
On-The-Fly Model Checking of Timed Properties
on Time Petri Nets

Kais Klai

LIPN, CNRS UMR 7030
Université Paris 13, Sorbonne Paris Cité

99 avenue Jean-Baptiste Clément
F-93430 Villetaneuse, France

kais.klai@lipn.univ-paris13.fr

Abstract. This paper deals with model checking of timed systems mod-
eled by Time Petri nets (TPN). We propose a new finite graph, called
Timed Aggregate Graph (TAG), abstracting the behavior of bounded
TPNs with strong time semantics. The main feature of this abstract rep-
resentation compared to existing approaches is the encoding of the time
information. This is done in a pure way within each node of the TAG
allowing to compute the minimum and maximum elapsed time in every
path of the graph. The TAG preserves runs and reachable states of the
corresponding TPN and allows for on-the-fly verification of reachability
properties. We illustrate in this paper how the TAG can be used to check
some usual timed reachability properties and we supply an algorithm for
extracting an explicit timed trace (involving the elapsed time before each
fired transition) from an abstract run of the TAG. The TAG-based ap-
proach is implemented and compared to two well known TPNs analysis
approaches.

1 Introduction

Time Petri nets are one of the most used formal models for the specification
and the verification of systems involving explicit timing constraints, such as
communication protocols, circuits, or real-time systems. The main extensions of
Petri nets with time are time Petri nets [18] and timed Petri nets [22]. In the
former, a transition can fire within a time interval whereas, in the latter, time
durations can be assigned to the transitions; tokens are meant to spend that
time as reserved in the input places of the corresponding transitions. Several
variants of timed Petri nets exist: time is either associated with places (p-timed
Petri nets), with transitions (t-timed Petri nets) or with arcs (a-timed Petri
nets) [23]. The same holds for time Petri nets [7]. In [21], the authors prove that
p-timed Petri nets and t-timed Petri nets have the same expressive power and
are less expressive than time Petri nets. Several semantics have been proposed
for each variant of these models. Here we focus on t-time Petri nets, which we
simply call TPNs. There are two ways of letting the time elapse in a TPN [21].
The first way, known as the Strong Time Semantics (STS), is defined in such a

manner that time elapsing cannot disable a transition. Hence, when the upper
bound of a firing interval is reached, the transition must be fired. The other
semantics, called Weak Time Semantics (WTS), does not make any restriction
on the elapsing of time.

For real-time systems, dense time model (where time is considered in the
domain R�0

) is the unique possible option, raising the problem of handling
an infinite number of states. In fact, the set of reachable states of the TPN is
generally infinite due to the infinite number of time successors a given state could
have. Two main approaches are used to treat this state space: region graphs [1]
and the state class approach [3]. The other methods [2,24,4,10,5,17,6,11] are
either refinements, improvements or derived from these basic approaches. The
objective of these representations is to yield a state-space partition that groups
concrete states into sets of states presenting similar behavior with respect to the
properties to be verified. These sets of states must cover the entire state space
and must be finite in order to ensure the termination of the verification process.

In this work, we propose a new finite graph, called Timed Aggregate Graph
(TAG), abstracting the behavior of bounded TPNs with strong time semantics.
A preliminary version of this work has been published in [13,14], where a coarser
abstraction of TPNs’ state graph is proposed. The key idea behind the approach
presented in this paper is the fact that the time information associated with
each node is related to the current path leading to this node. In particular, given
a node of the TAG, for each couple of enabled transitions ht, t0i, the value of
the earliest and latest firing times of t (reps. t0) the last time, in the current
path, it "met" t0 (resp. t) is stored in the node. This information , represented
by a matrix, allows us (1) to maintain the relative differences between the firing
times of enabled transitions (diagonal constraints), (2) to determine the fireable
transitions at each node, and (3) to compute dynamically the earliest and the
latest firing time of each enabled transition for each node of the TAG. This
new version of the TAG allows to preserve the timed traces of the underlying
TPN while the abstraction proposed in [13,14] is an upper approximation of the
set of traces of the underlying TPN. Moreover, one can compute the minimum
and maximum elapsed time through every path of the graph which permits on-
the-fly verification of timed reachability properties (e.g., is some state reachable
between d and D time units).

This paper is organized as follows: In Section 2, some preliminaries about
TPNs and the corresponding semantics are recalled. In Section 3, we define the
Timed Aggregate Graph (TAG) associated with a TPN and we discuss the main
preservation results of the TAG-based approach. In Section 4, we show how the
verification of some usual reachability properties can be accomplished on-the-
fly by exploring the TAG. Section 5 relates our work to existing approaches. In
Section 6, we discuss the experimental results obtained with our implementation
compared to two well-known tools, namely Romeo [9] and TINA [5]. Finally, a
conclusion and some perspectives are given in Section 7.

36 PNSE’14 – Petri Nets and Software Engineering

2 Preliminaries and Basic Notations

A TPN is a P/T Petri net [20] where a time interval [t
min

; t
max

] is associated
with each transition t.

Definition 1. A TPN is a tuple N = hP, T,Pre,Post , Ii where:

– hP, T,Pre,Posti is a P/T Petri net
– I : T �! N ⇥ (N [{+1}) is the time interval function such that: I(t) =

(t
min

, t
max

), with t
min

 t
max

, where t
min

(resp. t
max

) is the earliest (resp.
latest) firing time of transition t.

A marking of a TPN is a function m : P �! N where m(p), for a place p, denotes
the number of tokens in p. A marked TPN is a pair N = hN

1

,m
0

i where N
1

is
a TPN and m

0

is a corresponding initial marking. A transition t is enabled by
a marking m iff m � Pre(t) and Enable(m) = {t 2 T : m � Pre(t)} denotes the
set of enabled transitions in m. If a transition ti is enabled by a marking m, then
"(m, ti) denotes the set of newly enabled transitions [2]. Formally, "(m, ti) = {t 2
T | t 2 Enable(m�Pre(ti)+Post(ti))^ (t 62 Enable(m�Pre(ti))_ (t = ti))}. If
a transition t is in "(m, ti), we say that t is newly enabled by the successor of m
by firing ti. Dually, #(m, ti) = Enable(m�Pre(ti)+Post(ti))\"(m, ti) is the set
of oldly enabled transitions. The possibly infinite set of reachable markings of N
is denoted Reach(N). If the set Reach(N) is finite we say that N is bounded.

The semantics of TPNs can be given in terms of Timed Transition Systems
(TTS) [15] which are usual transition systems with two types of labels: discrete
labels for events (transitions) and positive real labels for time elapsing (delay).
States (configurations) of the TTS are pairs s = (m,V) where m is a marking
and V : T �! R�0

[{?} a time valuation. In the following, s.m and s.V denote
the marking and the time valuation respectively of a state s. If a transition t is
enabled in m then V (t) is the elapsed time since t became enabled, otherwise
V (t) = ?. Given a state s = (m,V) and a transition t, t is said to be fireable in
s iff t 2 Enable(m) ^ V (t) 6= ? ^ tmin  V (t)  t

max

.

Definition 2 (Semantics of a TPN). Let N = hP, T,Pre,Post , I,m
0

i be a
marked TPN. The semantics of N is a TTS SN = hQ, s

0

,!i where:

1. Q is a (possibly infinite) set of states
2. s

0

= (m
0

, V
0

) is the initial state such that:

8t 2 T, V
0

(t) =

⇢

0 if t 2 Enable(m
0

)
? otherwise

3. ! ✓ Q⇥ (T [R�0

)⇥Q is the discrete and continuous transition relations:

(a) the discrete transition relation:
8t 2 T : (m,V)

t�! (m0, V 0) iff:

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 37

8

>

>

>

>

<

>

>

>

>

:

t 2 Enable(m) ^m0 = m� Pre(t) + Post(t)
tmin  V (t)  tmax

8t0 2 T : V 0(t0) =

8

<

:

0 if t0 2 "(m, t)
V (t0) if t0 2 #(m, t)
? otherwise

(b) the continuous transition relation: 8d 2 R�0

, (m,V)
d�! (m0, V 0) iff:

8

>

>

>

>

<

>

>

>

>

:

8t 2 Enable(m), V (t) + d  tmax

m0 = m
8t 2 T :

V 0(t) =

⇢

V (t) + d if t 2 Enable(m);
V (t) otherwise.

The above definition requires some comments. First, a state change occurs
either by the firing of transitions or by time elapsing: The firing of a transition
may change the current marking while the time elapsing may make some new
transitions fireable. Second, the delay transitions respect the STS semantics: an
enabled transition must fire within its firing interval unless it is disabled by the
firing an other transition.

Given a TPN N and the corresponding TTS SN , a path ⇡ = s
0

↵
1�!s

1

↵
2�! . . . ,

where ↵i 2 (T [R�0

), is a run of SN iff (si,↵i, si+1

) 2! for each i = 0, 1,
The length of a run ⇡ can be infinite and is denoted by | ⇡ |. The possibly
infinite set of runs of SN is denoted [SN]. Without loss of generality, we assume
that for each non empty run ⇡ = s

0

↵
1�!s

1

↵
2�! . . . of a STS corresponding to

a TPN, there do not exist two successive labels ↵i and ↵i+1

belonging both
to R�0

. Then, ⇡ can be written, involving the reachable markings of N , as
⇡ = m

0

(d
1

,t
1

)�! m
1

(d
2

,t
2

)�! . . . where di is the time elapsed at marking mi�1

before
firing ti. In order to associate a run ⇡ of SN with a run of N , denoted P(⇡),
we define the following projection function, where ⇧ denotes the concatenation
operator between paths and ⇡i, for i = 0, 1 . . . , denotes the suffix of ⇡ starting
at state si.

P(⇡) =

8

>

>

>

<

>

>

>

:

s
0

.m if | ⇡ |= 0

s
0

.m(0,↵
1

)�! ⇧ P(⇡1) if ↵
1

2 T

s
0

.m(↵
1

,↵
2

)�! ⇧ P(⇡2) if ↵
1

2 R�0

^ | ⇡ |� 2
s
0

.m ↵
1�! ⇧ P(⇡1) if ↵

1

2 R�0

^ | ⇡ |= 1

3 Abstraction of a TPN State Space

3.1 Timed Aggregate Graph

In this subsection, we propose to abstract the reachability state space of a TPN
using a new graph called Timed Aggregate Graph (TAG) where nodes are called

38 PNSE’14 – Petri Nets and Software Engineering

aggregates and are grouping sets of states of a TTS. The key idea behind TAGs
is the way the time information is encoded inside aggregates. In addition to the
marking characterizing an aggregate, the time information is composed of two
parts:

– The first part of the time information characterizing an aggregate is a dy-
namically updated interval, namely (↵t,�t), associated with each enabled
transition t. This interval gives the earliest and the latest firing times of
any enabled transition starting from the corresponding aggregate. Either
the corresponding transition is fireable at the current aggregate and the sys-
tem must remain within the aggregate at least ↵t time units and at most �t

time units (as long as the other enabled transitions remain fireable) before
firing t, or t is not possible from the current aggregate (e.g. because of some
diagonal constraint), and the system must move to an other aggregate by
firing other transitions until t becomes fireable. In the latter case, the system
must consume at least ↵t, and can consume at most �t to make t fireable in
the future.

– The second part of the time information characterizing an aggregate is a ma-
trix, namely Meet, allowing to dynamically maintain the relative differences
between the firing times of enabled transitions (diagonal constraints). Given
two enabled transitions t

1

and t
2

, Meet(t
1

, t
2

) is an interval representing the
earliest and the latest firing times of t

1

the last time both t
1

and t
2

were
enabled (through the paths leading to the aggregate).

Before we formally define the TAG and illustrate how the attributes of an ag-
gregate are computed dynamically, let us first formally define aggregates.

Definition 3 (Timed Aggregate). Let N = hP, T, Pre, Post, Ii be a TPN.
A timed aggregate associated with N is a tuple a = (m,E,Meet), where:

– m is a marking
– E = {ht,↵t,�ti | t 2 Enable(m), ↵t 2 N^�t 2 N[{+1}} is a set of enabled

transitions each asssociated with two time values.
– Meet is a matrix s.t. 8t, t0 2 Enable(m), Meet(t, t0) = h↵,�i where ↵ (resp.

�) represents the earliest (resp. latest) firing time of t the last time t and t0

are both enabled before reaching the aggregate a.

As for the states of a TTS, the attributes of an aggregate a are denoted
by a.m, a.E and a.Meet. Moreover, a.Meet(t, t0).↵ (resp. a.Meet(t, t0).�) is de-
noted by a.↵m(t,t0)

t (resp. a.�m(t,t0)
t), or simply ↵m(t,t0)

t (resp. �m(t,t0)
t) when the

corresponding aggregate is clear from the context. We use also ↵m(t,t0) (resp.
�m(t,t0)) to denote ↵m(t,t0)

t (resp. �m(t,t0)
t) when the involved transition t is clear

from the context.
The E attribute of an aggregate a allows to compute the minimum and the

maximum time the system can elapse when its current state is within a. The
following predicates (� and �) compute these information for a given aggregate.

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 39

Definition 4 (Minimum and maximum stay times). Let a = hm,Ei be an
aggregate, the minimum and maximum time the system can stay at a are denoted
by �(a) and �(a) respectively, and are defined by the two following predicates:

– �(a) = minht,↵t,�ti2E(↵t)
– �(a) = maxht,↵t,�ti2E(�t)

The minimum (resp. maximum) stay time �(a) (res. �(a)) of an aggregate a
allows to encapsulate the continuous transition relation within a.

Given an aggregate a = hm,Ei and an enabled transition t (i.e., ht,↵t,�ti 2
E), two primordial issues must be achieved to define the semantics of the TAG:
(1) is t fireable from a?, and (2) if it is the case, how do we obtain the successor
aggregate by firing t from a. In the following, we answer these issues.

Definition 5. Let a = hm,E,Meeti be an aggregate and let ht,↵t,�ti 2 E.
Then, t is fireable at a, denoted by a t , iff 8ht0,↵t0 ,�t0i 2 E, ↵m(t,t0)

t  �m(t0,t)
t0

A transition t is fireable at an aggregate a iff there is no transition t0, that is
enabled by a, whose latest firing time was strictly smaller than the earliest firing
time of t the last time both transitions were enabled.

Now that the firability condition is formally defined, the following definition
computes the successor aggregate obtained by the firing of a given transition. In
this definition, the notion of newly (and oldly) enabled transitions is extended
to aggregates as follows: " (a, t) =" (a.m, t) and # (a, t) =# (a.m, t) for each
transition t enabled by a.m

Definition 6. Let a = hm,E,Meeti be an aggregate and let ht,↵t,�ti 2 E.
Assume that t is fireable at a (following Definition 5). The aggregate a0 =

hm0, E0,Meet0i obtained by firing t from a, denoted by a t a0, is obtained as
follows:

1. m0 = m� Pre(t) + Post(t)
2. E0 = E0

1

[E0
2

, where:
• E0

1

=
S

t02"(a,t){ht0, t0min

, t0
max

i}
• E0

2

=
S

t02#(a,t){ht0,↵0
t0 ,�

0
t0i} where:

– ↵0
t0 = ↵t0 � SCR(a, t0), where SCR(a, t0) =

Max(0, (Mint002Enable(a)(Min(�m(t0,t00),�m(t00,t0))� (↵m(t0,t00)
t0 � ↵t0))

– �0
t0 = �t0 �Max(0, (↵m(t,t0)

t � (�m(t0,t)
t0 � �t0))

• 8(ht
1

,↵
1

,�
1

i, ht
2

,↵
2

,�
2

i) 2 E0 ⇥ E0

Meet0(t
1

, t
2

) =

8

<

:

[t
1

min

, t
1

max

] if t
1

2" (a, t)
[↵

1

,�
1

] if t
1

2# (a, t) ^ t
2

2" (a, t)
Meet(t

1

, t
2

) if t
1

2# (a, t) ^ t
2

2# (a, t).

The computation of a successor a0 of an aggregate a by the firing of a transition
t is guided by the following intuition: If # (a, t) 6= ;, then the more the system
can remain at a, the less it can remain at a0 and vice versa. Otherwise, the time
elapsed within a0 is independent from the time elapsed within a. Thus, given a

40 PNSE’14 – Petri Nets and Software Engineering

transition t0 enabled by a0, two cases are considered: if t0 is newly enabled, then
its earliest and latest firing times are statically obtained by t0

min

and t0
max

respec-
tively. Otherwise, the more one can remain at a, the less will be the necessary
wait time at a0 before firing t0. The function SCR (Still Can Remain) allows to
compute the maximum remaining time at a under the hypothesis that, since t0

became enabled, it remains the maximum time at each encountered aggregate
before reaching a (note that this is different from �(a)). Thus SCR(a, t0) is ob-
tained by the following reasoning: given a transition t00 that is enabled by a, it
is clear that since the last time t0 and t00 became both enabled, the maximum
elapsed time can not be greater than Min(�m(t0,t00),�m(t00,t0)) (because of the
STS semantics which is used in this paper). The maximum time the system can
remain at a is then obtained by subtracting from this quantity the time that is
already spent during the path leading to a (i.e., (↵m(t0,t00)

t0 � ↵t0)). By analyzing
all the transitions enabled by a the function SCR takes the minimum values in
order to not violate the STS semantics rule. Similarly, the latest firing time of
t0 corresponds to the situation where, between the last time t and t0 were both
enabled and the current aggregate a, each fired transition is fired as soon as pos-
sible. Each time a transition is fired, its earliest firing time is subtracted from
the latest firing time of the old transitions. However, if the quantity of time that
must be subtracted from the latest firing time of t0 has already been subtracted
in between, then the latest firing time of t0 at a0 is the same latest firing time of
t0 at the aggregate a.

Concerning the Meet attribute, given two transitions t
1

and t
2

that are
enabled at a0, the value of Meet(t

1

, t
2

) is simply obtained by considering the
membership of these transitions to " (a, t) and to # (a, t). Finally, by considering
that 1�1 = 0, the previous definition allows to handle transitions having an
unbounded latest firing time.

p
1

p
2

t
1

[1; 2] t
2

[1; 1]

p
1

p
2

t
1

[0; 1] t
2

[2; 3]

p
1

p
2

p
3

t
1

[1; 1] t
2

[2; 2] t
3

[1; 1]

p
1

p
2

t
1

[1; 2] t
2

[2;1]

Fig. 1. Four TPN Examples

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 41

Now, we are ready to formally define the TAG associated with a marked
TPN N . It is a labeled transition system where nodes are timed aggregates.
It has an initial aggregate, a set of actions (the set of transitions of N) and
a transition relation. The initial aggregate is easily computed by considering
static information of the TPN while the transition relation is directly obtained
by Definition 5 and Definition 6.

Definition 7 (Timed Aggregate Graph). Let N = hP, T,Pre,Post , I,m
0

i
be a TPN. The TAG associated with N is a tuple G = hA, T, a

0

, �i where:

1. A is a set of timed aggregates;
2. a

0

= hm
0

, h
0

i is the initial timed aggregate s.t.:
(a) m

0

is the initial marking of N .
(b) E

0

= {ht, t
min

, t
max

i | t 2 Enable(m0)}
(c) 8t, t 2 Enable(a), Meet(t, t0) = [t

min

, t
max

]
3. � ✓ A⇥ T ⇥A is the transition relation such that:
8a 2 A, 8t 2 T , (a, t, a0) 2 � iff a t a0

Since each transition having an unbounded static latest firing time will al-
ways maintain the same latest firing time at each aggregate where it is enabled,
one can prove that the number of aggregates of a TAG is bounded when the cor-
responding TPN is bounded. Indeed, given a reachable marking m, the number
of different aggregates having m as marking can be bounded by the number of
possible values of its attributes. This number is finite because of the following
facts: (1) if the number of the transitions that are enabled by m is e, there are
2|e| possible subsets of old transitions; (2) for a given subset of old transitions
o, the number of possible arrangements of the old transitions regarding the en-
abling time is at most equal to | o |! (the 2n elements corresponding to the
orderings where two or more old transitions became enabled at the same time
are not considered); (3) given an arrangement t

1

 t
2

 · · ·  t|o|, the number
of possible values of ↵m(t

1

,t
2

)

t
1

is at most equel to
Pt

1

min

i=0

(t
1

max

� i+1). Similarly,
the possible values of ↵m(t

2

,t
3

)

t
2

is equal to
Pt

2

min

i=0

(t
2

max

� i + 1), etc. Thus, the
number of the possible different values of the matrix Meet, for this particular
arrangement, is obtained by ⇧ |o|

j=2

Ptj�1

min

i=0

(tj�1

max

� i+1); (4) for each enabled
transition t (with tmax 6= 1), there are at most

Pt
min

i=0

(t
max

� i + 1) different
intervals that can represent the earliest and latest firing times associated with t
in a given aggregate (i.e., ↵t and �t). When tmax = 1, the number of possible
time intervals associated with t is tmin + 1.

Figure 2 illustrates the TAGs corresponding to the TPNs of Figure 1. In
the three first TAGs, the marking associated with each aggregate is omitted
(it is the same as the initial one). The second column of the tables gives the
dynamic earliest and latest firing times of the enabled transitions (i.e., t

1

, t
2

and t
3

respectively). For sake of readability of the figures, the Meet attribute is
omitted.

Although the four models of Figure 1 are quite simple, they are representative
enough to explain the TAG construction. Indeed, in the first one the transitions

42 PNSE’14 – Petri Nets and Software Engineering

intervals overlap, while the case of disjoint intervals is considered through the
second and the third models. Finally, the fourth model illustrates the case of
an unbounded latest firing time. More significant examples are considered in
Section 6.

aggregate E
a0 {h1, 2i, h1, 1i}
a1 {h1, 2i, h0, 0i}
a2 {h0, 1i, h1, 1i}
a3 {h1, 2i, h0, 1i}
a4 {h0, 2i, h1, 1i}
a5 {h0, 0i, h1, 1i}

a0

a1

a2

a3

a4

a5t1 t2

t2

t1

t2

t2

t1
t1

t2

t1

aggregate E
a0 {h0, 1i, h2, 3i}
a1 {h0, 1i, h1, 3i}
a2 {h0, 0i, h2, 3i}
a3 {h0, 1i, h0, 3i}

a0

a1

a2 a3

t1

t2

t1

t1 t2

t1

aggregate E
a0 {h1, 1i, h2, 2i, h1, 1i}
a1 {h0, 0i, h1, 1i, h1, 1i}
a2 {h1, 1i}, h1, 1i, h1, 1i
a3 {h0, 0i, h0, 0i, h1, 1i}
a4 {h0, 0i, h2, 2i, h1, 1i}
a5 {h1, 1i, h0, 0i, h1, 1i}
a6 {h0, 0i, h2, 2i, h0, 0i}
a7 {h1, 1i, h2, 2i, h0, 0i}
a8 {h1, 1i, h0, 0i, h0, 0i}
a9 {h1, 1i, h1, 1i, h0, 0i}

a0

a1

a4

a9

a5

a2

a3

a6

a8

a7

t1

t3

t1

t1

t3

t2

t1

t2

t1

t2

t3

t1

t3

t2

t3

t3

aggregate marking E
a0 (1,1) {h1, 2i, h2,1i}
a1 (1,0) {h0, 0i}
a2 (1,0) {h1, 2i}
a3 (1,1) {h1, 2i, h0,1i}
a4 (1,0) {h0, 2i}

a0

a1

a2

a3

a4

t2 t1

t1

t2t1
t1

t1

Fig. 2. TAGs associated with TPNs of Figure 1

3.2 Preservation Results

In this section, we establish the main result of our approach: The TAG is an
exact representation of the reachability state space of a TPN. In fact, for each
path in the TPN (resp. in the corresponding TAG) it is possible to find a path in
the TAG (resp. TPN) involving the same sequence of transitions and where the
time elapsed within a given state is between the minimum and the maximum
stay time of the corresponding aggregate.

Theorem 1. Let N be a TPN and let G = hA, T, a
0

, �i be the TAG associated
with N . Then 8⇡ = m

0

(d
1

,t
1

)�! m
1

(d
2

,t
2

)�! . . . (dn,tn)�! mn
dn+1�!, with di 2 R�0

, for i =

1 . . . n+1, 9⇡ = a
0

t
1�!a

1

�! . . . tn�!an s.t. 8i = 0 . . . n, di+1

 �(ai), mi = ai.m
and 8i = 1 . . . n, di � ↵i�1ti

.

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 43

Proof. Let ⇡ = m
0

(d
1

,t
1

)�! m
1

(d
2

,t
2

)�! . . . (dn,tn)�! mn
dn+1�! be a path of N , with di 2 R�0

,
for i = 1 . . . n + 1. Given a path a

0

�!a
1

. . . , we denote by ↵it (res. �it), for
i = 0 . . . , the dynamic earliest firing time (resp. latest firing time) of a transition
t enabled by an aggregate ai.

Let us prove by induction on the length of ⇡ the existence of a path ⇡ in the
TAG satisfying the conditions of Theorem 1.

– | ⇡ |= 0: Obvious since m
0

= a
0

.m (by construction) and since d
1

is less or
equal to mint2Enable(m

0

)

tmax which is exactly the value of �(a
0

).
– | ⇡ |= 1 i.e., ⇡ = m

0

(d
1

,t
1

)�! m
1

d
2�!. It is clear that ↵

0t
1

 d
1

 �(a
0

). The fact
that t

1

is fireable at m
0

implies that it is at a
0

(8t 2 Enable(m
0

), t
1min 

tmax) and its firing leads to the aggregate a
1

satisfying a
1

.m = m
1

. Let
us assume that d

2

> �(a
1

) and let tm be the transition that is enabled
at a

1

and which has the smallest latest firing time i.e., �
1tm

= �(a
1

). If
tm is newly enabled at a

1

then d
2

should clearly be greater or equal to
�(a

1

). If tm 2# (a0, t1) then �
1tm

= tmmax � t
1min . Since d

1

� t
1min , then

tmmax � t
1min � tmmax � d

1

. The fact that d
2

> �
1tm

would imply that
d
1

+ d
2

> tmmax which is contradictory with the STS semantics. Thus d
2


�(a

1

).
– Assume that for any path ⇡ s.t. | ⇡ | n, there exists a path in the

TAG with the same trace and satisfying the above conditions. Let ⇡ =

m
0

(d
1

,t
1

)�! m
1

(d
2

,t
2

)�! . . . (dn,tn)�! mn
(dn+1

,tn+1

)�! mn+1

dn+2�! be a path of length n+ 1.
Let ⇡ = a

0

t
1�!a

1

t
2�! . . . tn�!an be the path in the TAG associated with the

n-length prefix of ⇡ (by the induction hypothesis). Then dn+1

 �(an).
Let us demonstrate that dn+1

� ↵nn+1

: It is clear that this is the case
when tn+1

2" (an, tn+1

. If tn+1

2# (an, tn+1

, let LastNewi(t) be the func-
tion that returns the greatest integer, smaller than (or equal to) i, such
that t 2" (al�1

, tl). If such a value does not exist, then t became enabled,
for the last time, at the initial aggregate a

0

and the function returns 0.
Let k = LastNewi(tn+1

), then ↵nn+1

= tn+1min
�

Pn�1

i=k SCR(ai, tn+1

).
The STS semantics implies that

Pn�1

i=k SCR(ai, tn+1

) �
Pn�1

i=k di+1

Thus
tn+1min

�
Pn�1

i=k SCR(ai, tn+1

) � tn+1min
�

Pn�1

i=k di+1

, and dn+1

> ↵ntn+1

would means that
Pn

i=k di+1

< tn+1min
which would prevent the firing of

tn+1

at mn. Thus, dn+1

 ↵ntn+1

. Let us show now that tn+1

is fireable at
an. Assume the opposite, this would imply that there exists a transition t
enabled by an such that ↵m(tn+1

,t) > �m(t,tn+1

). Let LastNewn(tn+1

) = l,
LastNewn(t) = k, and let us consider the three following cases:
1. l = k, then �m(t,tn+1

) = tmax and ↵m(tn+1

,t) = tnmin and the fact that
tnmin > tmax would prevent tn+1

from being fireable at mn which is not
the case. Thus, tn+1

is fireable at an as well.
2. l < k. In this case, ↵m(tn+1

,t) = tn+1min
�

Pk�1

j=l SCR(aj , tn+1

) and
�m(t,tn+1

) = tmax. Again, the STS semantics implies that
Pk�1

i=l SCR(ai,

tn+1

) �
Pk�1

i=l di+1

. Thus, tn+1min
�

Pk�1

i=l SCR(ai, tn+1

)  tn+1min
�

Pk�1

i=l di+1

, and ↵m(tn+1

,t) > tmax would means that
Pk

i=l di+1

< tn+1min

44 PNSE’14 – Petri Nets and Software Engineering

which would prevent the firing of tn+1

at mn. Thus, ↵m(tn+1

,t)  �m(t,tn+1

)

and tn+1

is necessarily fireable at an.
3. l > k. In this case, ↵m(tn+1

,t) = tn+1min
and �m(t,tn+1

) = tmax �
Pl�1

i=k Max(0, (↵m(ti+1

,t)�(�m(t,ti+1

)��it)). Knowing that
Pl�1

i=k Max(0,

(↵m(ti+1

,t) � (�m(t,ti+1

) � �it)) 
Pl�1

i=k di+1

(otherwise, the time spent
between k and some i  l is smaller than ↵m(ti,t), which is contradic-
tory with the recurrence hypothesis), tmax �

Pl�1

i=k Max(0, (↵m(ti+1

,t) �
(�m(t,ti+1

) � �it)) � tmax �
Pl�1

i=k di+1

. Thus, if tn+1min
> �m(t,tn+1

)

then tn+1min
> tmax�

Pl�1

i=k di+1

which prevent the firing of tn+1

at mn

(before firing t) which is not true. Thus, tn+1

is fireable at an.
Let us now demonstrate that dn+2

 �(an+1

). Assume the opposite,
and let tm be the transition enabled by an+1

which has the small-
est latest firing time i.e. �n+1tm

= �(an+1

). It is clear that if tm 2"
(an, tn+1

) then dn+2

 �(an+1

). Otherwise, if tm 2# (an, tn+1

) and
k = LastNewn+1

(tm) then �n+1tm
= tmmax �

Pn
i=k Max(0, (↵m(ti+1

,tm)

Again, since
Pn

i=k di+1

�
Pn

i=k Max(0, (↵m(ti+1

,tm), then �n+1tm


tmmax �
Pn

i=k di+1

, and the fact that dn+1

> �n+1tm
would imply that

dn+2

+
Pn

i=k di+1

> tmmax which is not allowed by the STS semantics.
Thus, dn+2

 �(an+1

).

Theorem 2. Let N be a TPN and let G = hA, T, a
0

, �i be the TAG associated
with N . Then, for any path ⇡ = a

0

t
1�!a

1

�! . . . tn�!an in the TAG, there exists
a run ⇡ = m

0

(d
1

,t
1

)�! m
1

�! . . . (dn,tn)�! mn in N , s.t. 8i = 0 . . . n, mi = ai.m,
8i = 1 . . . n, ↵i�1ti

)  di  �(ai�1

), and 8d 2 R�0

, mn
d�!, d  �(an)

Proof. Let ⇡ = a
0

t
1�!a

1

�! . . . tn�!an. We denote by ↵it (res. �it) the dynamic
earliest firing time (resp. the dynamic latest firing time) of a transition t at
aggregate ai, for i 2 {0, . . . , n � 1}. Let us demonstrate that the path ⇡ =

m
0

(d
1

,t
1

)�! m
1

�! . . . (dn,tn)�! mn obtained by the following algorithm satisfies the
requirement. The function LastNewi(t) returns the greatest integer l, smaller
than i, such that t 2" (al�1

, tl). If such a value does not exist, then t became
enabled, for the last time, at the initial aggregate a

0

and the function returns
0. We propose to proceed by construction and built a path ⇡ satisfying the
Theorem 2. We use the following algorithm to compute a set of delays di, for
i = 1 . . . n and prove that the a

0

.m(d
1

,t
1

)�! a
1

.m�! . . . (dn,tn)�! an.m is a run of the
TPN associated with the TAG.

Input: an abstract path ⇡ = a
0

t
1�!a

1

�! . . . tn�!an
Output: a concrete path ⇡ = m

0

(d
1

,t
1

)�! m
1

�! . . . (dn,tn)�! mn

begin
1 8i = 1 . . . n
2 di ↵i�1ti

3 8i = n� 1 . . . 1
4 k = LastNewi(ti+1

)

5 If(
Pi�1

j=k dj+1

< ti+1min
)

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 45

6 8k  j < i
7 dj+1

= Max(dj+1

,↵jti+1

� ↵j+1ti+1

)

8 If(
Pi�1

j=k dj+1

> ti+1

max

)
9 8k  j < i
10 dj+1

= Min(dj+1

,↵jti+1

� ↵j+1ti+1

)

11 8t 2 Enable(ai.m)
12 l = LastNewi(t)

13 If((k > l) ^ (t
max

�
Pk�1

j=l dj+1

< ti+1

min

))
14 8l  j < k
15 dj+1

= Min(dj+1

,↵jt � ↵j+1t
)

end
The intuition of the above algorithm is to build a concrete path ⇡ guided

by the abstract path ⇡. ⇡ is built by traversing ⇡ by backtracking. Initially
(lines 1 � 2), the stay time at each marking is set to the minimum i.e., as
soon as the desired transition is fireable. Then, starting from the last aggregate,
each time a transition ti+1

is fired from an aggregate ai (for i = 1 . . . n), the
firability conditions are ensured by (possibly) changing the time that is elapsed
before reaching ai. Roughly speaking, two conditions must be satisfied in order
to make the transition ti+1

fireable from ai (i.e., ai.m): (1) The first condition
is that the elapsed time, since ti+1

became enabled for the last time, belongs
to the interval [ti+1min

, ti+1max
] while the second condition (2), is that there is

no transition t enabled by ai that prevents the firing of ti+1

. The only way for
the last condition to be satisfied is that t has been enabled (for the lat time)
before ti+1

and the elapsed time between the moment t became enabled and
ti+1

became enabled is strictly greater than tmax � ti+1min
. The first condition

is treated at lines 5 � 10: If the elapsed time since ti+1

has been enabled for
the last time and the current state (ai.m) is strictly smaller than ti+1min

(lines
5 � 7) then it must be increased without exceeding ti+1max

. This is ensured by
the fact that, by construction of the TAG,

Pi�1

j=k(↵jti+1

� ↵j+1ti+1

) = Ti+1min

and
Pi�1

j=k(↵jt � ↵j+1t
)  ti+1max

for any transition t 2# (ai�1

, ti). Now, the
elapsed time since the last time ti+1

became enabled can exceed ti+1max
. This

can occur if, in order to ensure the firing of some transition tj (for j > i+1) this
time has been increased by the algorithm (lines 5�7). Thus, one has to decrease
this time while maintaining the firability of the transition tj . This is ensured by
lines 8 � 10. The last condition that could prevent ti+1

from being fireable at
ai. is that condition (2) is violated: the time elapsed between the moment some
transition t, enabled before, ti+1

, and the moment ti+1

became enabled is bigger
than tmax� ti+1min

. This can happen when the firing of some transition tj , with
j > i + 1, involved the increase of this quantity of time. This case is treated at
lines 11� 15, by fixing this problem while maintaining the future firability of tj .

Thus, the algorithm ensures the construction of a run of the TPN associated
with the TAG that has the same trace. It is clear that the values of di, for
i = 1 . . . n, respects the conditions of Theorem 2. Now, Theorem 1 ensures that
if mn

d�!, for some d 2 R�0

, then d  �(an). Finally, given d 2 R�0

s.t.,

46 PNSE’14 – Petri Nets and Software Engineering

d  �(an), the algorithm used to build ⇡ implies that the involved markings are
reached as soon as possible. By construction of the TAG, �(an) is the maximum
time the system can stay at mn.

Using the above results one can use the TAG associated with a TPN in order
to analyse both event and state based properties. In particular, we can check
whether a given marking (resp. transition) is reachable (resp. is fireable) before
(or after) some time.

4 Checking Time Reachability Properties

Our ultimate goal is to be able, by browsing the TAG associated with a TPN,
to check timed reachability properties. For instance, we might be interested in
checking whether some state-based property ' is satisfied within a time interval
[d,D), with d 2 N and D 2 (N [{1}), starting from the initial marking. The
following usual reachability properties belong to this category.

1. 9⌃
[d;D]

' : There exists a path starting from the initial state, consuming be-
tween d and D time units and leading to a state that satisfies '.

2. 8⇤
[d;D]

' : For all paths starting from the initial state, all the states, that
are reached after d and before D time units, satisfy '.

3. 8⌃
[d;D]

' : For all paths starting from the initial state, there exists a state in
the path, reached after d and before D time units that satisfies '.

4. 9⇤
[d;D]

' : There exists a path from the initial state where all the states,
that are reached after d and before D time units, satisfy '.

For the verification of time properties, an abstraction-based approach should
allow the computation of the minimum and maximum elapsed time over any
path. In the following, we establish that the TAG allows such a computation.

Definition 8. Let N be a TPN and let G = hA, T, a
0

, �i be the correspond-
ing TAG. Let ⇡ = a

0

t
1�!a

1

�! . . . tn�!an be a path in G. For each aggregate ai
(for i = 0 . . . n), MinAT⇡(ai) (resp. MaxAT⇡(ai)) denotes the minimum (resp.
maximum) elapsed time between a

0

and ai. In particular, MinAT (a
0

) := 0 and
MaxAT (a

0

) := �(a
0

).

Proposition 1. Let N be a TPN and let G = hA, T, a
0

, �i be the corresponding
TAG. Let ⇡ = a

0

t
1�!a

1

�! . . . tn�!an be a path in G. We denote by ↵it (resp.
�it) the dynamic earliest (resp. latest) firing time of a transition t at aggregate
ai, for i = 1 . . . n. Then, 8i = 1 . . . n, the following holds:

– MinAT⇡(ai) = MinAT⇡(ai�1

) + ↵i�1ti

– MaxAT⇡(ai) = MaxAT (ai�1

) +Mint2Enable(ai)
SCR(ai, t)

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 47

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

a
0

d

D

temps

Region
1

MaxAT < d

Region
2

MaxAT � d
MinAT  D
|= '?

Region
3

MinAT > D

Fig. 3. Reachability analysis on the TAG

Using the previous proposition, one can browse the TAG graph and compute
the minimum and maximum bounds of the elapsed time of the current path
on-the-fly. If a path of the TAG is considered as a counterexample for some time
reachability property, one can use the algorithm given in the proof of Theorem 2
in order to build a concrete counterexample. Here we do not give the detailed
algorithms for checking reachability properties on-the-fly, but we give the main
intuition. The TAG is represented as a tree which is partitioned into three re-
gions (see. Figure 3). The first region (Region

1

) contains the aggregates that
are reachable strictly before d time units. The second region (Region

2

) contains
the aggregates that are reachable between d and D time units and the last re-
gion contains the aggregates that are reachable strictly after D time units. In
case D = 1 Region

3

is empty. By doing so, the verification algorithms behave
as follows: only aggregates belonging to Region

2

are analyzed with respect to
'. Region

1

must be explored in order to compute the maximal and minimum
access time of the traversed aggregates, but Region

3

is never explored. In fact,
as soon as an aggregate is proved to belong to Region

3

the exploration of the
current path is stopped. Furthermore, one has to check for a particular kind of
Zeno behavior: if a cycle involving only aggregates whose minimal and maximal
access times are equal, then the exploration of the current branch is stopped.

For instance checking the formula number 1 is reduced to the search of an
aggregate a in Region

2

that satisfies '. As soon as such an aggregate is reached
the checking algorithm stops the exploration and returns true. When, all the
aggregates of Region

2

are explored (none satisfies ') the checking algorithm
returns false. Dually, the formula number 2 is proved to be unsatisfied as soon as
an aggregate in Region

2

that do not satisfy ' is reached. When all the aggregates
of Region

2

are explored (each satisfies ') the checking algorithm returns true.

48 PNSE’14 – Petri Nets and Software Engineering

Checking formulae number 3 and 4 is slightly more complicated. In fact,
checking formula number 3 is reduced to check if, along any path in Region

2

,
there exists at least one aggregate satisfying '. As soon as a path in Region

2

is
completely explored without encountering an aggregate satisfying ', the explo-
ration is stopped and the checking algorithm returns false. Otherwise, it returns
true. Finally, checking formula 4 is reduced to check that there exists a path
in Region

2

such that all the aggregates belonging to this path satisfy '. This
formula is proved to be true as soon as such a path is found. Otherwise, when
all the paths of Region

2

are explored (none satisfies the desired property), the
checking algorithm returns false.

5 Related works

This section reviews the most known techniques, proposed in the literature,
that abstract and analyse the state space of real-time systems described by
means of TPN. Abstraction techniques aim at constructing, by removing some
irrelevant details, a contraction of the state space of the model, which preserves
properties of interest. The existing abstraction approaches mainly differ in the
states agglomeration criteria, the characterization of states and state classes
(interval states or clock states), the kind of preserved properties.

The States Class Graph (SCG) [3] was the first method of state space repre-
sentation adapted to TPNs. A class (m,D) is associated with a marking m and
a time domain D represented by a set of inequalities over variables. The vari-
ables represented in the SCG are the firing time intervals of enabled transitions.
The SCG allows for the verification of some TPN properties like reachability,
boundness. However, it preserves the linear time properties only. To address this
limitation, a refinement of the method was proposed in [24], in the form of a
graph called Atomic States Class Graph (ASCG). The authors use a cutting of
state class by adding linear constraints so that each state of an atomic class has
a successor in all the following classes. With this improvement, they are able to
verify CTL⇤ properties on TPN, but with the limitation that the time intervals
of transitions are bounded. A new approach for the construction of atomic classes
was proposed in [4] and allows the verification of CTL⇤ without restriction on
time intervals. The state class approach is implemented in a software tool called
TINA [5].

The Zones Based Graph (ZBG) [10] is an other approach allowing to abstract
the TPN state space. This approach is inspired by the Region Graph (RG) [1]
technique, initially introduced for timed automata. In practice, the number of
regions is too large for an effective analysis, thus, the regions are grouped into
a set of zones. A zone is a convex union of regions and can be represented by a
DBM (Difference Bound Matrix) [8]. In [10], the clocks of transitions are directly
encoded within the zones. This allows to verify temporal and quantitative prop-
erties but not CTL⇤ properties. As for timed automata, a disadvantage of the
method is the necessary recourse to approximation methods (k-approximation
or kx-approximation) in the case where the infinity is used in the bounds of time

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 49

intervals. Lime and Roux also used TPNs to model system behavior [17]. They
used the state class approach to build a timed automaton that preserves the be-
havior of the TPN using as less clock variables as possible. The resulting model
is then verified using the UPPAAL tool [16]. However, even though UPPAAL
can answer about quantitative temporal properties, it can only verify a subset of
TCTL. Adding a new transition to measure time elapse was proposed in [6] to
perform TCTL model-checking in TPNs. Using this transition, TCTL formulae
are translated into CTL formulae. Then a ZBG for TPN is refined leading to a
graph called Atomic Zone Based Graph (AZBG) that preserves CTL properties.

Unlike the TAG, in all existing approaches, the time information does not
appear explicitly in nodes which leads to additional and costly calculations such
as: the manipulation of DBM to encode the zones (for zones based approaches)
and the classes (for state-class based approaches), the approximations to counter
the problem of unbounded transitions, conversion of graphs to timed automata
(using UPPAAL) to model check properties (etc). In our work the time infor-
mation is encoded within the aggregates allowing to check time properties just
by browsing the graph, which has a significant impact on the construction com-
plexity. The encoding of the timing information in the aggregates is such that
the minimum and maximum elapsed time in every path of the TAG can be
computed.

6 Experimental results

The efficiency of the verification of timed reachability properties is closely linked
with the size of the explored structure to achieve this verification. Thus, it was
important to first check that the TAG is a suitable/reduced abstraction before
performing verification on it. Our approach for building TAG-TPN was imple-
mented in a prototype tool (written in C++), and used for experiments in order
to validate the size of the graphs generated by the approach (note that the pro-
totype was not optimized for time efficiency yet, therefore no timing figures are
given in this section). All results reported in this section have been obtained
on a Mac-os with 2 gigahertz Intel with 8 gigabytes of RAM. The implemented
prototype allowed us to have first comparison with existing approaches with re-
spect to the size of obtained graphs. This section is dedicated to report, compare
and discuss the experimental results obtained with three approaches: SCG, ZBG
and TAG-TPN. Notice that we used the ROMEO tool to build both SCGs and
ZBGs. The built versions preserve Linear-time Temporal Logic (LTL) properties.
We tested our approach on several TPN models and we report here the obtained
results for three well known examples of parametric TPN models.

The considered models are: (1) a TPN representing a composition of pro-
ducer/consumer models by fusion of a single buffer (of size 5) [12], (2) the second
example (adapted from [19]) is the Fischer’s protocol for mutual exclusion, and
(3) the last is the train crossing example [4].

Table1 reports the results obtained with the SCG, the ZBG and the TAG-
TPN approaches, in terms of graph size number of nodes/number of edges).

50 PNSE’14 – Petri Nets and Software Engineering

SCG (with Tina) ZBG (with Romeo) TAG-TPN
Parameters (nodes / arcs) (nodes / arcs) (nodes / arcs)
Nb. prod/cons TPN model of producer/consumer
1 34 / 56 34 / 56 34 / 56
2 748 / 2460 593 / 1 922 740 / 2438
3 4604 / 21891 3240 / 15200 4553 / 21443
4 14086 / 83375 9504 / 56038 13878 / 80646
5 31657 / 217423 20877 / 145037 30990 / 207024
6 61162 / 471254 39306 / 311304 60425 / 449523
7 107236 / 907 708 67224 / 594795 106101 / 856050
Nb. processes Fischer protocol
1 4 / 4 4 / 4 4 / 4
2 18 / 29 19 / 32 20 / 32
3 65 / 146 66 / 153 74 / 165
4 220 / 623 221 / 652 248 / 712
5 727 / 2536 728 / 2 615 802 / 2825
6 2378 / 9154 2379 / 10098 2564 / 10728
7 7737 / 24744 7738 / 37961 8178 / 39697
8 25080 / 102242 25081 / 139768 26096 / 144304
Nb. processes Train crossing
1 11 / 1 4 11 / 1 4 11 / 14
2 123 / 218 114 / 200 123 / 218
3 3101 / 7754 2817 / 6944 2879 / 7280
4 134501 / 436896 122290 / 391244 105360 / 354270

Table 1. Experimentation results

The obtained preliminary results show that the size of the TAG is comparable
to the size of the graphs obtained with the ZBG and the SCG approaches.
The TAG achieves better performances than both SCG and ZBG for the train
crossing example, while it is slightly worse for the Fischer’s protocol and performs
similarly to SCG but worse than ZBG for the producer/consumer example.

This is an encouraging result because of the following reasons: The TAG
allows for checking timed properties while the SCG approach do not. Also, it
can be used for the verification of event-based timed properties while the ZBG
approach do not. An other difference consists in the fact that the verification of
timed properties can be achieved directly on the TAG, without any synchroni-
sation with an additional automaton (representing the formula to be checked),
nor any prior step of translation to timed automata. Moreover, using the algo-
rithm given in the proof of Theorem 2, and in the prospect of using the TAG
in order to check timed properties, one can exhibit (e.g., from a counterexam-
ple abstract path in the TAG) an explicit run involving the time spent at each
reached marking. Finally, we claim that the TAG is a suitable abstraction for
further reductions, especially the partial order reduction which is based on the
exploitation of the independency between the TPN transitions. The third exam-

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 51

ple of Figure 2 is a typical illustration of the gain one could have by applying
such a reduction.

7 Conclusion

We proposed a new symbolic graph for the abstraction of the TPN state space.
The proposed graph, called TAG, produces a finite representation of the bounded
TPN behavior and allows for analyzing of timed reachability properties. Unlike,
the existing approaches, our abstraction can be directly useful to check timed
logic properties. We think that our approach is more understandable than the
SCG and the ZBG approaches (the two main approaches for TPNs analysis since
three decades) and easily implementable. Another feature of our approach is that
each path of the TAG can be matched with a concrete path of the TPN model
where the elapsed time at each encountered state is exhibited.

Our ultimate goal is to use the TAG traversal algorithm for the verification
of timed reachability properties expressed in the TCTL logic. Several issues have
to be explored in the future: We first have to improve our implementation so
that time consumption criterion can be taken into account in our comparison
to existing tools. We should also, carry out additional experimentations (using
more significant use cases) to better understand the limits of our approach and
to better compare the TAG technique to the existing approaches. Second, we
believe that partial order reduction techniques can be used to reduce the size
of the TAG while preserving time properties but without necessarily preserving
all the paths of the underlying TPN. Finally, two challenging perspectives can
be considered in the future: (1) the design and the implementation of model
checking algorithms for verification of TCTL formulae, and (2), the extension of
our approach to timed automata.

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

2. B. Berthomieu and M. Diaz. Modeling and Verification of Time Dependent Systems
Using Time Petri Nets. IEEE Trans. Software Eng., 17(3):259–273, 1991.

3. B. Berthomieu and M. Menasche. An Enumerative Approach for Analyzing Time
Petri Nets. In IFIP Congress, pages 41–46, 1983.

4. B. Berthomieu and F. Vernadat. State Class Constructions for Branching Anal-
ysis of Time Petri Nets. In TACAS 2003, volume 2619 of LNCS, pages 442–457.
Springer, 2003.

5. B. Berthomieu and F. Vernadat. Time Petri Nets Analysis with TINA. In QEST,
pages 123–124, 2006.

6. H. Boucheneb, G. Gardey, and O. H. Roux. TCTL Model Checking of Time Petri
Nets. J. Log. Comput., 19(6):1509–1540, 2009.

7. M. Boyer and O. H. Roux. Comparison of the Expressiveness of Arc, Place and
Transition Time Petri Nets. In ICATPN 2007, volume 4546 of LNCS, pages 63–82.
Springer, 2007.

52 PNSE’14 – Petri Nets and Software Engineering

8. D. L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In Proceedings of the International Workshop on Automatic Verification Methods
for Finite State Systems, pages 197–212. Springer-Verlag, 1990.

9. G. Gardey, D. Lime, M. Magnin, and O. (h. Roux. Roméo: A Tool for Analyzing
time Petri nets. In In Proc. CAVÕ05, vol. 3576 of LNCS, pages 418–423. Springer,
2005.

10. G. Gardey, O. H. Roux, and O. F. Roux. Using Zone Graph Method for Computing
the State Space of a Time Petri Net. In FORMATS 2003, volume 2791 of LNCS,
pages 246–259. Springer, 2003.

11. R. Hadjidj and H. Boucheneb. Improving state class constructions for CTL* model
checking of time Petri nets. STTT, 10(2):167–184, 2008.

12. R. Hadjidj and H. Boucheneb. On-the-fly TCTL model checking for time Petri
nets. Theor. Comput. Sci., 410(42):4241–4261, 2009.

13. K. Klai, N. Aber, and L. Petrucci. To appear in a new approach to abstract
reachability state space of time petri nets. In To appear in 20th International
Symposium on Temporal Representation and Reasoning, TIME 2013, 2013.

14. K. Klai, N. Aber, and L. Petrucci. Verification of reachability properties for time
petri nets. In Reachability Problems - 7th International Workshop, RP 2013, vol-
ume 8169 of Lecture Notes in Computer Science, pages 159–170. Springer, 2013.

15. K. G. Larsen, P. Pettersson, and W. Yi. Model-checking for real-time systems. In
FCT ’95, volume 965 of LNCS, pages 62–88. Springer, 1995.

16. K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL: Status and Developments. In
CAV, pages 456–459, 1997.

17. D. Lime and O. H. Roux. Model Checking of Time Petri Nets Using the State
Class Timed Automaton. Discrete Event Dynamic Systems, 16(2):179–205, 2006.

18. P. M. Merlin and D. J. Farber. Recoverability of modular systems. Operating
Systems Review, 9(3):51–56, 1975.

19. W. Penczek, A. Pólrola, and A. Zbrzezny. SAT-Based (Parametric) Reachability
for a Class of Distributed Time Petri Nets. T. Petri Nets and Other Models of
Concurrency, 4:72–97, 2010.

20. C. A. Petri. Concepts of net theory. In MFCS’73. Mathematical Institute of the
Slovak Academy of Sciences, 1973.

21. M. Pezzè and M. Young. Time Petri Nets: A Primer Introduction. In Tutorial at the
Multi-Workshop on Formal Methods in Performance Evaluation and Applications,
1999.

22. C. Ramchandani. Analysis of asynchronous concurrent systems by timed Petri
nets. Technical report, Cambridge, MA, USA, 1974.

23. J. Sifakis. Use of Petri nets for performance evaluation. Acta Cybern., 4:185–202,
1980.

24. T. Yoneda and H. Ryuba. CTL model checking of time Petri nets using geometric
regions. 1998.

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 53

