions of this paper are in the three aspects.

• Improved algorithm for livelock checking
The proposed algorithm improved the existing algo-
rithm [27] in many aspects, such as providing new
state classification with initial state, handling multi-
ple initial states, refining the search space efficiently
with care states, early termination, and trimming out
transient states.

• Abstraction-based livelock checking
This paper presents theories and an implementation
on abstraction-based livelock checking to handle large
designs in practice.

• Toggle deadlock checking
To the best of our knowledge, this paper presents the
first method to solve toggle deadlock problem.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly recapitulates finding SCCs and TSCCs, and
describes related work. Section 3 describes our improved al-
gorithm for finding TSCCs. Section 4 explains how livelock
is checked on FSM using abstraction. Section 5 describes
how to check toggle deadlocks. Experimental results are
presented and discussed in Section 6. We conclude with
Section 7.

2. PRELIMINARIES
2.1 Finding SCCs
Given a graph, G = (V,E) whereG is an infinite transition

system of the Kripke structure [8], V is a finite set of states
and E ⊆ V × V is the set of edges, a strongly connected
component (SCC) is a maximal set of state U ⊆ V such
that for every pair (u, v) ∈ U , u and v are reachable from
each other, that is, u is reachable from v and v is reachable
from u [27, 28].
Finding SCCs has a variety of applications in formal ver-

ification such as Buchi emptiness [11], LTL model check-
ing [25], CTL model checking with fairness constraints [10],
Liveness checking [16, 1], and so on.
The traditional approach to find SCCs is to use Tarjan’s

method [23]. Since this method manipulates the states of the
graph explicitly, even though it runs in linear time in the size
of the graph, the size of the graph grows exponentially as
the number of state variables grows.
To overcome this state explosion problem in explicit al-

gorithms, there have been many publications on symbolic

algorithms. Ravi et al. [20] provided a taxonomy of those
symbolic algorithms. One is SCC-hull algorithms (without
enumerating SCCs) [11, 14, 24], and the other is SCC enu-
meration algorithms [28, 3, 12, 20]. The details are in [20].

2.2 Finding TSCCs
Even though TSCCs are a subset of SCCs in the states of a

design, the algorithms for finding TSCCs can be significantly
optimized since not all SCCs are of interest.

This section recapitulates the work on finding TSCCs by
Xie and Beeral [27]. This algorithm classifies all states into
either recurrence or transient class. Recurrence class is a set
of TSCCs and the rest belongs to transient class. Let S be
the set of states. With i, j ∈ S, i → j denotes that there is
at least one path from i to j. Definition 1 defines forward
set and backward set of a state.

Definition 1. The forward set of state i ∈ S, denoted by
F (i), is the set of states that have a path from i. That is,
F (i) = {j ∈ S | i→ j}. Similarly, the backward set of state
i, denoted by B(i), is the set of states that have a path to i.
That is, B(i) = {j ∈ S | j → i}.

Lemma 1. Let i, j ∈ S. If j ∈ F (i), then F (j) ⊆ F (i).
Similarly, if j ∈ B(i), then B(j) ⊆ B(i).

Theorem 1. A state i ∈ S is recurrent if and only if
F (i) ⊆ B(i). In other words, i is transient if and only if
F (i) * B(i).

Theorem 2. If state i ∈ S is transient, then states in
B(i) are all transient. If state i is recurrent, on the other
hand, states in F (i) are all recurrent. In the latter case, set
F (i) is a recurrence class, and set B(i)\F (i) (if not empty)
contains only transient states.

Lemma 1, Theorem 1 and 2 are from [27]. Lemma 1 shows
a subset relation between two forward sets as well as two
backward sets when j is in either F (i) or B(i). Theorem 1
and 2 show how a state is determined whether the state
belongs to either recurrence or transient class. Based on
Theorem 1 and 2, all TSCCs can be found by performing
forward and backward reachability iteratively. The detailed
algorithm can be found in [27] and our improved algorithm is
described in Section 3.2 with the comparisons to the original
algorithm.

2.3 Related work
There are two types of properties in model checking; safety

and liveness properties [16]. A safety property represents
’something bad never happens’, whereas a liveness property
represents ’something good eventually happens’. Liveness
checking with a liveness property can be performed by find-
ing SCCs [20]. Liveness checking can also be performed by
safety checking with proper transformations [1].

Livelock checking is different from liveness checking in the
sense that liveness checking requires a liveness property to
work on a design, whereas livelock checking does not require
any property and works on a design directly.

There have been many publications on finding all SCCs [24,
28, 3, 12]. Even though all TSCCs can be found by any of
these approaches on finding all SCCs, it is not necessary to
find all SCCs for finding all TSCCs since we are interested
in finding only all TSCCs for livelock checking.

Hachtel et al. [13] proposed a symbolic approach to find
all recurrence classes concurrently identifying all TSCCs by
computing transitive closure [17] on the transition graph



with the Markov chain. Due to the complexity of transi-
tive closure, this approach takes significantly more time and
memory than a reachability-based approach does.
Qadeer et al. [19] proposed an algorithm to find single

TSCC in the context of safe replacement in sequential equiv-
alence checking [21, 22]. In this approach, multiple TSCCs
are not considered.
Xie and Beeral proposed a reachability-based algorithm

to find all TSCCs iteratively [27]. This is also a symbolic
approach that outperforms the method in [13]. However,
this approach does not consider initial states.
None of the above previous work on finding TSCCs was

used in real designs in practice, due to the design sizes. Our
abstraction-based approach is the first in publication to han-
dle large designs in practice.
Case et al. [5] proposed a method finding transient sig-

nals using ternary simulation. A transient signal is a toggle
deadlock on over-approximate reachable states. The toggle
deadlock checking in this paper finds transients signals in
exact reachable states.

3. IMPROVED LIVELOCK CHECKING
3.1 State Classification
The state classification in [27] consists of one transient

class and one or more recurrence classes. However, in hard-
ware verification, initial states are given to verify the hard-
ware behavior only in reachable state space. One problem of
the state classification in [27] is that there is no distinction
between reachable TSCCs and unreachable TSCCs from the
initial states. Also, the reachable TSCCs may vary depend-
ing on initial states.
We propose a new state classification that is shown in Fig-

ure 1, assuming that there is one single initial state. Han-
dling multiple initial states is explained in Section 3.3.

Definition 2. STSCC is a sink TSCC that has incoming
edges from any states outside the TSCC.

We first define sink TSCC (in short, STSCC) in Defini-
tion 2. The new state classification consists of main group,
transient group, livelock groups (reachable STSCCs) and
unreachable TSCCs for a given initial state. The transient
class in [27] is further classified into main group or tran-
sient group. Main group is an SCC containing the initial
state and there exists either one or no main group. The
recurrence classes in [27] are further classified into livelock
groups (reachable STSCCs) and unreachable TSCCs. When
there is no livelock, there exists only one SCC which is the
main group.
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Figure 1: State classification.

In Figure 1, there are states a through o and a is the
initial state that is marked with thick circle. Among all

states, the reachable states are a through i inside the dot-
ted rectangle. The unreachable states are j through o out-
side the dotted rectangle. There are five SCCs that are
{a, b, c}, {e, f, g}, {h, i}, {j, k, l}, and{m,n, o}. Since a is the
initial state, {a, b, c} becomes the main group. {h, i} and
{m,n, o} are TSCCs and only {h, i} is a livelock group (reach-
able STSCC) since it is reachable from a. {m,n, o} is called
an unreachable TSCC. The rest states, {d, e, f, g, j, k, l}, be-
long to the transient group in which the states are contained
in neither the main group nor the TSCCs.

3.2 Finding Livelock
We first define transition relation in Definition 3 to explain

our algorithms to check livelock.

Definition 3. Let x = {x1, . . . , xn}, y = {y1, . . . , yn},
and w = {w1, . . . , wp} be sets of variables ranging over B =
{0, 1}. A (finite state) machine is a pair of boolean functions
⟨Q(x,w, y), I(x)⟩, where Q : B2n+p → B is 1 if and only if
there is a transition from the state encoded by x to the state
encoded by y under the input encoded by w. I : Bn → B is
1 if the state encoded by x is an initial state. Q(x,w, y) is
called transition relation. The sets x, y, and w are called the
present state, next state, and input variables, respectively.

The procedure ComputeForwardSet in Figure 2 is a mod-
ified version of the procedure forward set in [27] in order
to compute forward set of a given state s only within the
given care states careSet in the procedure and to perform
early termination when stop is not ZERO (empty BDD). ⇓
represents a restrict operator [7] that is used to minimize
the transition relation with respect to careSet in Line 2.
The minimized transition relation is denoted by Q̃. In Line
7, y ← x represents that y variables are replaced by x vari-
ables by BDD substitution. Early termination is another
big difference from forward set in [27] and is used in Fig-
ure 3. This is to bail out computing forward set as soon as
any newly reached state intersects with the states in stop
as in Line 11. BddIteConstant is a BDD ITE(if-then-else)
operation without creating a new BDD node. O is an array
of states to store newly reached states at each iteration and
O is called onion rings. These onion rings are used later in
Section 3.3. ComputeForwardSet returns the forward set
F (s) and the onion rings O.

ComputeForwardSet(Q, careSet, s, stop) {
1 F (s) = ZERO;

2 Q̃(x,w, y) = Q(x,w, y) ⇓ careSet;
3 frontier(x) = s;
4 Put s in O;
5 while (frontier(x) ̸= ZERO) {
6 image(y) = ∃x,w. Q̃(x,w, y) ∧ frontier(x);
7 image(x) = image(y)|y←x;
8 F (s) = F (s) ∨ image(x);
9 frontier = image(x) ∧ ¬F (s);
10 Put frontier in O;
11 if (BddIteConstant(frontier, stop, ZERO) != ZERO)
12 break;
13 }
14 return (F (s), O);

}
Figure 2: Computing forward set.

ComputeBackwardSet is a dual procedure to Compute
ForwardSet, except not using stop and not computing the
onion rings O.

Figure 3 is a procedure for finding TSCCs from the given
set of states S. The procedure FindTSCCs is a modified
version of the procedure State classification in [27]. The
modified procedure utilizes care states careSet, assuming S



is not necessarily all state space. T is a set of transient states
in S, and R is an array of TSCCs in S. PickOneState in
Line 5 picks a random state from careSet as a seed state to
find a TSCC. In Line 7, early termination is used in comput-
ing the forward set F (s), by setting stop in Figure 2 as the
negation of B(s). This is because while we compute F (s)
within B(s) for the state s, once any state outside B(s)
is reachable from s, all states in B(s) are transient. An-
other big difference is trimming transient states in Line 12
and 16. TrimTransient(Q, careSet, T, dir) trims out the
transient states from the current care states by the given
direction (dir) that is either PREFIX, SUFFIX, or BOTH.
PREFIX(SUFFIX) means to trim out the lasso prefix(suffix)
states. This is the same technique used in finding SCCs [20].
Finally, FindTSCCs returns R (a set of TSCCs) and T (a
set of transient states).

FindTSCCs(Q, S) {
1 R = { };
2 T = ZERO;
3 careSet = S;
4 while (careSet ̸= ZERO) {
5 s = PickOneState(careSet);
6 B(s) = ComputeBackwardSet(Q, careSet, s);
7 F (s) = ComputeForwardSet(Q, careSet, s, ¬B(s));
8 if (F (s) ⊆ B(s)) {
9 R = R ∪ F (s);
10 T = T ∨ (B(s) ∧ ¬F (s));
11 careSet = careSet ∧ ¬B(s);
12 TrimTransient(Q, careSet, T , PREFIX);
13 } else {
14 T = T ∨ (s ∨ B(s));
15 careSet = careSet ∧ ¬(s ∨ B(s));
16 TrimTransient(Q, careSet, T , BOTH);
17 }
18 }
19 return (R, T );

}
Figure 3: Finding TSCCs.

FindLivelock(Q, S, s) {
1 (F (s), O) = ComputeForwardSet(Q, S, s, ZERO);
2 B(s) = ComputeBackwardSet(Q, S, s);
3 reached = F (s) ∨ s;
4 if (F (s) ⊆ B(s)) {
5 M = F (s);
6 R = { };
7 T = ZERO;
8 } else {
9 M = F (s) ∧ B(s);
10 careSet = F (s) ∧ ¬(M ∨ s);
11 TrimTransient(Q, careSet, T , PREFIX);
12 (R, TR) = FindTSCCs(Q, careSet);
13 if (s /∈ M)
14 TR = TR ∨ s;
15 TU = B(s) ∧ ¬M ;
16 T = TR ∨ TU ;
17 }
18 return (M,R, T, reached,O);

}
Figure 4: Finding livelock.

Figure 4 shows the procedure to perform our new state
classification. As explained in Section 3.1, we find main
group (M), transient group (T ), and livelock groups (R)
from the given initial state (s) within the given care states
(S). FindLivelock starts computing forward set F (s) and
backward set B(s) in Line 1 and 2. In Line 3, reached is the
reached states from s in S. If F (s) ⊆ B(s) in Line 4, there
is no livelock in S. In this case, F (s) becomes the main
group and both R and T are set to empty in Line 5-7. If
F (s) * B(s) in Line 8, there must exist at least one livelock
group. In this case, M is computed by intersecting F (s) and
B(s) in Line 9. careSet is set to a subset of F (s) in Line
10. The lasso prefix states in careSet are trimmed out in

Line 11. TR represents the set of transient states that are
reachable from s. In Line 12, R and TR are computed by
calling FindTSCCs with careSet. If s /∈ M (means that
the main group is empty), s is added to TR in Line 13-14.
TU represents the set of transient states that are unreachable
from s and TU is computed in Line 15. T is computed by
union of TR and TU in Line 16.

3.3 Multiple Initial States
It is possible for a design to have multiple initial states

when some of the state variables do not have concrete initial
values. In the presence of multiple initial states, finding
livelock groups has to be devised correctly to avoid false
positives and redundant computations.

Figure 5 shows an example with multiple initial states.
In this example, there are six states, S = {a, b, c, d, e, f}.
There are two SCCs, {a, b, c} and {d, e, f}. We can see
that {d, e, f} is a TSCC. a and d are initial states, I =
{a, d}, as shown with thick circles. Suppose that we com-
pute livelock by calling FindLivelock(Q,S, I). Then, we
get F (I) = B(I) = M = {a, b, c, d, e, f} and R = {} which
is not correct since there is a reachable TSCC. Now, let
us try to call FindLivelock for each single initial state.
First for the initial state a, we get F (a) = {a, b, c, d, e, f}
and B(a) = {a, b, c}. This gives us Ma = {a, b, c} and
Ra = {d, e, f}. There is a livelock group Ra for the initial
state a. Now, for the initial state d, F (d) = {d, e, f} and
B(d) = {a, b, c, d, e, f}. This gives us Md = {d, e, f} and
Rd = {} and TU = {a, b, c}. There is no livelock group for
the initial state d. Therefore, we can see that livelock check-
ing has to be applied for each single initial state separately
in the presence of multiple initial states.
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Figure 5: Multiple initial states.

Theorem 3. When there are two initial states (i0 and
i1), if i1 is included in the reached states from i0, the livelock
groups from i1 are a subset of the livelock groups from i0.

Proof. Since i1 is included in the reached states from
i0, i1 is in either main, transient, or livelock groups from
i0. When i1 is in the main group, the same livelock groups
from i1 are obtained. When i1 is in the transient group, all
or a subset of the livelock groups i1 is obtained. When i1
is in one of the livelock groups, the livelock group including
i1 becomes the main group from i1, and no livelock group
exists from i1 since the other livelock groups from i0 become
unreachable TSCCs from i1. From the above three cases, no
new livelock group is obtained from i1 compared to the ones
from i0. Therefore, the livelock groups from i1 are a subset
of the livelock groups from i0.

Theorem 3 says that when there is large number of initial
states, we can skip livelock checking for any initial states
that are already in the forward sets of other initial states.
In Figure 5, livelock checking for the initial state d can be
skipped because of d ∈ F (a), assuming that a is used first.
However, there is an order dependency on which initial state
is used first. If d is used first, we still need to run live-
lock checking with a. In practice, the number of calls to



FindLivelock is greatly reduced because of Theorem 3 in
the presence of multiple initial states.
Figure 6 is the top-level procedure that checks livelock

with multiple initial states. CheckLivelock takes transition
relation(Q), a set of states(S), a set of initial states(I), and
a concrete machine(C) as procedure inputs. The use of C
is explained in Section 4. CheckLivelock first finds live-
lock groups in the reachable states in Line 1-17 and then it
finds TSCCs in the unreachable states in Line 18-23. The
while loop (Line 6-17) performs livelock checking for a cur-
rent initial state s until all initial states are covered with
iteration index k. For this, remaining is initially set to
I in Line 3 and updated by eliminating the newly reached
states reachedk from remaining in Line 13. reached is the
reached states from all initial states. reached is initially set
to ZERO in Line 1 and updated by adding reachedk that is
the reached states from s in Line 12. Then, the next initial
state is chosen from remaining in Line 15. TU is the union
of unreachable transient states from each initial state. TU is
initially set to ZERO in Line 2 and updated by adding the
unreachable states of Tk in Line 14. For the current initial
state s, FindLivelock is called in Line 7. |Rk| represents
the number of livelock groups in Rk in Line 8. For each
Rj

k, a trace tracejk is generated in Line 9 and the livelock
is reported with the trace in Line 10. Generating trace is
explained in Section 4.2 and reporting livelock is explained
in Section 4.3.

CheckLivelock(Q, S, I, C) {
1 reached = ZERO;
2 TU = ZERO;
3 remaining = I;
4 k = 0;
5 s = PickOneState(I);
6 while (s ̸= ZERO) {
7 (Mk, Rk, Tk, reachedk, Ok) = FindLivelock(Q, S, s);
8 for (j = 0; j < |Rk|; j++) {
9 tracejk = GenerateTrace(C, Rj

k, s, Ok);

10 ReportLivelock(s, Mk, R
j
k, Tk, trace

j
k);

11 }
12 reached = reached ∨ reachedk;
13 remaining = remaining ∧ ¬reachedk;
14 TU = TU ∨ (Tk ∧ ¬reachedk);
15 s = PickOneState(remaining);
16 k++;
17 }
18 careSet = ¬(reached ∨ TU );
19 if (careSet ̸= ZERO) {
20 Rk = FindTSCCs(Q, careSet);
21 for (j = 0; j < |Rk|; j++)

22 ReportUnreachLivelock(Rj
k);

23 }
}

Figure 6: Checking livelock.

Once all reachable livelock groups are found, we next find
unreachable TSCCs. We set the care states careSet to the
negation of all visited states so far in Line 18, then call
FindTSCCs with careSet in Line 20. If there is any un-
reachable TSCC, the TSCC is reported in Line 22.

4. LIVELOCK CHECKING ON FSM
To check whether a livelock exists in a design or not, the

checking should be done on the whole design. However, this
is infeasible due to the size of the design in practice. Thus,
we propose a practical method for checking livelock on FSMs
on the design.
Even when we check livelock on an FSM, the entire COI

logic of the FSM must be considered in order to get an ex-
act result on livelock. However, this is still computationally
very expensive or not feasible, in most real designs. Thus, we

propose a framework for abstraction-based livelock checking
on an abstracted COI of the FSM. Once we find a livelock on
the abstract machine, we justify whether the livelock exists
on the concrete machine. Notice that a livelock on the ab-
stract machine can be mapped into more than one livelock
on the concrete machine.

Figure 7 shows how an abstract machine is obtained from
the COI of an FSM. Suppose an FSM that has two state
variables f and g. Then, we compute the COI of the FSM.
Suppose that there are state variables {a, b, c, d, e} in the
COI of the FSM. The size of the abstract machine is pre-
defined and let us suppose that the size is N . Then, a set
of influential latches from the COI is computed from the
FSM variables. The minimum abstract machine is the FSM
itself and the maximum abstract machine is the concrete
machine. In this example, N=4 and we get the abstract
machine {f, g, d, e}.

g
f

Concrete Machine

FSM
d

e

Abstract Machine

a

b
c

COI of FSM

Figure 7: Abstract machine.

Theorem 4. If any state in a livelock group on an ab-
stract machine is reachable from the initial state on the con-
crete machine, the livelock exists on the concrete machine.

Proof. Since the abstraction is an over-approximation,
the set of all transitions on the abstract machine is a superset
of the set of all transitions on the concrete machine. Since
there is no path from any state in the livelock group to any
state in the main group on the abstract machine, there is
still no path from any projected states of the livelock group
on the concrete machine to any projected states of the main
group on the concrete machine. Now, suppose that the live-
lock does not exist on the concrete machine. In order for the
livelock not to exist on the concrete machine, the only con-
dition is that there is no path from the projected main group
to the projected livelock group on the concrete machine. In
other words, the projected livelock group has to be unreach-
able from the initial state. However, this contradicts the
assumption that any state of the livelock group is reachable
from the initial state on the concrete machine. Therefore,
the livelock group still exists on the concrete machine.

Thanks to Theorem 4, this abstraction-based livelock finds
a livelock on small abstract machine using BDD-based sym-
bolic method, then justifies the existence of the livelock on
the concrete machine by trace concretization in Section 4.2,
by using SAT techniques that can handle large designs. The
abstraction-based livelock checking is an incomplete method
in the sense that it does not provide the proof of no livelock
unless the checking is performed on a concrete machine. No
livelock on an abstract machine does not guarantee no live-
lock on the concrete machine. However, the abstraction-
based livelock checking enables finding real livelock errors
on industrial large designs.

4.1 Causality Checking
Let V be the set of state variables in an abstract machine

for livelock checking. Suppose that R(V ) is the reached
states in the abstract machine and L(V ) is a livelock group



containing a TSCC. Also, suppose that v is a state variable
in V . We are interested in whether v contributes to the
livelock as in Definition 4. This is called variable causality.

Definition 4. When a livelock exists in the abstract ma-
chine, a variable v in V contributes to the livelock if the live-
lock disappears by eliminating v from the abstract machine.
In other words, there is no livelock in another abstract ma-
chine that is composed of the variables, V \v.

Equation 1 shows a condition for existence of livelock.

L(V ) ⊂ R(V ) (1)

Now, let R̃ be the quantified reached states and L̃ be the
quantified livelock states with respect to a state variable v,
as shown in Equation 2 and 3.

R̃(V \v) = ∃v . R(V ) (2)

L̃(V \v) = ∃v . L(V ) (3)

Then, it is determined by Equation 4 to check whether
the variable v contributes to the livelock. Theorem 5 says
that if Equation 4 holds, v contributes to the livelock.

L̃(V \v) ⊂ R̃(V \v) (4)

Theorem 5. When a livelock group is found on an ab-
stract machine (L(V ) ⊂ R(V )), if L̃(V \v) ⊂ R̃(V \v) holds
for a variable v, the variable v contributes to the livelock.

Proof. Let M1 be the machine consisting of V and sup-
pose that a livelock group exists in M1. Let M2 be the ma-
chine consisting of (V \v) by eliminating v from M1. Also,
let T1 (T2) be the set of transitions in M1 (M2), respectively.
Since M2 is an over-approximated machine from M1, M2 has
more transitions than M1 (T1 ⊂ T2). Let Td be the differ-
ence between T1 and T2. If there is any transition (in Td)
that makes a path from any state in the livelock to any state
in the main group in M2, the livelock group merges into the
main group and both groups become a single SCC, yielding
L̃(V \v) = R̃(V \v). Thus, M2 becomes a machine without
the livelock. This means that v is a necessary variable to
have the livelock in M1. Therefore, if L̃(V \v) = R̃(V \v), v
contributes to the livelock.

This causality checking can also be applied to a set of
variables, especially with FSM variables, in order to report
whether the livelocks are related with the FSM. Let F be the
set of variables in an FSM and C be the set of variables in the
COI of the FSM. Suppose that R(F,C) is the reached states
in the abstract machine and L(F,C) is a livelock group con-
taining a TSCC. The quantified reached states and the quan-
tified livelock states are computed in Equation 5 and 6 with
respect to the FSM variables, respectively.

R̃(C) = ∃F . R(F,C) (5)

L̃(C) = ∃F . L(F,C) (6)

Then, Equation 7 shows the causality checking with the
FSM variables to check whether the FSM variables con-
tribute to the livelock.

L̃(C) = R̃(C) (7)

4.2 Trace concretization
Once a livelock group is found on an abstract machine, we

need to justify whether the livelock group is reachable on the
concrete machine. This can be done by the following three
steps. The first step is to pick a target state in the livelock
group. The target state is chosen randomly from the livelock
group, but is one of the closest states to the initial states by

using the onion rings Ok in Figure 6. The second step is to
generate an abstract trace. Starting from the target state,
an abstract trace can be computed by applying BDD-based
pre-image computation iteratively until the initial state is
reached. The third step is to generate a concrete trace by
making a BMC (Bounded Model Checking [2]) problem from
the abstract trace, in order to see whether the livelock group
is reachable on the concrete machine. An efficient approach
for concretization was proposed in [18]

4.3 Reporting Livelock
Once a concrete trace is generated for a livelock group,

the livelock is real on the concrete machine. We report the
livelock group with the state classification mentioned in Sec-
tion 3.1. A livelock group is reported with its initial state,
the main group, transient group, and the unreachable states
in terms of the number of states and the percentage in each
group on the abstract machine.

By looking at the transient and livelock groups, we can
see what fraction of the state space is in problematic zone.
A good design is expected to have only one main group per
one initial state without any transient and livelock groups,
unless the design has an intended reset sequence to a normal
mode.

5. TOGGLE DEADLOCK CHECKING
There is another important design property, called toggle

deadlock that is related to livelock. A livelock may occur for
multiple state variables of a design, whereas a toggle dead-
lock may occur on a single state variable. A state variable
has a toggle deadlock if the variable initially toggles, but
the variable gets stuck at a constant value after a certain
number of cycles.

Figure 8 shows an example of toggle deadlock. There are
two state variables {a, b} and four states {s0, s1, s2, s3} as in
the example. Provided that s0 is the initial state, the main
group is {s0, s1} and the livelock group is {s2, s3}. Once the
state transition reaches to s2 that is a state in the livelock
group, the value of b gets stuck at 1, whereas a still toggles.
Thus, we say that b has a toggle deadlock.

s s1 2

a=0, b=0 a=0, b=1
0 3ss

a=1, b=0 a=1, b=1

Figure 8: Toggle deadlock.

Theorem 6. If there is no STSCC in a design, there is
no toggle deadlock on any variable.

Proof. To be a toggle deadlock, a variable is supposed to
toggle at a cycle and to hold the value forever from the cycle.
No STSCC implies that there is only main group in the
design. If a variable appears as constant in the main group,
the variable is a constant. However, the main group does not
have any prefix behavior. This means it is not possible for
the variable to get toggled before the main group. Therefore,
no STSCC implies no toggle deadlock.

Theorem 6 shows that toggle deadlock occurs in the pres-
ence of a livelock. It is also possible that there is no toggle
deadlock on a design that has a livelock. Thus, toggle dead-
lock on a state variable can be computed by two steps. First,



Statistics Results
Design L I F T COI N Llk Dlk New1 New2 TraceGen

Time Mem Ops Time Mem Ops Time Len

D1 1163 1330 7 - 632 30 0 - 16:20 107.1 44 15:31 107.9 41 - -
60 0 - 41:11 136.7 66 41:31 137.7 66 - -
90 0 - 2:30:33 224.1 81 2:24:50 224.3 81 - -

120 - - time-out (> 24h) time-out (> 24h) - -
D2 385 352 25 - 68 30 0 - 0:01 21.0 12 0:01 21.1 12 - -

60 0 - 0:40 38.7 28 0:40 38.7 28 - -
68 12032 - 4:47:52 95.7 386439 0:53:58 96.5 70329 - -

D3-F1 32541 912 2 - 28941 30 1 - 0:49 140.4 54 0:49 140.5 55 6:37 66
D3-F2 32541 912 4 - 28930 4 1 - 0:09 129.1 9 0:09 129.1 12 1:54 14

- 4 28930 30 - 1 1:31 132.8 168 1:31 132.8 172 2:11 14

Table 1: Experimental results.

we find STSCCs on an abstract machine from the state vari-
able. The abstract machine is made in the same way as in
livelock checking on FSM. Secondly, we evaluate the value
of the state variable in the livelock if the livelock exists.
Figure 9 shows the procedure that checks toggle deadlock

on a given state variable t. CheckToggleDeadlock takes
transition relation (Q), a set of states (S), a set of initial
states (I), a concrete machine (C), and the state variable
(t) as procedure inputs. CheckToggleDeadlock is similar
to CheckLivelock in Figure 6. For each reachable livelock
group Rj

k in Line 6, TestToggleDeadlock checks whether the
value of t toggles or not in the livelock group and returns dlk
and c in Line 7. dlk represents whether the state variable is
in toggle deadlock or not, and c is the constant value (0 or
1) in the case of toggle deadlock.

CheckToggleDeadlock(Q, S, I, C, t) {
1 remaining = I;
2 k = 0;
3 s = PickOneState(I);
4 while (s ̸= ZERO) {
5 (Rk, reachedk, Ok) = FindLivelock(Q, S, s);
6 for (j = 0; j < |Rk|; j++) {
7 (dlk, c) = TestToggleDeadlock(Rj

k, t);
8 if (dlk) {
9 tracejk = GenerateTrace(C, Rj

k, s, Ok);

10 ReportToggleDeadlock(s, Rj
k, trace

j
k, c);

11 }
12 }
13 remaining = remaining ∧ ¬reachedk;
14 s = PickOneState(remaining);
15 k++;
16 }

}
Figure 9: Checking toggle deadlock.

6. EXPERIMENTAL RESULTS
We have implemented the proposed livelock checking and

toggle deadlock checking algorithms. Table 1 shows our ex-
perimental results on livelock and toggle deadlock checking,
generated on a 1.4 GHz Intel processor machine with 4 GB
memory running Red Hat Linux.
The first column lists the design names. The next five

columns present the statistics on the designs, in terms of the
number of latches (L), the number of inputs (I), the number
of latches in FSM (F ), the number of toggle signals to check
(T ), and the number of latches in the COI of either FSM
and a toggle signal (COI). The next three columns show the
results on livelock and toggle deadlock checking. The col-
umn with N shows how many latches were in the abstract
machine. The column with Llk shows how many livelock
groups are found and the column with Dlk shows how many
toggle deadlock are found. The next six columns compare
the performance between two methods (New1 and New2),
in terms of time(T ime), memory(Mem), and the number of

image/pre-image computations(Ops). New1 is the proposed
method without the trimming technique, whereas New2 is
the proposed method with the trimming technique. The
times are in the form of hh:mm:ss and the memory con-
sumptions are in M-byte. The final two columns(TraceGen)
show the results on trace generation on concrete machine for
the livelock or toggle deadlock found by New2, and T ime
shows the time spent for trace generation and Len shows
the trace length.

We have chosen 3 industrial designs (D1, D2, and D3).
For each design, we have run livelock or toggle deadlock
checking on several sizes of abstract machines with the mul-
tiples of 30 latches. We have set the maximum run time to
24 CPU hours.

In D1, there is one FSM automatically extracted. The
FSM consists of 7 latches and contains 632 latches in its COI.
We can see that the run time is exponentially increased,
depending on the size of the abstract machine. On this
design, the livelock checking became infeasible whenN=120.

In D2, there is also one FSM that was user-specified. The
FSM consists of 25 latches and contains only 68 latches in
its COI. This design has a livelock group. However, the
livelock was not detected when N=30 and N=60. The live-
lock was detected only when all the latches in the COI were
included in the abstract machine. In other words, the ab-
stract machine is the concrete machine at the FSM point of
view. Since the livelock was found on the concrete machine,
trace concretization is not required since the abstract trace
in Section 4.2 is already a concrete trace.

D2 is the only design showing a significant performance
difference between New1 and New2 in the table. This is be-
cause this design has many transient states as well as many
livelock groups. In this case, the trimming technique signif-
icantly reduced the number of image/pre-image operations
from 386K to 70K (5.5X reduction) that gave big speed-up
from 5 hours to 1 hour (5X speed-up). This shows that the
trimming technique helps the performance when there are
many transient states. When there is no transient states,
the trimming technique becomes a pure overhead as shown
in D3. However, the overhead is almost negligible from the
experiment.

In D3, there are two FSMs (F1 and F2). F1 is composed
of 2 latches and a livelock was found with N=30 within 49
seconds. The livelock was justified by trace concretization
that took 397 seconds, and the trace length was 66. F2 is
composed of 4 latches and a livelock was found with N=4
(the FSM itself) in 9 seconds. The livelock was also justi-
fied by trace concretization that took 114 seconds, and the
trace length was 14. We have also tried the toggle dead-



lock checking on F2 separately from the livelock checking.
A toggle deadlock was found in 90 seconds and the concrete
trace was generated in 131 seconds. D3 shows the value of
abstraction-based livelock and toggle deadlock checking.
Table 2 shows a comparison on finding all SCCs with four

algorithms (XB [28], Lockstep [3], Skeleton [12], IXB [20])
on the design D2 from Table 1. In this design, the number of
recurrent states is 2.07e8 and the number of transient states
is 1.2e6 that is only 0.6% of all states. However, it turned out
that how to handle these transient states efficiently is the key
factor in the performance. One main difference between XB
and IXB is that IXB trims out those transient states as much
as possible. This trimming technique makes the IXB method
outperform on this design: faster in time (more than 15X)
and fewer number of image operations (more than 10X) than
the other methods. This explains why New2 outperformed
onD2 in Table 1. Table 2 also shows why livelock checking is
done by finding TSCCs instead of SCCs. Finding all livelock
groups took 54 minutes, whereas finding all SCCs took 100
minutes (2X) even with IXB.

Method Time Memory Ops SCCs States

XB 84:07:56 98.2 1013333
Lockstep 45:55:53 237.3 2590724 19458 2.08e8
Skeleton 26:01:54 266.5 2609008
IXB 1:39:47 92.5 102990

Table 2: Finding all SCCs in D2.

7. CONCLUSIONS
We have presented a framework for abstraction-based live-

lock and toggle deadlock checking, in order to handle large
designs in practice. Since exact livelock and toggle deadlock
checking is infeasible on real designs directly, our approach
is to check livelock and toggle deadlock on abstract machine
of either an FSM or a toggle signal. Once we find a livelock
or toggle deadlock, we justify the livelock or toggle deadlock
on the concrete machine by concretizing the abstract trace
on the concrete machine.
Even though the proposed approach does not prove the

non-existence of livelock or toggle deadlock on a design un-
less the design is small enough to handle, this approach finds
livelocks or toggle deadlocks on the design if there exists.
To the best of our knowledge, it is the first approach to

use the abstraction-based livelock checking and also the first
approach for checking toggle deadlock. The experimental re-
sults showed that the abstraction-based approach finds live-
lock errors on the real designs.
As future work, we are interested in improving the con-

cretization, finding more accurate influential latches, and
optimizing the computations with multiple FSMs or toggle
signals by considering the overlaps in their COIs.

8. REFERENCES
[1] A. Biere, C. Artho, and V. Schuppan. Liveness checking as

safety checking. In International Workshop in Formal
Methods for Industrial Critical Systems, pages 160–177, 2002.

[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model
checking without BDDs. In Fifth International Conference on
Tools and Algorithms for Construction and Analysis of
Systems (TACAS’99), pages 193–207, Amsterdam, The
Netherlands, Mar. 1999. LNCS 1579.

[3] R. Bloem, H. Gabow, and F. Somenzi. An algorithm for
strongly connected component analysis in n log n symbolic
steps. In Formal Methods in Computer Aided Design, pages
37–54, 2000.

[4] R. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers,
C-35(8):677–691, Aug. 1986.

[5] M. Case, H. Mony, J. Baumgartner, and R. Kanzelman.
Enhanced verification by temporal decomposition. In Formal
Methods in Computer Aided Design, pages 37–54, 2009.

[6] H. Cho, G. D. Hachtel, E. Macii, M. Poncino, and F. Somenzi.
Automatic state space decomposition for approximate fsm
traversal based on circuit analysis. IEEE Transactions on
Computer-Aided Design, 15(12):1451–1464, Dec. 1996.

[7] O. Coudert and J. C. Madre. A unified framework for the
formal verification of sequential circuits. In Proceedings of the
International Conference on Computer-Aided Design, pages
126–129, Nov. 1990.

[8] O. G. E. M. Clarke and D. Peled. Model Checking. The MIT
Press, 1999.

[9] N. Een and N. Sorensson. MiniSat.
http://www.cs.chalmers.se/Cs/Research/FormalMethods/
MiniSat.

[10] E. A. Emerson and C. Lei. Modalities for model checking:
Branching time logic strikes back. Science of Computer
Programming, 8:275–306, 1987.

[11] E. A. Emerson and C.-L. Lei. Efficient model checking in
fragments of the propositional mu-calculus. In Proceedings of
the First Annual Symposium of Logic in Computer Science,
pages 267–278, June 1986.

[12] R. Gentilini, C. Piazza, and A. Policriti. Computing strongly
connected components in a linear number of symbolic steps. In
SODA ’03: Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 573–582, 2003.

[13] G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Markovian
analysis of large finite state machines. IEEE Transactions on
Computer-Aided Design, 15(12):1479–1493, Dec. 1996.

[14] R. Hojati, H. Touati, R. P. Kurshan, and R. K. Brayton.
Efficient ω-regular language containment. In Computer Aided
Verification, pages 371–382, Montréal, Canada, June 1992.
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