Tool use in software modelling education

Seiko Akayama', Birgit Demuth?, Timothy C. Lethbridge?, Marion Scholz?,
Perdita Stevens®, and Dave R. Stikkolorum®

! Kyushu University,
Japan
2 Vienna University of Technology,
Austria
3 Technische Universitat Dresden,
Germany
4 University of Ottawa
Canada
5 University of Edinburgh
Scotland
5 Leiden University
The Netherlands

Abstract. An important decision that must be taken by anyone design-
ing a course involving (object oriented software) modelling is what tool
support, if any, to use. Options include picking an industrial strength
modelling tool, using a tool specifically designed for educational use, or
eschewing tool use altogether in favour of pencil and paper. The best an-
swer will depend on many factors, including the prior experience of the
students (and staff), the length and organisation of the course, and the
learning objectives. Moreover, decisions on tools have an impact on other
aspects of course design. In this informal paper, the result of discussion
at the MODELS Educators’ Symposium 2013, we survey previous work
on this question, discuss our own experience, and draw out some key
issues that someone designing a new course involving modelling must
consider.

1 Introduction

Teaching object oriented design and modelling in a university is important not
only because these are important skills that students will need if they pursue
careers in software development, but also because this area is a key interface be-
tween research and teaching. This double motivation — we might say, vocational
and intellectual — for teaching design and modelling is itself a source of challenge
for educators. We experience a tension between the desire to train students in
the skills they will need after university, and the desire to have them reflect on
the nature of design and modelling and the ways in which these activities could
be improved with the help of cutting edge research.

One of the decisions that someone (re)designing a course must take is what
use, if any, to make of tools that support modelling. This has often been a topic

of conversation among participants at events like the Educators’ Symposium at
the MODELS conference (EduSymp), and many papers have been written about
individual experiences. This paper aims to draw the strands together and discuss
the whys of these decisions in a way which will be thought-provoking for people
newly planning, or revising, courses. It will do this in two ways: first, by briefly
surveying the literature on the topic and providing a collection of references
into further reading; second, by discussing our own experiences, decisions, and
opinions.

The authors have made very different choices in their own teaching, stemming
partly from differences in their environments and partly from differences in their
opinions. This paper, accordingly, does not present a complete consensus, far
less a recommendation for “How to run a modelling course”. Rather, it aims to
make explicit some of the factors that need to be considered and the arguments
for and against different approaches.

2 Related work

Much has been written about how to educate people in object oriented design
(i.e. [7], [3]). Less has been written about education in modelling specifically
[15], and still less about the role of tools in that education; typically, tools are
mentioned in papers whose focus is elsewhere. The MODELS conference has a
long-standing tradition of including an Educators’ Symposium in its organisa-
tion, and many of the papers we shall mention appeared there.

In this section we focus specifically on the use of modelling tools in educa-
tion. We shall not attempt to cover related work on other aspects of teaching
modelling, nor shall we discuss comparisons of modelling tools that are not
education-specific.

The use of tools in modelling education emerged as a widespread concern
in the late 1990s/early 2000s, around the same time that UML was being stan-
dardised for the first time.

Over the years, some concerns have changed or disappeared. Stevens’ 1998
paper [16], for example, mentions as a source of student dissatisfaction the diffi-
culty of running Rational Rose on workstations with 32Mb of RAM! Our experi-
ence today is that for models of the sizes typically used in teaching, commodity
machines usually run available tools without difficulty.

A major concern that has not disappeared — and is also often mentioned by
industrial practitioners [13] — is that UML is a very complex language. A typical
modelling course covers only a small subset.

The 2002 short paper [4] describes a tool called QuickUML! developed specif-
ically for modelling education at SUNY at Buffalo. Citing students’ tendency to
use UML features they did not know how to use correctly, the authors explain
that their tool supported class diagrams only, with a limited set of features and
some skeleton code generation. The latter was motivated by its usefulness in

! http://quickuml.softpedia.com/

helping students to get “a feel for how a class diagram translates into real code”;
that is, its aim was more to help them understand the model than to contribute
to rapid development of real systems. While several tools called QuickUML have
web pages, none of them advertise any special educational use and it is not clear
that any are related to the tool described in this paper.

The authors of [19], writing in 2005 and reporting on their tool minimUML?2,
take a similar approach, implementing a very limited subset of UML to help
students get started. They emphasise the need for tools to provide full undo
and redo, in order to help students experiment freely. minimUML itself does not
seem to be available for download now. Their paper provides a useful comparison
of UML tools in use in education at the time, including QuickUML. The others
they considered were Violet?, UMLet?, Dia® and ArgoUMLS®; see Table 1 of
[19] and surrounding discussion for more information about their comparison
at that time. All are still available today. UMLet, which Stevens has used in
the past for teaching purposes, deliberately limits functionality and provides
a simple interface. Dia is a general-purpose drawing tool that offers UML; it
similarly gives limited functionality and aims for easy learnability. ArgoUML,
by contrast, aimed to be a full-featured modelling tool. Stevens has used it
too in the past, before switching to UMLet because of the difficulty students
experienced learning to use the tool and getting round minor bugs and missing
features.

In 2007, [14] described a tool called StudentUML. Neither it nor its appar-
ently planned successor seem to be available today. Like most of its predecessors
it focused on a small subset of UML. It aimed to support a student in maintaining
correctness and consistency of a set of diagrams. The paper compares it with
QuickUML, minimUML, UMLet and one we have not previously mentioned,
Ideogramic UML7[8]. This last was based on gesture recognition to transform
rough gestures into formal UML diagrams and thus enable interactive learning.

At EduSymp 2009, Moisan and Rigault reported[12] on experience teaching
UML to different audiences, and complained in particular about their experiences
with tools (in general: they had not prescribed any one tool to their students).
Much of what they say is not specific to education, but they do discuss the choice
of what kind of use of UML to teach and how this is affected by tool use; for
example, they comment that the tools their students used made it difficult to
refactor designs.

In 2011 at CSEE&T, Lethbridge et al presented the use of Umple® as a
modelling tool [11] in various classes. Umple was shown to improve the grades
students achieved, and helped them produce better models. Umple allows mod-

2 http://minimuml.cs.vt.edu/

3 http://violet.sourceforge.net

4 http://www.umlet.com/

® https://wiki.gnome.org/Dia

5 http://argouml.tigris.org/

" http://freecode.com/projects/ideogramicuml
8 http://cruise.eecs.uottawa.ca/umple/

elling both textually and visually, supporting UML class diagrams and state
machines. Umple was designed for the educational context and enables students
to build complete systems starting with a model and add code to the model
to create a complete system. It is lightweight, and can be used on the web, in
Eclipse or on the command line. Students can use Umple with C++4, Java, PhP
and various other languages; they can edit UML diagrams or the textual form
of Umple. Umple can also generate yUML, mentioned below.

Also writing in 2011, Kuzniarz and Borstler considered difficulties in the
teaching of modelling [9], and commented, like others before them, that using
a UML tool designed for professionals can be problematic: “Those tools rarely
support easy mechanisms for consistency checking and most of them have a
very steep learning curve.” They mentioned two tools that had been specifically
developed with the needs of education in mind: StudentUML[14], which aimed
to help students understand consistency between class and sequence diagrams,
by enforcing it during development, and Violet, both mentioned above.

In 2012 the same authors (Kuzniarz and Borstler) reported [2] on an analysis
of computing curricula, and on a survey of people involved in teaching modelling
that gathered information on 12 modelling courses (81 courses in total). The
focus of the paper is not specifically on tools and it says little about them. On
the one hand they reported respondents’ feelings that better tools for teaching
modelling were needed, and on the other, tools appeared in a short list of topics
that respondents considered least important.

Stikkolorum et al demonstrated their game for learning software design ‘The
Art of Software design’ [17] which was actually a UML tool-like application with
a small subset of UML. In [18] they suggest exploring using such a tool to train
students’ abstraction skills.

Coming right up to date, relevant work in MODELS 2013 included [1] which
argued that modelling, indeed model-driven engineering, should be taught from
a relational database point of view. The authors describe their move away from
Eclipse MDE tools, which they had found too heavyweight in earlier teaching,
towards a home-made framework they call MDELite based on Violet (mentioned
above) and two other lightweight UML tools not intended specifically for teach-
ing, UMLFactory”? and yUML!.

3 Our experience

In this section we present our own experience in teaching courses that focus on
object oriented design and modelling, before drawing out common themes and
differences that relate to tool use.

Table 1 summarises the key information about the courses, which are then
described in separate subsections named after their authors below.

9 http://umlfactory.com/
0 http://yuml.me/

s1oygne oy} Aq Jysne) A[ualind s8sInod jo Arewwing T a[qe],

uedep
‘A3o10unda],
“wo)sAS JO 289[[0)
82002 peppequs 10y 3urjspowt OO 8 9 £0N'7oN rwrRANYO, 9¢
ueder ‘989[[0)
UOI1eONPH
TOISAS [ROTUTOAT,
“puIoge3prig pappaquie 10} 3urfppowt QO Lyl 0% 00 nysndy 9
TINN AyrszoATU()
TB1S 0010y SUepnig SuLLaUIUY 2IeMIJOG 04T ac [49)8! uoptey g€
uopomg ‘"ATU()
"Aposdeyy sanquerjon)
[euoney NdI ' USISOP USALIP [OPOIN 0ct1 08 ¢O[l pue smowRynH RS
SpuRISION
oy I, ‘ondey
‘Sureourduy sjuemwaImboy 08 0¢ 9T, ‘Se0usIdg
‘01 WSipered [ensiA “Sui[[ePOIN TN JO sd1seq 00T 0¢ D0 paddy 10§ 'n g€
"o3parmouy HS JIseq
pue eaep gurmumsse ‘ussep OO pue pue3008
‘PejyepURW SUON TN Ul SUI[[PPOW [30q 03 01ju] 00T 0¢ €DN ‘ySmquipy ‘0 Ve
‘sure)yed uSisep pue SULOAUISUSD
UDALIP-[opow ‘A}I[ide uo siseyduro
ue [IIM SULIOOUISUS 9IRMIJOS JO epeur))
-osdrpory] “eaer ‘ordmrn wmajoads [N oY} 0} UOIONPOIJUT 0¥¢ czl1 o0 ‘eme))) N ee
" (NAS "8°9) s[001
JuowrdoreAsp IoyjIng
‘(yutogsores) jiomoure.y
urewop uoryesrdde ‘(eourULUIRUT O} SISATRUR
‘(pepusttrooal asdro) wolf) 30aloid Surreys-yiom AueuLiar)
RAR[‘TIN[) MeI(] OISR\ e ul Juetdo[pAsp a1eMIJOS 08T 0S% 9N ‘uepsax(] NI s
‘[ousd pue reded
U)m Surepowt ‘(uresAs ‘sure}jyed uBisep pue
Surures[-9) jewo)eid earf Yym Jurwmerdord OO ‘TINN
‘(pepustitrooer Ul (USISEp pue sIsATeur) Sul[[epowt Aueurior)
on[e) ear[QQ ‘SUMPAUISUG dIBMYOG 0 0IYU] 08T 0s€ N ‘uepsaI(N, (RS
(s1p) y10M SjuapN)S (5d/mn) UOI}098
1007, 9SIN0D JO dInjeN poyadxy ou xoxddy TedX AYISIOATU) 299G

3.1 Marion Scholz

At the Vienna University of Technology, we offer two courses on the topic of
modelling, Introduction to Object-Oriented Modelling (OOM) and Model Engi-
neering (ME).

OOM OOM is designed for students in their second semester who have already
learned a little bit of programming and object-oriented concepts. The course is
awarded 3.0 ECTS! points which implies an overall student effort of 75 work-
ing hours. Each year, about 400 students attend the course. In OOM we teach
modelling basics by introducing syntax and semantics of the following UML 2
diagrams: class and object diagram, sequence diagram, state diagram, activity
diagram, and use case diagram. The course consists of lecture videos, demo ses-
sions, a practical part and three exams. In the lecture videos we explain the
syntax and semantics of the considered UML 2 diagrams. In the corresponding
demo sessions practical examples for each taught diagram type are demonstrated
and questions are answered. For the practical part the students are divided into
groups of about 30-35 people. Each group meets six times during the semester
for so-called “lab sessions” in order to discuss solutions to exercises. Three ex-
ams assess whether the students have reached the learning goals, i.e., if they
understand the theory and are able to apply it to small real world problems.
Additionally, we offer various e-learning exercises in the form of multiple-choice
questions the students can voluntarily use to test their knowledge.

Because 75 hours is such a short time, we do not use any tools for modelling,
S0 as to ensure that the students concentrate on the syntax and semantics of
UML instead of putting a lot of effort into understanding a tool.

Advanced Model Engineering In addition to OOM, we offer an advanced Model
Engineering (ME) course consisting of a lecture and a lab part. The course
is obligatory for masters students in the business informatics curriculum and
optional for masters students of the computer science curriculum. Overall, about
150 students attend ME each term. More than half of the students are in the
computer science curriculum.

The goal of this course is the elaboration of basic concepts of model-driven
software development. As the course is attended by masters students only, we
presume multiple skills and experiences in object-oriented modelling, object-
oriented programming, data modelling, and data engineering, as well as in soft-
ware engineering. The lecture and the lab are credited with 6.0 ECTS points,
which allows us to expect the students to spend about 300 hours of work for this
course.

As indicated by its name, during the lecture the different concepts, tools, and
practical approaches from the field of model engineering are examined including
meta-modelling, model transformation, code generation, and concrete syntax
specifications (textual and graphical).

1 ECTS: European Credit Transfer System. One credit stands for 28 study hours.

In the accompanying lab the students are given practical assignments chosen
from the topics of this lecture. The final output of the lab part is a model-driven
development environment comprising self-designed metamodels, model transfor-
mations and code generation facilities for producing running applications for
a particular domain. We emphasise that the students gain practical experience
with state-of-the-art MDE frameworks. The frameworks used are EMF for meta-
model development, Xtext for developing textual concrete syntaxes, ATL for
defining model transformations, and Xtend for developing code generators. To
overcome tooling issues, we provide a dedicated Eclipse bundle comprising all
necessary plug-ins, as well as tutorials, videos, and forum support for explaining
how to use the different plug-ins.

3.2 Birgit Demuth

At the TU Dresden, undergraduate students have to pass two consecutive oblig-
atory software engineering courses:

— Software Engineering (introductory course)
— Software Project Course

The big challenge for both courses is their large-scale character with a high
number of students.

Software Engineering Course: At the beginning we expect more than 450 stu-
dents, however we meet “only” up to 350 students in lectures and in the exercise
course. At the end of the course around 250 students take part in a written
exam.

We assume basic skills and first experience in procedural programming, es-
pecially using the C programming language.

The course is offered for students in their second semester which is 15 weeks
long. In each week students attend one lecture (90 minutes) and one exercise
(tutorial, 90 minutes). The total effort is assumed as 180 hours including the
preparation of the exam.

Basically our teaching approach includes modelling with UML and program-
ming with Java. Students are introduced to object-oriented analysis (OOA) and
object-oriented design (OOD) including using selected design patterns as well
as to object-oriented programming (OOP) including UML2Java transformation.
The main topics in the course are the following:

— Software engineering overview and software development processes

— OO paradigm (thinking in objects/CRC card method, OO programming
fundamentals)

— OOA (requirements specification, static and dynamic modelling with UML)

— OOD (software architecture, refined static modelling with UML)

— OOP (implementation of UML models with Java focusing on data structures
(Java Collection framework) and on Generics.

— Reuse in OOD (design patterns and frameworks versus class libraries, testing
with JUnit)

— Overview to architecture of interactive systems and graphical user interfaces

— Introduction to project planning, preparing the students for the following
software project

In teaching UML, we consider use case, class and object, state chart, sequence
and activity diagrams.

In our earlier didactic approach we structured lectures and exercises along
the lines of the “Waterfall approach”. Though we started after an overview of
the software engineering discipline with an introduction to the idea of object-
orientation, we continued with modelling (OOA and OOD) before we taught
OOP with Java and reuse in OOP. It should be noted that we understand the
Waterfall approach not as development methodology but as teaching methodol-
ogy for understanding the software life cycle. Because we observed that students
do not really understand modelling until they have practised object-oriented pro-
gramming we decided to change the didactic approach by reordering the main
teaching topics. That way we now introduce the students to OOP with Java
at the beginning of the course and motivate them to solve programming tasks
of increasing complexity in parallel to the modelling topics of the course. Be-
ginning with teaching the OO basics in Java we already visualise Java code by
UML class, object and sequence diagrams. We call this teaching philosophy the
“UMLbyExample approach”. Programming/modelling examples range from an
object-oriented Hello World program (HelloLibrary example [5]) to 3-page Java
programs that contain implemented design patterns. The widely used introduc-
tory Java program “Hello World” is considered harmful because it communicates
nothing about object-oriented thinking. Using the HelloLibrary example we ex-
plain the concept of classes, objects, encapsulation and messaging as well as show
their representation in Java and UML. Besides first steps in object-oriented pro-
gramming, we practice the CRC card method to learn object-oriented thinking.
Just for inexperienced programmers, this method is a way to teach them the
concepts of objects outside of computers. During the OOP lectures and exer-
cises students need only “read” UML diagrams as graphical representations of
the semantics of Java classes. So they learn from scratch to “see” OO programs
as models.

We recommend Java beginners to work with BlueJ before they later switch
to a professional IDE such as Eclipse. Eclipse is used only for programming, not
for modelling, but the BlueJ!? tool shows a first UML sketch of the Java code
automatically.

Beyond that, we offer students the possibility to test their Java exercise
programs by using an e-learning environment (Praktomat!?) that we customised
and installed for our students. We start modelling with paper and pencil, and
on the blackboard. Later we recommend advanced students to work with the

2 http://bluej.org/
13 https://praktomat.inf.tu-dresden.de/

powerful UML tool MagicDraw UML'. MagicDraw supports several modelling
languages (i.e. UML, BPMN, SysML, etc.), can be used for metamodelling and
has features such as UML profiles and OCL support.

Basically we expect that our university students are able to familiarise them-
selves with programming and modelling tools. In lectures we rather focus on
teaching concepts than practical skills.

As explained above, we changed our teaching methodology to the UML-by-
Example approach, with which we achieved better results in students’ under-
standing of modelling and programming.

A UML tool which provides a more comfortable support for the configura-
tion of modelling functionality (OOA, OOD, OOP, UML subsetting) would be
helpful.

The large-scale software engineering course is supervised by one lecturer and
requires the assignment of student tutors who attend to student exercise groups
of up to 30 students in each group. The lecturer is in charge, supervising the
student tutors.

Software project course All students who passed the introductory software en-
gineering course have also to graduate the software project course. Due to the
relatively low success rate of the students in the introductory course, typically
around 200 students every year (third semester) have to be managed in their
software projects.

Basically we only admit students to this course if they have demonstrated, in
the introductory course, that they have basic skills in modelling and program-
ming [6].

The student effort is the same as in the introductory course, that is, 180
hours. However, the effort is more concentrated: 15 hours per week distributed
over 12 weeks, with a hard deadline for the student software projects.

In the project course students have to implement a middle size applica-
tion in a work-sharing software development process. While students practice
modelling-in-the-small in the introductory course they have to work with mod-
els throughout the waterfall-driven development life-cycle in a software project,
starting with a textual requirement specification and finishing with a presen-
tation of the tested and deployed application (programming-in-the large and
modelling-in-the-large). A further challenge in the students’ projects is the reuse
of a domain-specific Java framework.

Students need to develop a lot of complex skills. These include technical
skills in object-oriented software development, but also social skills, especially
how to collaborate with other developers as part of a team working towards
a large and complex software system. To acquire these skills, students need
hands-on development experiences; we believe these are best delivered through
a team-oriented project course. This course must be both sufficiently challenging
and achievable within the limited time available. In our special situation (large
numbers of students supervised by small numbers of tutors) an important further

' http://www.nomagic.com /products/magicdraw.html

requirement is scalability: different projects should be easily comparable while
allowing for different tasks for different teams to reduce the risk of plagiarism.
The solution that in our experience satisfies all these requirements is to use an
application framework for an everyday application domain. We decided to choose
sale (web) applications for such a domain.

We have developed SALESPOINT?!® [20], a Java-based framework that un-
derlies most of our project courses in Dresden and at the Universitat der Bun-
deswehr in Munich. SALESPOINT is helpful for teachers to create many different
tasks (sales applications) for large-scale courses. The educational background in
detail is explained in [20]. Besides this application framework students use state-
of-art software development tools of their own choice such as Eclipse, SVN,
MagicDraw UML or another UML tool.

SALESPOINT has been used and maintained successfully since 1997. We
believe it to be applicable for computer-science undergraduate project courses
in a variety of educational contexts.

In an empirical study we evaluated the software project course in 2012 by
metrics and qualitative data in detail and reported the results in [6]. We de-
tected significant differences between students of different qualification in their
basic skills and their interest in software development. However, we could also
show that our teaching approach leads in most cases to a good program qual-
ity. An important lesson learned in earlier years was that a hard deadline in a
student project course significantly helps project teams to finish their projects
successfully.

Comprehensible and well-structured tutorials and documentation of the tools
used are an important issue for their acceptance by the students in their devel-
opment work.

As in the case of our large-scale software engineering course, and due to the
limited resources at the university, the project course requires the assignment of
student tutors who attend to the project teams of five or six students per group.
The challenge for a student tutor is that he has to fulfil two roles: he must be
software consultant for the student team as well as customer for the project
task. The responsible lecturer is in charge to supervise the student tutors in a
close-mesh and intensive way.

3.3 Tim Lethbridge

Course SEG2105 at the University of Ottawa This is a second-year course taught
to all majors including as a required course in Computer Science, Software En-
gineering and Computer Engineering, and as part of a minor taken by students
in many other programs of study in engineering, business, sciences and arts. 125
students took course in the autumn of 2013.

Upon entry into the course, students will have normally taken two program-
ming courses with Java as main language, and have received a very basic intro-
duction to UML class diagrams.

15 http://www.salespoint-framework.org/

The course involves a total of 120 hours of student work, spread over 15
weeks. Students who complete this course may then take more specialized second-
year and third-year software engineering courses such as Software Construction,
Software Requirements, Software Design, User Interface Design, and Quality
Assurance. SEG2105 provides basic coverage of each of these areas. Students
in the Software Engineering degree program then take a Project Management
course and a full-year capstone course in their fourth year.

Upon completion of SEG2105, the student is expected to be able to:

— Understand the basics of software engineering including requirements gath-
ering, specification, model-driven development, testing and agile processes.

— Design programs using imperative and object-oriented concepts

— Implement designs correctly and rapidly, with increased confidence

— Apply a various design patterns, frameworks and architectures in the design
of software

— Use UML effectively

— Conduct performance analysis experimentally

— Use tools for model-driven development, including for analysis of models and
generation of code

— Work more effectively on software development both individually and in
groups

The educational process is 'hybrid’ in that it uses a wide variety of modes:

— Traditional lectures, incorporating asking students oral questions frequently

— Having students watch videos of lectures or demonstrations

— Open ended design projects on the board, led by the professor

— Live use of the MDE tool Umple in the classroom

— Demonstrations of aspects of a live software project (Umple) whose MDE
and testing artefacts are all live on the web.

— Having students answer ’clicker’ questions frequently to assess their progress
and encourage concentration

— Programmed labs where the students follow a series of steps to modify soft-
ware and solve a software problem

— Design and programming homework

— An open-ended project

The latest best practices are emphasised. Real software projects are demon-
strated live. Students are given existing models and software to modify, rather
than starting from scratch. A key aim is to convince students of the value of the
best practices, so they deeply appreciate them, rather than merely “telling them
things”.

We use Eclipse as an IDE, but also encourage use of tools on the command
line and web-based tools. Umple is used as a tool for drawing UML diagrams,
writing models textually, analysing models and generating code. The program-
ming language is Java. Students are encouraged to explore and choose whatever
other tools they feel like.

The course has been fine-tuned after 22 years of teaching. In the early days,
modelling was taught following examples in various textbooks. Typical mistakes
of students were catalogued, leading to development of a curriculum that helped
students avoid such mistakes. I wrote a textbook [10] in 2001 for the course
that incorporated answers to all the many questions students had posed over
the years, and guidance to help readers avoid all the misconceptions and wrong
answers I had noticed.

I long ago gave up on commercial modelling tools because they either have
too big a footprint, are too complex to learn, don’t have the analytic features I
would like, or don’t generate proper code.

Starting in 2006 we developed Umple to provide exactly the features I believe
would most help students learning to model. Over successive years, as Umple
was enhanced, a series of new features was made available to students.

I introduce modelling using Umple stealthily, in the very first lecture, not
initially emphasizing to students that the tool I am using is called Umple. I
start by drawing class diagrams in Umple’s web tool, write a main method to
instantiate and manipulate the objects, and then compile and execute the result-
ing system. Students see this just as an extension of the programming they are
used to, but at the same time they learn modelling using class diagrams. As the
course progresses and students learn to create more complex class diagrams and
state diagrams, they always experience the practicality of their models through
Umple. They are given feedback by Umple about many aspects of model cor-
rectness, but the ultimate test is using the model to create a program that gives
the correct result.

In addition to code and diagrams, Umple can generate outputs such as SQL,
metrics and (in its latest version) the Alloy formal language. These are used
to teach students how their models can be the centre of software engineering.
And since Umple is written in itself, students come to appreciate that significant
systems can be written in a model-driven manner.

All aspects of the course are assessed in one form or another. The following
are the assessments:

Exam questions (multiple choice and modelling); 2 exams: 60% total
— Lab reports (in groups of two, involving IDE, Java and Umple use): 15%

Modelling assignments (involving tool use, but they can choose the tool):

10%

— Participation (in labs, and answering questions in class; includes use of tools
in certain labs that don’t require reports): 5%

— A project in groups of two, including modelling (again they choose the tool)

and a live demo: 10%

There are four teaching assistants, each in charge of about 30 students. They
run lab sessions and do assignment marking. This semester, two of the teaching
assistants are developers of the tools.

3.4 Perdita Stevens

Software Engineering with Objects and Components (at University of Edinburgh)
Typically 40-50 students take this course, which is principally a third-year un-
dergraduate course (so students typically aged 19-20) though a few MSc students
also take the course and we have a trickle of visiting students.

Prerequisites are: experience programming in a typed object-oriented lan-
guage (Java, for our own students); the content of an introductory software
engineering course which discusses software process engineering overall, intro-
duces very basic UML, and gives students practice building and contributing to
a sizeable open-source project.

This is a 10 point course, meaning a nominal 100 hours of student effort over
one semester. There are 15 or so lectures, spread over 10 weeks.

The intended Learning Outcomes are that students will be able to: “

1. Design simple object-oriented systems, making appropriate use of available
components;

2. Design simple software components, making sensible API decisions;

3. Evaluate and evolve object-oriented software designs, making use of common
design patterns if appropriate;

4. Create, read and modify UML diagrams documenting designs;

5. Discuss the use of modelling in software development, e.g. why and how
models of software can have varying degrees of formality.

» 16

The first part of the course is focused on the more technical modelling aspects,
teaching UML, though emphasising in class discussion pragmatic issues, espe-
cially the benefit and cost in different circumstances of modelling. The second
part encourages students to consider quality in design, discusses design patterns,
etc. Combining the two strands, the course ends by discussing model-driven de-
velopment (history, state of the art, future).

The delivery of the course is by a mixture of traditional lectures, in-class
group exercises, discussion, on-line videos and self-assessment, and required read-
ing. We aim to put the delivery of factual information into self-study material
wherever possible, reserving as much class time for interactive work as possible.
There are weekly tutorials (two groups of 10 taken by PhD students, plus a
drop-in taken by me). There is no other teaching assistance.

Students do not have to use a modelling tool in the course — modelling is typ-
ically done on paper/whiteboard. This works well, compared to similar courses
here in the past, in which students (especially the weaker or less experienced
ones) have tended to pour huge amounts of effort into learning a tool, to the
detriment of the learning objectives. Students who are interested, though, are
encouraged to try out tools of their choice, and the course discusses tool use.
Encouraging students to try out tools of their choice leads to the class as a whole
having a variety of experience, which leads to interesting discussions. We also

16 http://www.drps.ed.ac.uk/13-14/dpt/cxinfr09016.htm

observe that students who have chosen to try a tool for themselves are able to
analyse any deficiencies in it or difficulties with it fairly objectively: by contrast,
in courses that prescribe a tool, I have observed that some students blame the
course team for any problems, assume that we must have made a bad choice of
tool, and imagine that such problems would not arise in industry.

Summative assessment is entirely by exam, principally to encourage collab-
oration without fear of plagiarism in the formative exercises during the course.
The exam is done on paper. Performance in the exam last year was good — almost
all students were able to demonstrate competence with modelling, and many also
gave reasonable and thoughtful responses to questions aiming to elicit thought
about design quality. Feedback from students was also good; they especially liked
the “flipped” nature of the course.

3.5 Dave Stikkolorum

UML Modelling (at The Hague University of Applied Sciences) UML modelling
is a required first-year course that introduces all the basic diagrams of UML.
About 50 students participate in this course. No prior knowledge is assumed,
but in practice, they already have taken C programming before the UML course.

The workload of the course is 4 ECTS credits. There are 16 hours of lectures
and 16 hours of practicals spread over 10 weeks.

The course covers the basics of UML, i.e. use case diagrams, class diagrams,
sequence diagrams, activity diagrams, state machine diagrams. After this course
the student should be able to:

— know the basic UML diagrams and its notation

— translate coherent concepts to a diagram

translate a domain description to a domain model

create a coherent model, i.e. the different diagrams are consistent with each
other.

In the UML modelling course the case of a ‘goal keeper’ game is used. During
the lectures the different UML diagrams will be introduced to the students.
Students will discuss possible solutions with each other after they drawn their
solutions on the white-board. In parallel they practice their skills in modelling
another case in the individual practical assignments with the modelling tool.

The tool we use for the practical assignments is Visual Paradigm for UML!"
(version 10 at the moment of writing).

Assessment is by written exam and practical assignments (with use of the
tool).

Requirements Engineering (at The Hague University of Applied Sciences) Re-
quirements Engineering is a required second-year course which is followed by 30
students. Prior knowledge of UML modelling is assumed.

7 http:/ /www.visual-paradigm.com/

The workload of the course is three ECTS credits. We again offer 16 lectures
and 16 practical sessions spread over 10 weeks.

We cover problem analysis, requirements (elicitation, specification, valida-
tion, modelling as-is systems with UML, modelling to-be systems (concepts)
with UML.

In the requirements engineering course we discuss critical papers that reflect
on software quality, project organisation in relation to requirements. In the prac-
tical assignments students have to improve the specification of a real life software
project. UML is used for the specification in the requirements document.

Also in the practicals we use Visual Paradigm for UML.

Assessment is by written exam and practical assignments (with use of the
tool).

Technical Analysis and Design (at Chalmers and Gothenburg University) Tech-
nical Analysis and Design is a first-year course (second semester). About 80
students participate in the course.

Prior knowledge of object oriented programming is assumed. The work load
is 4.5 ECTS credits and spread over 10 weeks. During the course they will have
two hours of theory and two hours of supervised group work per week.

In the Technical Analysis and Design course students will be presented with
the different UML diagrams (Use Case, Class, Sequence and State) to be used
in analysis and design. Design is discussed with the use of well known design
patterns. Students will practice modelling with so called ‘mini problems’ with a
problem based approach (short cases). There is a emphasis on the execution of
models. Some of the executions are presented in the lectures.

We cover use case based requirements specification, object oriented analysis,
and object oriented design.

After the course the student should be able to:

— Understand the role of object oriented artefacts in the software process.

— Analyse a software system and its environment using Object Oriented tech-
niques.

— Design a software system using object oriented techniques.

— Abstract program code by the use of diagrams.

— Use contemporary tools for use case based analysis, object oriented mod-
elling, program visualization, and object oriented program design.

— Implement software using model driven development.

The tool is IBM Rational Rhapsody!®.
Assessment is by written exam plus practical assignments (problem based
learning, group work, use of tool).

Software Engineering (at Leiden University) Software Engineering is a second-
year course and visited by approximately 25 students.

8 http://www-03.ibm.com /software/products/en /ratirhapfami

Prior knowledge of programming and algorithms is required to follow the
course. Spread over 15 weeks students will follow lectures (two hours per week)
and participate in practical sessions (two hours per week). The course is rewarded
with six ECTS credits.

The course aims to enable students to function as a professional in a team
of Software Engineers, being able to deal with the practical problems that arise
as a result of the engineering process utilising a standardised tool set. We cover
the following subjects:

— Development processes

— System modelling using UML

— System architecting and design

— Quality assurance and testing

— Software project management

— Empirical research methods in Software Engineering

For the practical sessions no mandatory tool is used. Students can choose
their own tool. In the last couple of years StarUML' was popular.

In my experience two problems are typically most frustrating for students, across
all tools:

— Installation
— Complexity of the tool itself.

Visual Paradigm would be more useful to the courses if it could execute/simulate
models in an attractive way (with animations etc.).

IBM Rational Rhapsody would be more useful if it were cross platform, easier
to install and less complex.

StarUML seems not to be maintained any more. The latest version (5.0)
dates from 2005 and supports UML 2.0.

All three are limited in the feedback they give from a didactic point of view
(naming suggestions, important basic syntax). Although a model of course con-
sists of a consistent set of diagrams, when practising, one would like to have the
option to make one diagram instead of having to start a whole project.

None of the tools are aimed at students. It is good that they get familiar with
tools that are being used in industry, but because of that they are mostly too
complex (too much functions for the the initial goal: educate students). Maybe
it would be a good thing to be able to set the tools’ syntax sensitivity. Then a
student could start somewhat informal; when they make progress, the tool could
get more complex.

In my experience it is good that students see the effect of their models.
Execution of the models can make a difference at that point. IBM Rational
Rhapsody can do that. But because of the fact that installation is a problem, a
license is needed and one has to use OO programming to program the behaviour,
I cannot use it in other lectures.

9 http://staruml.sourceforge.net /en/

Visual Paradigm is not too complex and offers an academic license. Stu-
dents can download the cross platform software and use the license key for their
personal installation.

3.6 Seiko Akayama

We have studied modelling education using Model-driven development(MDD)
for novices. MDD can verify the accuracy of models and generate the source code,
which allows a programmer to reduce the development time required to check
the software so he or she can focus on the modelling process. Thus, modelling
should be taught with MDD because it allows students to acquire modelling
skills in a short period of time.

We conducted two trial courses in which we used Executable UML and a
Domain-Specific Modelling (DSM) language.

The aim of these courses is to facilitate the acquisition of the minimum skill
set required to create an object-oriented model in a short period of time. The
educational subjects are software novices.

These courses development systems are embedded software. The aim of the
main exercise is to develop an autotransport robot for a fictitious transportation
company. The development objective is a vehicle robot developed using LEGO
Mindstorms NXT.

Ezecutable UML course at Kyushu Technical Education College We conducted
Executable UML course for 20 first-year students. We used BridgePoint 2° as
the MDD tool for Executable UML. This course has three classes:

— Programming class (21 hours): fundamentals of embedded systems and de-
veloping the auto transport system programs as pair work using C language.

— Modelling class (28 hours): UML, MDD methods, modelling techniques and
developing the auto transport system (same system as programming class)
as pair work using Executable UML and MDD.

— PBL(project-based learning) class (98 hours): developing software by adding
new operations to the modelling class exercise as group work using Exe-
cutable UML and MDD.

A modelling knowledge test was conducted after the Modelling class and the
average scores for the correct answers was 75%. In PBL class, all teams managed
to complete 70% of the operations. Some students stated that “It is good that
I can check my model using a executable model” and “it is good to be able
to try the challenge many times.” Thus, they took time to address the model
refinement process. We found that this educational program based on MDD gave
the students the necessary experience to improve their modelling skills.

However, when students create a model using BridgePoint, they need a long
time to learn the action language that is required to define the state actions.
Therefore, learners find it difficult to focus on creating state machine diagrams
and class diagrams.

20 http:/ /www.mentor.com/products/sm/model_development /bridgepoint/

DSM language course In order to define actions easily, we have developed a
Domain-Specific Modelling (DSM) language for modelling education using the
social DSL platform “clooca”?!.

This platform allows making class diagrams and state machine diagrams. A
class diagram consists of classes and relations, while state machine diagrams
consist of states (including an initial state), event transmission states, events,
and actions.

We conducted the DSM language course for 6 second and third-year students
in Tokuyama College of Technology. This course is 8 hours. The subjects were
well versed with Java and UML. This course covered:

— How to use the MDD tool (clooca).

— MDD methods and modelling techniques.

— Developing the auto transport system (similar system to the one used in
the programming class of the Executable UML course) using a DSML and
MDD.

One issue was raised when using the MDD method for modelling education,
i.e., the students neglected the quality of the model because they were focused
on completing the functional aspects that could be evaluated with the MDD. In
these course, we addressed this issue by conducting a review with the teachers.
It is necessary to consider a supporting method for enhancing the quality of the
model from now on.

4 Discussion

In this section we record some of the dimensions on which our courses differ; the
designer of a new course will certainly need to consider each of these.

To start with, perhaps, the most basic issue for a paper with this title, and
one on which our own preferred solutions differ markedly:
Should we begin to teach modelling using a modelling tool or by pencil and paper?

Our courses differ in whether they introduce students to modelling through
working on paper (or whiteboards) or whether they use a pedagogically targeted
tool or a mainstream tool. Since industrial practice also differs — some practi-
tioners, particularly some of those in the agile development field, preferring not
to use tools even for professional modelling — this is not necessarily a purely
pedagogical issue. However, the tension that we, the authors, have found our-
selves most aware of in practice is that between, on the one hand, the advantages
of tool use, and on the other, the student effort needed to become productive
with a tool. Some of us have found tools designed specifically for pedagogy to
be helpful.

This is an issue that each course designer will need to consider. Some factors
that matter are: the amount of support available to students (e.g., tutorials,
timetabled labs); support available for the tool being considered, and especially,

2! http://www.clooca.com/

the level of familiarity that staff have with it; the timescale of the course; and
of course, the intended learning outcomes.

Another fundamental concern is:

How do we divide the conceptual landscape? Are we teaching design, modelling,
programming or a combination?

Most courses that involve modelling assume some knowledge of programming,
usually in an object oriented language, before the design or modelling course
begins. In Section 3.2 we described how an exception to this pattern found,
in fact, that it did not work well, and reordered its topics to introduce object
oriented programming before modelling. However, several of us have found that
illustrating OOP examples with UML models, and thus getting students to read
such models before they write them or are formally taught a modelling language,
works well. Thus, it is a point of consensus that students should know at least a
little OOP before they begin to model for themselves.

Analysis, design and modelling are intertwined activities in real software
engineering and conceptually they build on one another. This presents a ped-
agogical problem which we have solved in different ways, depending largely on
local constraints. In Section 3.1 we described a short course OOM in modelling
which focused on modelling rather than design, and was then followed by a more
advanced course in which these skills were combined. This is one pattern. In Sec-
tion 3.4 the slightly longer SEOC course, which combines both modelling and
design, demonstrates a different approach; just enough modelling is taught to be
able to discuss basic object oriented design issues.

This leads on to:

When students first carry out, or at least simulate, a software project that covers
the process all the way from requirements to delivering software, what develop-
ment process should they use? Should it be more rigid or more agile? What other
considerations are there?

There is room to disagree here on several aspects. What development process
is most important in the world of software that students may later enter? As a
separate question, what should we, as responsible academics, be encouraging?
Even if we agreed on these, we still have the question of what process will
work in an academic context. This is affected by local factors, including the
prior experience of the students and the closeness or otherwise of the students’
projects to real ones. A high ceremony process performed on a short, simple
project, for example, can give the erroneous impression that the ceremony is
always useless, when in fact it is simply inappropriate for such a small project.
Conversely an agile process may not work well if all the developers involve are
very inexperienced. Yet another factor is the presence or absence of other group
work in the students’ learning experience. For example, at Edinburgh students
undertaking the Software Engineering with Objects and Components (SEOC)
course are about to spend a significant portion of their time on a group project
which, however, is not object oriented and does not involve modelling. Since the
benefits and costs of group working are to a large extent independent of the

subject matter, this reduces the potential benefit, and student acceptability, of
including a group project in the SEOC course.

A further recurring theme is:

How can we encourage students to produce “good” models, and measure the qual-
ity of students’ software models?

Our students naturally tend to be more comfortable with programming than
with modelling. In the context of the relatively small, quick developments they
experience in universities, an error or infelicity in a model tends to be relatively
easy to repair at the code level, and there is little incentive for ensuring that
the model itself is of high quality. One way to tackle this is to teach using MDD
techniques from early on, but this requires a commitment to complex tools.
Another approach is to use a tool — Umple is the example discussed in this
paper — where code and model are developed simultaneously and have to be
consistent.

The quality of a model can be as basic as its adherence to the syntax of
the modelling language it is written in, or can refer to the quality of the design
that is modelled. Syntax checking is of course an incentive for using a UML tool
(although one has to be aware that tools do not always enforce syntax which is
genuinely correct, and students can be misled). Our courses differ in the extent
to which they mix design considerations with technical modelling ones; this is
something for each course designer to consider carefully, in the light of factors
such as the prior experience of the students, time and other resources available,
and intended outcomes.

5 Conclusions and future work

In this informal paper, we have aimed to record the substance of conversations we
had at the Educators’ Symposium of 2013, and afterwards, about our knowledge
and experience of tool use in teaching object-oriented modelling and related
skills.

Our experiences and discussions have given us the impression that educa-
tors nowadays still experience a range of difficulties with commercial and non-
commercial modelling tools. Features such as code generation or execution of
models do not seem to satisfy educators’ needs fully. Although educators see the
benefits for students in gaining experience with tools for their future professions,
the use of pen and paper can often seem a better solution when it comes down
to education in modelling, because, for example, of distraction caused by the
complexity of tools.

We are aware that we have only scratched the surface of what could be said
and only a small number of people participated in our discussion.

It would be interesting to conduct a wider study of relevant courses and of
how and why they differ in their tool use. This could yield a set of characteristics
for future (educational) modelling tools.

Acknowledgements

We thank the other participants in the Educators’ Symposium, especially Kenji
Hisazumi, for their participation and their comments before the writing of this

paper.

References

10.

11.

12.

13.

. Don S. Batory, Eric Latimer, and Maider Azanza. Teaching model driven engi-

neering from a relational database perspective. In Ana Moreira, Bernhard Schétz,
Jeff Gray, Antonio Vallecillo, and Peter J. Clarke, editors, MoDFELS, volume 8107
of Lecture Notes in Computer Science, pages 121-137. Springer, 2013.

Jiirgen Borstler, Ludwik Kuzniarz, Carl Alphonce, William B Sanders, and Michal
Smialek. Teaching software modeling in computing curricula. In ITiCSE-WGR 12
Proceedings of the final reports on Innovation and technology in computer science
education 2012 working groups, ITICSE-WGR ’12, pages 39-50, NY, USA, 2012.
ACM New York.

PJ Burton and RE Bruhn. Using UML to facilitate the teaching of object-oriented
systems analysis and design. Journal of Computing Sciences in Colleges, 19(3):278—
290, 2004.

Eric Crahen, Carl Alphonce, and Phil Ventura. QuickUML: a beginner’s UML
tool. In OOPSLA 02 Companion of the 17th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, OOPSLA
’02, pages 62-63, NY, USA, 2002. ACM New York.

Birgit Demuth. How should teaching modeling and programming intertwine? In
EduSymp ’12: Proceedings of the 8th edition of the Educators’ Symposium, New
York, NY, USA, 2012. ACM.

Birgit Demuth, Sebastian Goetz, Harry Sneed, and Uwe Schmidt. Evaluation of
students’ modeling and programming skills. In EduSymp ’13: Proceedings of the
9th edition of the Educators’ Symposium, 2013.

Javier Garzas and Mario Piattini. Improving the teaching of object-oriented design
knowledge. ACM SIGCSE Bulletin, 39(4):108, December 2007.

Klaus Marius Hansen and Anne Vintner Ratzer. Tool support for collaborative
teaching and learning of object oriented modeling. In Proceedings of ITiCSE 02,
pages 146-150, 2002.

Ludwik Kuzniarz and Jiirgen Borstler. Teaching modeling: an initial classification
of related issues. In Pre-Proceedings of the 7th Educators’ Symposium@MODELS
2011 — Software Modeling in Education, pages 65-70, 2011.

Timothy Lethbridge and Robert Langaniere. Object oriented software engineering:
practical software development using UML and Java. McGraw Hill, 2002.
Timothy Lethbridge, Gunter Mussbacher, and Andrew Forward. Teaching UML
using umple: Applying model-oriented programming in the classroom. In Proceed-
ings of CSEEET 2011, pages 421-428, 2011.

Sabine Moisan and JP Rigault. Teaching object-oriented modeling and UML to
various audiences. In Proceedings of EduSymp at MODELS’09, 2010.

Marian Petre. Uml in practice. In Proceedings of the 2013 International Conference
on Software Engineering, ICSE ’13, pages 722-731, Piscataway, NJ, USA, 2013.
IEEE Press.

14.

15.

16.

17.

18.

19.

20.

Ervin Ramollari and Dimitris Dranidis. StudentUML: An educational tool sup-
porting object-oriented analysis and design. In Proceedings of the 11th Panhellenic
Conference on Informatics (PCI 2007), pages 363-373, 2007.

Carsten Schulte and J Niere. Thinking in Object Structures: Teaching Modelling
in Secondary Schools. Pedagogies and Tools for Learning Object, 2002.

Perdita Stevens. Updating the software engineering curriculum at Edinburgh Uni-
versity. In Paul Klint and Jerzy T. Nawrocki, editors, Proc. Software Engineering
Education Symposium SEES’98, pages 188-193. Scientific Publishers OWN, 1998.
Dave R Stikkolorum, Michel RV Chaudron, and Oswald de Bruin. The art of soft-
ware design, a video game for learning software design principles. In Gamification
Contest MODELS, 2012.

Dave R Stikkolorum, Claire E Stevenson, and Michel RV Chaudron. Assessing
software design skills and their relation with reasoning skills. In EduSymp ’13:
Proceedings of the 9th edition of the Educators’ Symposium, 2013.

Scott A SA Turner, Manuel A Pérez-Quifiones, and Stephen H Edwards. mini-
mUML: A minimalist approach to UML diagramming for early computer science
education. Journal on Educational Resources in Computing (JERIC), 5(4), De-
cember 2005.

Steffen Zschaler, Birgit Demuth, and Lothar Schmitz. Salespoint: A java framework
for teaching object-oriented software development. Science of Computer Program-
ming, 79(0):189-203, 2014.

