
CHIMP: a Tool for Assertion-Based Dynamic
Verification of SystemC Models

Sonali Dutta
Rice University

Email:Sonali.Dutta@rice.edu

Deian Tabakov
Schlumberger

Email:deian@dtabakov.com

Moshe Y. Vardi
Rice University

Email:vardi@cs.rice.edu

Abstract—CHIMP is a tool for assertion-based dynamic
verification of SystemC models. The various features of
CHIMP include automatic generation of monitors from
temporal assertions, automatic instrumentation of the
model-under-verification (MUV), and three-way commu-
nication among the MUV, the generated monitors, and the
SystemC simulation kernel during the monitored execution
of the instrumented MUV. Empirical results show that
CHIMP puts minimal runtime overhead on the monitored
execution of the MUV.

A newly added path in CHIMP results in a significant
(over 75%) reduction of average monitor generation and
compilation time. The average size of the monitors is re-
duced by over 60%, without increasing runtime overhead.

I. INTRODUCTION

SystemC (IEEE Standard 1666-2005) has emerged as
a de facto standard for modeling of hardware/software
systems [4], supporting different levels of abstraction,
iterative model refinement, and execution of the model
during each design stage. SystemC is implemented as
a C++ library with macros and base classes for mod-
eling processes, modules, channels, signals, ports, and
the like, while an event-driven simulation kernel allows
efficient simulation of concurrent models. Thus, on one
hand, SystemC leverages the natural object-oriented en-
capsulation, data hiding, and well-defined inheritance
mechanism of C++, and, on the other hand, it allows
modeling and efficient simulation of hardware/software
designs by its simulation kernel and predefined hardware-
specific macros and classes. The SystemC code is avail-
able as open source, including a single-core reference
simulation kernel, referred to as the OSCI kernel; see
http://www.accellera.org/downloads/standards/systemc.

Work supported in part by NSF grants CNS 1049862 and CCF-
1139011, by NSF Expeditions in Computing project ”ExCAPE:
Expeditions in Computer Augmented Program Engineering”, by BSF
grant 9800096, and by gift from Intel.

The growing popularity of SystemC has motivated
research aimed at assertion-based dynamic verification
(ABDV) of SystemC models [9]. ABDV involves two
steps: generating run-time monitors from input asser-
tions [8], and executing the model-under-verification
(MUV) while running the monitors along with the model.
The monitors observe the execution of the MUV and
report if the observed behavior is consistent with the
specified behavior. For discussion of related work in
ABDV of SystemC see [7].

CHIMP, available as an open-source tool1, imple-
ments the monitoring framework for temporal SystemC
properties described in [9]–see discussion below. CHIMP
consists of (1) off-the-self components, (2) modified com-
ponents, and (3) an original component. CHIMP has
two off-the-self components: (1) spot-1.1.1 [3], a
C++ library used for LTL-to-Büchi conversion , and (2)
AspectC++-1.1 [6], a C++ aspect compiler that is
used for instrumentation of the MUV. CHIMP has two
modified components: (1) a patched version of the OSCI
kernel-2.2 to facilitate communication between the
kernel and the monitors [9], and (2) an extension of
Automaton-1.11 [5], a Java tool used for deter-
minization and minimization of finite automata, with the
ability to read automata descriptions from file. Finally,
the original component is MONASGEN, a C++ tool for
automatic generation of monitors from assertions [8] and
for automatic generation of an aspect advice file for
instrumentation [11]. Fig. 1 shows the five components of
CHIMP as described above. The component Automaton-
1.11 is dotted because a newly added improved path
in CHIMP has been able to remove the dependency of
CHIMP on Automaton-1.11 (explained in Section V).

CHIMP takes the MUV and a set of temporal as-
sertions about the behavior of that MUV as inputs,

1www.sourceforge.net/projects/chimp-rice

Fig. 1. CHIMP components

and outputs “FAILED” or “NOT FAILED”, for each
assertion. CHIMP performs white-box validation of user
code and black-box validation of library code. (If a user
wishes to do white-box validation of library code, it can
be accomplished by treating the library code as part of
the user code.) The two main features of CHIMP are: (1)
CHIMP generates C++ monitors, one for each assertion
to be verified, and (2) CHIMP automatically instruments
the user model [11] to expose the user model’s states and
syntax to the monitors. CHIMP puts nominal overhead
on the runtime of the MUV, supports a rich set of
assertions, and can handle a wide array of abstractions,
from statement level to system level.

A recently added path in CHIMP from LTL to
monitor can bypass the old performance bottleneck,
Automaton-1.1, and improves the monitor generation and
compilation time by a significant amount. It also reduces
the size of the generated monitors notably. This entirely
removes the dependency of CHIMP on Automaton-1.1.

The theoretical and algorithmic foundations of
CHIMP were described in [8]–[11]. In this paper we
describe the architecture, usage, and recent evolution
of CHIMP. The rest of the paper is organized as fol-
lows. Section II describes the syntax and semantics of
assertions. Section III presents an overall picture about
the usage, implementation and performance of CHIMP.
Section IV describes the C++ monitor generated by
CHIMP. Section V describes the new improved path in
CHIMP and its improved performance. Finally, Section
VI presents a summary and talks about future work.

II. ASSERTIONS: SYNTAX AND SEMANTICS

CHIMP accepts input assertions, defined using the
temporal specification framework for SystemC described
in [10], where a temporal assertion consists of a linear
temporal formula accompanied by a Boolean expression
serving as a clock. This supports assertions written at
different levels of abstraction with different temporal
resolutions. The framework of [10] proposes a set of
SystemC-specific Boolean variables that refer to Sys-
temC’s software features and its simulation semantics;
see examples below. Input assertions in CHIMP are of the
form “〈LTL formula〉@〈clock expression〉”, where
the LTL formula expresses a temporal property and the
clock expression denotes when CHIMP should sample
the execution trace of the MUV.

Several of the additional Boolean variables pro-
posed in [10] refer to the simulation phases. Accord-
ing to SystemC’s formal semantics, there are 18 pre-
defined kernel phases. CHIMP has Boolean variables
that enable referring to these phases. For example
MON DELTA CYCLE END denotes the end of each
delta cycle and MON THREAD SUSPEND denotes the
suspension moment of each thread. By using these vari-
ables as clock expressions, we can sample the execu-
tion trace at different temporal resolutions. (By default,
CHIMP samples at each kernel phase.) Other Boolean
variables refer to SystemC events, which are key ele-
ments of SystemC’s event-driven simulation semantics.
CHIMP is also able to sample the execution at various
key locations, e.g., function calls and function returns.
This gives the user the flexibility to write assertions at
different levels of abstraction, from the level of individual
C++ statements to the level of SystemC kernel phases.

The Boolean primitives supported by CHIMP are
summarized below; see, [10] and [11] for further details:

Function primitives: Let f() be a C++ function in the
user or library code. The Boolean primitives f:call and
f:return refer to locations in the source code that contain
the function call, and to locations immediately after
the function call, respectively. The primitives f:entry
and f:exit refer to the locations immediately before the
first executable statement and immediately after the last
executable statement in f(), respectively. If f() is a
library function then the entry and exit primitives are not
supported (black-box verification model for libraries).

Value primitives: If a function f() has k arguments,
CHIMP defines variables f : 1, . . . , f : k, where the
value and type of f : i are equal to the value and type

of the ith parameter of function f() before executing
the first statement in the definition of f(). CHIMP
also defines the variable f : 0, whose value and type
are equal to the value and type of the object that f()
returns. For example, if the function int divide(int
dividend, int divisor) is defined in the MUV,
then the formula G (division:entry -> “division:2 !=
0”) asserts that the divisor is nonzero whenever division
function starts execution.

Phase primitives: The user can refer to the 18 pre-
defined kernel states [10] in the assertions to spec-
ify when the state of the MUV should be sam-
pled. For example, the assertion G (“p == 0”) @
MON DELTA CYCLE END requires the value of vari-
able p to be zero at the end of every delta cycle.

Event primitives: For each SystemC event E, CHIMP
provides a Boolean primitive E.notified that is true
only when the OSCI kernel actually notifies E. For ex-
ample, the assertion G (s.value changed event().notified)
@MON UPDATE PHASE END says that the signal s
changes value at the end of every update phase.

III. USAGE, IMPLEMENTATION AND PERFORMANCE

Running CHIMP consists of three steps: (1) In the
first step, the user writes a configuration file containing
all assertions to be verified, as well as other necessary
information. The user can also provide inputs through
command-line switches. For each LTL assertion in the
configuration file, MONASGEN first generates a non-
deterministic Büchi automaton on words (NBW) using
SPOT, then converts that NBW to a minimal deter-
ministic finite automaton on words (DFW), using the
Automaton-1.11 tool for determinization and minimiza-
tion. Then, MONASGEN generates the C++ monitors
from the DFW, one monitor for each assertion (Fig. 2).
(2) MONASGEN produces an aspect-advice file that is
then used by AspectC++ to generate the instrumented
MUV (Fig. 3). (3) Finally, the monitors and the instru-
mented MUV are compiled together and linked to the
patched OSCI kernel, and the code is then run to execute
the simulation with inputs provided by user. The inputs
can be generated using any standard stimuli-generation
technique. For every assertion, CHIMP produces output
indicating if the assertion held or failed for that particular
input (Fig. 4).

For experimental evaluation we used a SystemC
model with about 3,000 LOC, implementing a system
for reserving and purchasing airplane tickets. The users

Fig. 2. Monitor generation flow

Fig. 3. MUV instrumentation flow

of the system submit requests and the system uses a
randomly generated flight database to find a direct flight
or a sequence of up to three connecting flights. Those are
returned to the user for approval, payment and booking.
This model is intended to run forever. It is inspired
by actual request/grant subsystems currently used in
hardware design.

We used a patched version of the 2.2.0 OSCI kernel
and compiled it using the default settings in the Makefile.
The empirical results below were measured on a Pentium
4, 3.20GHz CPU, 1 GB RAM machine running GNU

Fig. 4. Running instrumented MUV with monitors using patched
OSCI kernel

Linux. To assess runtime overhead imposed by the mon-
itors, we measured the effect of running with different
assertions and also increasing number of assertions [9].
In each case we first ran the model without monitors and
user-code instrumentation to establish the baseline, and
then ran several simulations with instrumentation and an
increasing number of copies of the same monitor. The
results report runtime overhead per monitor as a per-
centage of the baseline. (For these experiments monitors
were constructed manually.)

The first property we checked is a safety
property asserting that whenever the event
new requests nonfull is notified, the corresponding
queue new planning requests must have space for at
least one request.

G "new_planning_requests.size() < capacity"
@ new_requests_nonfull.notified (1)

The second property says that the system must propa-
gate each request through each channel (or through each
module) within 5 cycles of the slow clock. This property
is a conjunction of 16 bounded liveness assertions similar
to the one shown here.

...
// Propagate through module within 5 clock ticks
ALWAYS (io_module_receive_transaction($1) ->
(within [5 slow_clock.pos()]
io_module_send_to_master($2) & ($1 == $2)

) AND ... (2)

Fig. 5 presents the runtime overhead of monitoring

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of monitors

O
v
e

rh
e

a
d

 p
e

r
m

o
n

it
o

r
(%

 o
f

b
a

s
e

lin
e

)

ARS: Overhead per monitor for Properties (1) and (2)

Property 1 (safety)

Property 2 (liveness)

Both properties

Fig. 5. Run time overhead for monitoring Properties (1) and
(2)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−4

Number of monitor calls

P
e

rc
e

n
ta

g
e

 o
v
e

rh
e

a
d

 p
e

r
c
a

ll

Fig. 6. Instrumentation overhead per monitor call
as a percentage of the baseline run time. Y axis
is ((instrumentation overhead − baseline)/(baseline ×
number of monitors))× 100%

the above two properties as a percentage of the baseline.
Checking Property 2 is relatively expensive because it
requires a lot of communication from the model to the
monitor. It is shown in [1] that the finite state monitors
have less runtime overhead than transaction-based moni-
tors generated by tools like Synopsys VCS.

We also evaluated the cost of instrumentation sepa-
rately by simulating one million SystemC clock cycles
with focus on the overhead of instrumentation [11]. The
average wall-clock execution time of the system over 10
runs without instrumentation was 33 seconds. We call
this “baseline execution”. Fig. 6 shows the cost of the
instrumentation per monitor call, as a percentage of the

baseline execution. The data suggest that there is a fixed
cost of the instrumentation, which, when amortized over
more and more calls, leads to lower average cost. The
average cost per call stabilizes after 300,000 calls, and is
less than 0.5× 10−4%.

Another testbench we used is an Adder model that
implements the squaring function by repeated increment
by 1. It uses all three kinds of event notifications. It is
scalable as it spawns a SystemC thread for each addition
in the squaring function. We monitored several properties
of the Adder model using CHIMP.

To study the effect of monitor encoding on runtime
overhead, Tabakov and Vardi [8] describes 33 different
monitor encodings, and shows that front det switch en-
coding with state minimization and no alphabet mini-
mization is the best in terms of runtime overhead. The
downside is that this flow suffers from a rather slow
monitor generation and compilation time. This led us to
develop a new flow for the tool, as described below.

IV. CHIMP MONITORS

In CHIMP, the LTL formula in every assertion
〈LTL formula〉 @ 〈clock expression〉 is converted
into a C++ monitor class. Each C++ monitor has a step()
function that implements the transition function of the
DFW generated from the LTL formula (as described
in Fig. 9). This step() function is called at every sam-
pling point defined by clock expression. The monitor.h
and monitor.cc files, generated by MONASGEN, contains
one monitor class for every assertion and a class called
local_observer that is responsible for invoking the
callback function, which invokes step() function of the ap-
propriate monitor class at the right sampling point during
the monitored simulation. Different encodings have been
explored for writing the monitor’s step() function. For the
new flow of CHIMP (described below), Fig. 13 shows that
front det ifelse encoding is the best among all of them
in terms of runtime overhead.

In front det ifelse encoding, the C++ monitor pro-
duced is deterministic in terms of transitions. This means
from one state, either one or no transition is possible. If
no transition is possible from a state, the monitor rejects
and outputs ”FAILED”. Else, the monitor keeps executing
until the end of simulation and outputs ”NOT FAILED”.
In front det ifelse encoding, each state of the monitor
is encoded as an integer, from 0 upto the total number of
states. The step() function of the monitor uses an outer
if-elseif statement block to determine the next state. The

Fig. 7. The DFW generated by MONASGEN from the LTL
formula G(a → Xb). All the states are accepting. The DFW
rejects bad prefixes by no available transition. State 0 is the
initial state.

possible transitions from each state are encoded using an
inner if-elseif block, the condition statement being the
guard on a transition.

As a running example, we show how the monitor step()
function is encoded for an assertion G(a → Xb) @ clk.
clk here is some boolean expression specifying when the
step() function needs to be called during the simulation.
This assertion asserts that, always, if a is true, then in the
next clock cycle b has to be true. The DFW generated by
CHIMP for this assertion is shown in Fig. 7.

Listing 1 shows the step() function of the C++ monitor
generated by CHIMP for the assertion G(a → Xb) @
clk. The variables current_state and next_state
are member variables of the monitor class and store the
current automaton state and next automaton state respec-
tively. If next state becomes −1 after the execution of the
step() function, it means that no transition can be made
from the current state. In this case, the monitor outputs
”FAILED”. The initial state 0 of the monitor is assigned
to the variable current_state inside the constructor
of the monitor class as shown in Listing 2.

Listing 1. The step() function of the monitor for G(a→ Xb)

/∗ ∗
∗ S i m u l a t e a s t e p o f t h e m o n i t o r .
∗ /
void
m o n i to r 0 : : s t e p () {

/ / I f t h e p r o p e r t y has n o t f a i l e d y e t
i f (s t a t u s == NOT FAILED) {

/ / number o f s t e p s e x e c u t e d so f a r
num steps ++;
/ / a s s i g n n e x t s t a t e t o c u r r e n t s t a t e
c u r r e n t s t a t e = n e x t s t a t e ;
/ / make n e x t s t a t e i n v a l i d
n e x t s t a t e = −1;

i f (c u r r e n t s t a t e == 0) {
i f (! (a))
{ n e x t s t a t e = 0 ; }

e l s e i f ((a))
{ n e x t s t a t e = 1 ; }

} / / i f (c u r r e n t s t a t e == 0)

e l s e i f (c u r r e n t s t a t e == 1) {
i f ((b) && ! (a))
{ n e x t s t a t e = 0 ; }

e l s e i f ((a) && (b))
{ n e x t s t a t e = 1 ; }

} / / i f (c u r r e n t s t a t e == 1)

/ / FAILED i f no t r a n s i t i o n p o s s i b l e
bool n o t s t u c k = (n e x t s t a t e != −1);
i f (! n o t s t u c k) {

p r o p e r t y f a i l e d () ;
}

} / / i f (s t a t u s == NOT FAILED)
} / / s t e p ()

Listing 2. The constructor of the monitor for G(a→ Xb)

/∗ ∗
∗ The c o n s t r u c t o r
∗ /

m o n i to r 0 : : m o n i t o r 0 (. . .) :
s c c o r e : : mon pro to type () {

n e x t s t a t e = 0 ; / / i n i t i a l s t a t e i d
c u r r e n t s t a t e = −1;
s t a t u s = NOT FAILED ;
num steps = 0 ;
. . .

} / / C o n s t r u c t o r

The sampling points can be kernel phases, e.g.,
MON DELTA CYCLE END, or event notification, e.g.,
E.notified (E is an event). In such cases, the OSCI kernel
needs to communicate with the local_observer at
the right time (when a delta cycle ends or when event E
is notified) to call the step() function of the monitor. This
communication is done by the patch, put on OSCI ker-
nel. This patch contains a class called mon_observer,
which communicates with the local_observer class
on behalf of the OSCI kernel.

V. EVOLUTION OF CHIMP

Fig. 8 shows the old path of generating C++ monitor
from an LTL property in CHIMP. First, MONASGEN

Fig. 8. Old LTL to monitor path in CHIMP

Fig. 9. New LTL to monitor path in CHIMP

uses SPOT to convert the LTL formula to a nondeter-
ministic Büchi Automaton (NBW). Then MONASGEN
prunes the NBW to remove all states that do not lead to
any accepting state, and generate the corresponding non-
deterministic finite automaton (NFW), see [2]. MONAS-
GEN then uses the Automaton Tool to determinize and
minimize the NFW to generate minimal deterministic
finite automaton (DFW). Finally MONASGEN converts
the DFW to C++ monitor.

The main bottleneck in this flow was minimization
and determination of NFW using the Automaton tool as
it consumes 90% of total monitor generation and com-
pilation time. Also, the Automaton tool may generate
multiple edges between two states, resulting in quite large
monitors. The newest version of CHIMP introduces a
new path as shown in Fig. 9, which bypasses Automaton
tool completely and uses only SPOT. So the component
Automaton-1.11 in Fig. 1 is not needed by CHIMP any-
more. This new path leverages the new functionality of
SPOT-1.1.1 to convert an LTL formula to a minimal DFW
that explicitly rejects all bad prefixes.

After replacing the Automaton Tool by SPOT to con-
vert the NBW to minimal DFW, the improvement in
compilation time and monitor size is evident. This new
flow results in 75.93% improvement in monitor genera-
tion and compilation time. To evaluate the performance of
the revised CHIMP, we use the same set of 162 pattern
formulas and 1200 random formulas as mentioned in [8].
The scatter plot on Fig. 10 shows the comparison of
monitor generation and compilation time of the new flow
vs the old flow. Most of the points are above the line with
slope 1, which indicates that for most of the monitors, the

generation and compilation time by old CHIMP is more
than by new CHIMP. Fig. 10 - Fig. 14 are all scatter plots2

and interpreted in the same way.

The new flow also merges multiple edges between
two states into one edge guarded by the disjunction of
the guards on all edges between the states. In this way
the average reduction in monitor size in bytes is 61.27%.
Fig. 11 shows the comparison of the size in bytes of the
monitors generated by the new flow vs the old flow.

Since the main focus of CHIMP has always been
minimizing runtime overhead, we need to ensure that this
new flow does not incur more runtime overhead compared
to the old flow as a cost of reduced monitor generation and
compilation time. So we ran the same set of 162 pattern
formulas and 1200 random formulas as mentioned above,
to compare the runtime overhead incurred by the new flow
vs the old flow. Fig. 12 shows that the runtime overhead
of CHIMP using the new flow has been reduced compared
to the old flow. The reduction is 7.97% on average.

As CHIMP has evolved to follow a different and more
efficient path and the monitors have been reduced in size,
it was not clear a priori which monitor encoding is the
best. We conducted the same experiment as in [8] with
the same set of formulas, 162 pattern formulas and 1200
random formulas, to identify the best encodings in terms
of both runtime overhead and monitor generation and
compilation time. We identified two new best encodings.
Fig. 13 shows that the new best encoding in terms of
runtime overhead is now front det ifelse. Fig. 14 shows
that the new best encoding in terms of monitor genera-
tion and compilation time is back ass alpha. CHIMP
now provides two configurations for monitor generation,
best runtime, which has minimum runtime overhead
and best compiletime, which has minimum monitor
generation and compilation time. Since the bigger concern
is usually runtime overhead, best runtime is the default
configuration, given that its monitor generation and com-
pilation time is very close to that of best compiletime.

VI. CONCLUSION

We present CHIMP, an Assertion-Based Dynamic Ver-
ification tool for SystemC models, and show that it puts
minimal overhead on the runtime of the MUV. We show
how the new path in CHIMP results in significant re-
duction of monitor generation and compilation time and
monitor size, as well as runtime overhead. In the future

2http://en.wikipedia.org/wiki/Scatter plot

Fig. 10. Comparison of monitor generation and compilation
time of the old CHIMP vs new CHIMP

Fig. 11. Comparison of monitor size (bytes) generated by the
old CHIMP vs new CHIMP

we plan to look at the possibility of verifying parametric
properties, for example G(send(id) → F (receive(id)))
where one can pass a parameter (here id), to the variables
in the LTL formula of the assertion. The above property
means that always if the message with ID id is sent, it
should be received eventually. Also at present the user
needs to know the system architecture to declare an asser-
tion. We would like to make CHIMP work with assertions
that are declared in the elaboration phase.

Fig. 12. Comparison of runtime overhead incurred by old
CHIMP vs new CHIMP

REFERENCES

[1] R. Armoni, D. Korchemny, A. Tiemeyer, M. Vardi, and Y. Zbar.
Deterministic dynamic monitors for linear-time assertions. In
Proc. Workshop on Formal Approaches to Testing and Run-
time Verification, volume 4262 of Lecture Notes in Computer
Science. Springer, 2006.

[2] M. d’Amorim and G. Ro̧su. Efficient monitoring of ω-
languages. In Proc. 17th International Conference on Com-
puter Aided Verification, pages 364–378, 2005.

[3] A. Duret-Lutz and D. Poitrenaud. SPOT: An extensible model
checking library using transition-based generalized Büchi au-
tomata. Modeling, Analysis, and Simulation of Computer
Systems, 0:76–83, 2004.

[4] C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, and M. Moy.
Automatic generation of schedulings for improving the test
coverage of Systems-on-a-Chip. In FMCAD ’06: Proceedings
of the Formal Methods in Computer Aided Design, pages 171–
178, Washington, DC, USA, 2006. IEEE Computer Society.

[5] A. Møller. dk.brics.automaton.
http://www.brics.dk/automaton/, 2004.

[6] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++:
an aspect-oriented extension to the C++ programming lan-
guage. In CRPIT ’02: Proceedings of the Fortieth Interna-
tional Conference on Tools Pacific, pages 53–60, Darlinghurst,
Australia, Australia, 2002. Australian Computer Society, Inc.

[7] D. Tabakov. Dynamic Assertion-Based Verification for Sys-
temC. PhD thesis, Rice University, Houston, 2010.

[8] D. Tabakov, K. Rozier, and M. Y. Vardi. Optimized temporal
monitors for SystemC. Formal Methods in System Design,
41(3):236–268, 2012.

[9] D. Tabakov and M. Vardi. Monitoring temporal SystemC
properties. In Proc. 8th Int’l Conf. on Formal Methods and
Models for Codesign, pages 123–132. IEEE, July 2010.

Fig. 13. Comparison of runtime overhead of front det ifelse
encoding vs all other encodings

Fig. 14. Comparison of monitor generation time and com-
pile time overhead of back ass alpha encoding vs all other
encodings

[10] D. Tabakov, M. Vardi, G. Kamhi, and E. Singerman. A
temporal language for SystemC. In FMCAD ’08: Proc. Int.
Conf. on Formal Methods in Computer-Aided Design, pages
1–9. IEEE Press, 2008.

[11] D. Tabakov and M. Y. Vardi. Automatic aspectization of
SystemC. In Proceedings of the 2012 workshop on Modularity
in Systems Software, MISS ’12, pages 9–14, New York, NY,
USA, 2012. ACM.

