
A backtrack-free process for deriving product family
members

Homero M. Schneider
1

Abstract.1 In this paper, we present a new approach for the
customisation of product families. It is based on a knowledge
framework for representing product families that combines a
generic product structure and an extension of the classical constrain
network model by the attachment of design functions to the
variables. We also present a method for deriving family members
from this framework, which consists of a two-stage process. First, a
solution to the constraint network is found which is consistent with
the set of customer requirements. Second, the solution is used to
transform the generic structure into a specific one corresponding to
a product family member that meets the customer requirements.
One major outcome of the design functions is the establishment of
instantiation patterns that guide the problem-solving process.
Moreover, if a few modelling conditions are satisfied, it can be
proved that finding solutions becomes a backtrack-free process. As
a practical example, this approach is used for the implementation
of a prototype configurator for a solar powered pumping system.

1 INTRODUCTION

Since the proposal made by Mittal and Frayman [1] to represent

product configuration as a CSP problem, many extensions have

been put forward to cope with the specificities of configuration

problems [2]. Moreover, to improve the efficiency of the product

configuration process, it is a practice to use knowledge about the

problem domain to guide the search process [3]. Following this

rationale, this paper presents an approach to derive members of a

product family that exploits the specificities intrinsic to this

concept.

It is well known that the design of a product family is a

“difficult and challenging task” [4], for it requires the development

of multiple products at the same time. However, after the product

family is designed, it should not be a surprise that the process of

deriving its members can be turned into a routine design task. This

claim follows from the fact that during the design process,

designers acquire a great amount of knowledge regarding the

product family architecture, how the variable aspects depend on

each other and their range of variability.

The approach presented in this paper is based on a knowledge

framework which combines two general models. A generic product

structure (GPS) that represents the product family architecture, and

a constraint network model extended with design functions (CN-F)

to complement the GPS in the definition of the product family

members. The CN-F model is an extension of the classical

constraint network (CN) model by the attachment of design

functions to its variables. The primary role of these functions is to

1 Centre for Information Technology Renato Archer, Campinas, Brazil,

email: homero.schneider@cti.gov.br

generate the values for the variables to which they are attached

during the customisation process. However, design functions are

also used to elicit the dependencies between the variables to form

dependency patterns.

In our approach, members of the product family are derived

from the knowledge framework as instantiations into two stages.

First, a solution to the CN-F model has to be found from the

customer requirements. This process is guided by dependency

patterns. Then, the solution obtained is used to transform the GPS

into a specific physical model that corresponds to a product family

member, one that meets the customer requirements.

Although the instantiation patterns can restrict the design space

to relatively few variables, they cannot avoid backtracking. Thus,

another important contribution of this work is the setting up of

modelling conditions such that if the CN-F model satisfies them,

the instantiation process becomes backtrack-free. These conditions

eliminate the sources of inconsistencies during the execution of the

instantiation algorithm proposed for the CN-F model.

In contrast to other approaches that claim to be backtrack-free

[5, 6], which typically resort to a pre-processing stage and to

computational power, our approach resort to the structuration of

the customization process of product families. As a result, it is

possible to implement very efficient configurators based on the

data flow principle.

As for the remaining of this work, in the next section we review

the related literature. In Section 3, we present the SPPS system,

which will be used along the paper as our practical example, the

solar powered pumping system. In Section 4, we introduce our

knowledge framework, by defining the elements of the GPS and

CN-F models. In Section 5, we introduce our method for deriving

product family members. First, we present our instantiation

algorithm. After that, we introduce the conditions for which this

algorithm is backtrack-free. Then, we present the method for

transforming the GPS into a specific product model. In Section 6,

we present the implementation of our prototype configurator.

Finally, in Section 7, we make our concluding remarks.

2 RELATED WORK

One early proposal to extend the CSP model was made by Mittal

and Falkenhainer [7], who proposed a dynamic constraint

satisfaction problem (DCSP) to deal with the fact that the set of

variables that are relevant for the solution of a configuration

problem may change dynamically during the problem solving. To

deal with the structural aspect of configuration problems, Sabin

and Freuder [8] proposed a composite CSP. In their approach, the

variables are allowed to represent an entire sub problem, such as

the constituent parts of the final product or the internal structure of

components. In [2], Veron et al. proposed to model the

configurable product as a tree with internal nodes representing sub-

configurable components and leaf nodes corresponding to

elementary configurable or standard components. The attributes of

the configurable components are represented as variables and each

component is associated to a state variable. The configuration

process works on two levels. First, the state variables are used to

manage the tree structure. Then, the CSP problem is addressed to

define the attributes of the active components. The user expresses

his choices by adding/retracting unary constraints.

The CSP approaches have been focused mostly on discrete

variables and binary constraints. However, in the configuration of

engineering products, it is quite common to have continuous

variables and constraint on multiple variables. Thus, Gelle et al. [9]

introduced local consistency methods to handle discrete and

numerical variables and in the same framework to address

engineering products represented as a CSP.

With a few exceptions, dependencies have been largely

neglected in product configuration approaches. In [10], Xie et al.

proposed the Dependent CSP. In this approach, the variables can

be related by dependencies or constraints and are divided into

independent and dependent by means of the relation of

dependency. The independent variables are assigned values from

their associated domains, while the values of the dependent

variables are assigned values from the values of the independent

variables through the relations of dependency. A solution is an

assignment to the variables such that all dependencies and

constraints are satisfied. The search for solutions is made by a

backtracking method of the type "backjunping". The updating of

values and the verification of constraints is organized by a directed

acyclic graph. This graph is defined based on the dependencies

between variables and of constraints in relation to the independent

variables. Heuristics are used to establish the order in which

variables are considered.

To avoid response delay and dead-ends associated to search-

based methods, some recent works resorted to a two-stage process,

by precompiling all the solutions using some form of efficient

representation. Although these methods still have to solve a hard

problem to find all the solutions, this is done offline and only once.

Then, the interactive part of the configuration process can be done

efficiently. For instance, Hadzic et al. [5] proposed a method to

compile all the solutions of the problem using binary decision

diagrams. Although they claim that the method has very good

practical results, depending on the size of the configuration

problem it may run out of space. A different pre-processing method

is proposed by Freuder et al. in [6]. Unlike other conventional

approaches that add constraints to the problem, thus making them

susceptible to space limitation, they remove values from the

domain of the variables to make their representation of the problem

backtrack-free. The disadvantage of this method is that solutions

are lost.

3 THE SOLAR POWERED PUMPING
PRODUCT FAMILY

At the core of a solar powered pumping system (SPPS) product

family, there is a water pump system and a photovoltaic (PV)

array, which provides power to the pump. To improve the pump

performance, a pump controller is used to condition the power and

to control the pump. A float switch (ST) is used to turn the pump

off when the water tank is full, and another switch (SW) is used to

turn the pump off when the water level at the well is low, thus

avoiding that it runs dry. The components of an SPPS are

connected by wires to transmit power and control signals. The

water is carried from the well to the tank through a piping system.

A battery bank may be added to the system if the customer requires

the system to have some autonomy, so that water may be pumped

at night or during heavily clouded days. A charge controller is used

to manage the charging of the battery bank.

Although a typical SPPS is composed of a few components, the

product family may have a very large number of variants. For

example, the water pump may have many options, each one

operating optimally within a narrow window of water head and

flux with a specified power, and the PV array can be configured in

many ways, based on the choice of the PV model and the

arrangement of the components.

Hence, configuring an SPPS to meet the customer requirements

and optimizing its performance and cost is far from trivial,

demanding a lot of expertise. This precludes most of the potential

customers of participating interactively on the decision making

along the configuration process, except for providing the

application requirements at the beginning of the process.

4 THE PRODUCT FAMILY KNOWLEDGE
FRAMEWORK

In the following subsections, we will present our knowledge

framework for representing product families. In this approach we

assume that the product family has already been developed.

However, with this framework we will abstract all the relevant

knowledge about the product family for deriving its members.

4.1 The generic product structure

The GPS is a modular architecture composed of component types,

which stands for classes of components with the same

functionality. In our approach, component types belong to four

possible categories: common/generic, optional/generic,

common/specific and optional/specific. Figure 1 illustrates

schematically the concept of component types and their

classification. A component type is specific if the corresponding

class has only one component. However, if the corresponding class

has two or more components, then the component type is generic.

Figure 1. Classification of component types

If all members of the product family have a component in the

corresponding class, the component type is common. Otherwise, if

at least one member of the product family does not have a

corresponding component in the class, it is optional. Note that the

component types form a partition on the set of components that is

used to derive all the members of the product family.

In Figure 2, it is shown the GPS for the SPPS product family.

The PV array, Pump system, Sensors, Wiring and Piping systems

are common component types, i.e., they are present in every

member of the SPPS product family. However, the Battery bank

and Charge controller are optional component types. The Well and

Tank sensors are assumed to be specific component types, i.e., they

do not vary among applications. All the other components are of

the generic type, i.e., they can vary among applications and have

two or more variants. It should be noted that, according to our

classification, to be a common component type in the product

family architecture does not imply that it is fixed. Actually, in our

example, most of the product family variability happens on the

common part of the GPS. Hence, although the optional components

in a product family are one main source of variability, another

important source of diversity can be the common part of the

product family GPS. This is the case only if it is composed of

generic components types.

Formally, we say that a GPS represents the architecture of a

given product family if and only if the architecture of each member

of that family is isomorphic to a substructure of the GPS and

collectively the members of the product family are coherent to the

classification of the component types on the GPS.

Hence, given a sample of SPPS, the GPS can be used to decide

which of them belong to the product family. On the other hand, the

GPS is not enough to determine which configuration of

components can lead to a member of the product family, and let

alone, which specific configuration will meet the requirements of a

given application. To achieve this goal, we combine the GPS with

the CN-F model.

4.2 The Constraint Network Extend with
Design Functions

The CN-F model used in our approach can be regarded as an

extension of the traditional CN model. It is defined by the tuple

(), where is a set of variables, is a set of constraints on

subsets of , and is a set of design functions (which will be

abbreviated as d-function), such that, every variable in has at

least one d-function attached to it that can generate its values. In

what follows, we will define each of these elements and show how

they apply to the SPPS product family in complement to the GPS.

Variables – Variations between the members of the product family

are identified by variables in . Consequently, these variables can

be mapped on the GPS. Their scope of variation can vary widely,

since they may be related from a specific feature to a whole

component. For example, the configuration of the PV array is

completely specified by three variables: PV module model, PV

modules in series and PV module strings in parallel. The pump is

associated only to the variable Pump model. The range of values

that can be assigned to a variable is called its domain. For example,

the domain for the variable Pump model is composed by the set of

pumps {HR-03, HR-03H, HR-04, HR-04H, HR-07, HR-14, HR-

20, C-SJ5-8, C-SJ8-7}.

Since all the variability of the product family is related to

optional and generic components, only these types of components

are associated with variables. These variables will be referred to as

output variables because after their values are assigned, a product

family member is specified. A special type of output variable is the

inclusion variable associated to optional component types (e.g.,

Battery inclusion). These are binary variables that define if the

component is included or not in the derived product.

However, variations can also be related to the application

environment. For the SPPS example, the amount of Daily water

needed, the Well yield, the Tank capacity, the System autonomy,

etc., are variables that express the customer requirements and are

referred to as input variables. Input and output variables are not

necessarily disjoint subsets of . Besides these two classes, the set

 may contain auxiliary variables, which are neither input nor

output variables. For example, the variable Total dynamic head is

defined in terms of input variables, and although it is an essential

variable for the choice of the pump system, it is not used to specify

directly any of the components in the GPS. Therefore, it is

classified as an auxiliary variable. In the SPPS example, we have

identified 32 mixed discrete and continuous variables. In Figure 3,

they appear as nodes of the constraint network, numbered from 1 to

Figure 2..The GPS for the SPPS product family

Figure 3. Constraint network for the SPPS product family

32. Some of these variables have been named explicitly within the

text. As it will be discussed below, for convenience, variables can

be grouped to form a composite variable. The encircled nodes in

Figure 3 represent composite variables.

Constraints – Constraints define how subsets of variables in are

related to each other, thus restricting the possible combinations of

values that can be assigned to them simultaneously. For example,

the following sample of constraints describes how the auxiliary

variable Total dynamic head is related to some variables in :

C7: Total dynamic head (22) is equal to the sum of the Water

level (1), Water drawdown (2), Tank elevation (6) and the

friction loss of the piping system.

C8: Total dynamic head (22) must be less or equal than the head

of the pump system (defined by the combination of the pump

and its controller).

C18: If there is a Battery inclusion (10), the Daily water (4)

requirement must be equal or less than 24 hours of pumping

with the maximum available Pump output flux (32) at the
required Total dynamic head (22).

Note that while the constraint C8 is defined over one variable,

the other two relate four variables. Actually, in our approach,

constraints can involve any subset of . To satisfy a constraint, the

values assigned to the variables in the expression defining it must

render the expression true. However, if a constraint involves an

inclusion variable and the corresponding optional component will

not be included in the custom product, it can be disregarded.

Figure 3 depicts the complete constraint network for the SPPS

product family. Note that, when nodes are the composition of

variables, they may involve more than one constraint, each one

relating a different subset of those variables.

Design Functions – The d-functions have been introduced as an

extension to the CN model to capture the necessary knowledge to

generate the values for the variables in . Generically, d-functions

will be represented by (), where is the depended

variable to which the d-function is attached and are the

independent variables from which the value for is generated. As

an example, Figure 4 shows the specification of d-function F4,

which generates the values for Total dynamic head as a function of

Water drawdown, Water level and Tank elevation.

As we shall see in more details below, an important

consequence of d-functions is the dependency relation between

variables that they establish. However, if the value generated by a

d-function is to be consistent with the values of the variables it

depends on, it must incorporate all the constraints involving these

variables. We say that a d-function incorporates a constraint if and

only if every combination of the values of the independent

variables (for which the d-function is defined) and the value

generated from them, satisfy that constraint. For example, from

lines 1, 2, 3 and 4, it can be verified that constraints C7 and C8 are

incorporated by F4.

In general, not all the variables related (by constraints) to the

variable which a d-function is attached to will be involved in the

dependency. For example, the variables Daily water, Battery

inclusion and Pump output flux are related to Total dynamic head

by the constraint C18 but are not required for the generation of its

values. Consequently, C18 is not incorporated by F4. If a

d-function does not incorporate a constraint involving the variable

to which it is attached, we say that the constraint is free regarding

that d-function. However, a free constraint may be incorporated by

another d-function attached to the same variable or to a related

variable.

Input variables are attached with special d-functions that

request the user to assign a value chosen from a delimited range of

values, which may be generated dynamically as a function of

values assigned to other variables. Hence, except possibly for the

input variables, all variables in will necessarily depend on some

other variable due to the d-function attached to them, forming a

network of dependencies on , as discussed in more detail below.

The d-function F4 specified in Figure 4 is relatively simple. The

CN-F model for the SPPS also contains much more complex ones.

For example, to define the values of the variables that specify the

component type PV array (related above), the d-function F16 finds

the best module arrangement to cope with the power requirements

of the SPPS without violating the voltage and current restrictions

imposed by the pump or battery controller. As another example,

the d-function F12 selects the pump system from a performance

table which correlates the total dynamic head, the output flux and

the input power for the optimal performance of the pump systems.

If a set of variables is strongly coupled, i.e., the value of any

one variable cannot be assigned independently of the others, as in

the two cases just discussed, they are be grouped together to form a

composite variable and the same d-function will generate the

values for all of them. Otherwise, attaching a single d-function to

each of those variables would form dependency loops between

them, a condition that is undesirable in our approach.

Since only values generated by the d-functions are taken into

account in the configuration process, in our approach the domain of

a variable in can be defined as the set of all values that can be

generated by the d-functions attached to it. An important

consequence of this definition is that the domains need not to be

defined explicitly. Moreover, they can be either discrete or

continuous without distinction.

Before introducing the instantiation process for the CN-F

model, we note that the dependency between variables in induces

a dependency between d-functions in . For example, the

d-function F4 attached to Total dynamic head depends on the

d-functions that generate the values to variables Water drawdown

and Water level, Tank elevation.

5 DERIVING PRODUCT FAMILY
MEMBERS

Members of the product family are derived from the knowledge

framework. This process is divided into two stages. First, a solution

to the CN-F model is found from the values of the input variables.

Figure 4. The d-function F4 attached to Total dynamic head

Second, this solution is used to transform the GPS into a specific

model representing the desired product family member.

5.1 Finding solutions to the CN-F model

An assignment of values to all the variables in such that no

constraint in is violated is said to be a solution to the CN-F

model. The set of all solutions will be denoted by . As we will

argue below, solutions in S correspond to members of the product

family.

The instantiation process begins with the assignment of values

to the input variables and proceeds towards the output variables,

through the auxiliary variables. This process is guided by the

dependencies established over by the d-functions. In Figure 5,

we present an instantiation algorithm to carry out this process. In

that algorithm, a d-function is enabled if all the variables it depends

on have been assigned their values. The set represents the

variables for which the values have already been generated and

 () represents the set of free variables in relation to . For this

algorithm to work properly, it is necessary to rule out loops

between d-functions. Thus, we assume that can

be order by the dependency relation induce over , that is to say,

for the element is an input d-function or all

d-functions it depends on precedes it in that order.

Every time a d-function () from is executed (line

2 of the instantiation algorithm), a value is assigned to variable

from the values of the variables . If we represent this

dependency by a directed graph, with arrows from the independent

variables toward the dependent one, the execution of the

instantiation algorithm can be represented by a dependency graph

as the one shown in Figure 6. The nodes represent variables (single

or composite), the same ones shown on the constraint network in

Figure 3. Near to each node, it is indicated the d-function that was

used to set its dependency (the incoming arrows). The dependency

graph can be organized into dependency levels. At level 0 are the

input variables whose values have been assigned by the customer

and that do not depend on other variables. In general, a variable is

localized at level if it depends on at least one variable at level

 . Note that the input variables Daily water and System

autonomy, represented by nodes 4 and 5, appear at levels 2 and 3,

respectively. Although it is the customer who assigns their values,

they also depend on other variables for checking the consistency of

the values assigned by the customer.

Now, every instantiation graph can be associated to a subset of

 , composed of exactly those d-functions used to generate it. Since

the same set of d-functions can be elicited for a variety of inputs,

we will call this set an instantiation pattern, represented by . More

specifically, every subset satisfying the ordering condition

and such that, for every , there is only one is an

instantiation pattern. If a variable in is attached with more than

one d-function, the CN-F model will be associated to more than

one instantiation pattern. However, in general, one should not

expect many instantiation patterns. In the modelling of the SPPS

example, there is only one instantiation pattern composed of 17

d-functions, number from F1 to F17 in Figure 6.

As indicated in Figure 5, there are only two points during the

execution of the instantiation algorithm where it can terminate

without finding a solution. Each one is associated to a different

type of inconsistency. Type I arises when the d-functions attached

to a variable cannot generate its value. The inconsistency of type II,

arises if there is a free constraint in () that is violated by the

values assigned to the variables in . If the values assigned to the

input variables are not part of a solution in , then there is some

inconsistency embedded in the input and the algorithm will fail.

As it is well known, local consistency in a CN model does not

guarantee global consistency [11]. Therefore, although the values

generated by the d-functions are locally consistent, the instantiation

pattern does not guarantee that an input without an embedded

inconsistency will lead to a solution. Thus, in what follows we will

introduce two consistency conditions to the CN-F model such that

our instantiation algorithm will always be able to find a solution.

Consistency condition 1 – For every , there is at least one

 which is defined for every instantiation of the variables it

depends on.

Consistency condition 2 – Let be an instantiation pattern.

Every constraint in is incorporated by some d-function belonging

to .

Figure 6. The instantiation graph for the SPPS product family

Figure 5. The instantiation algorithm to find solutions to the CN-F model

It can be proved that, if the CN-F model satisfies the

Consistency conditions 1, no inconsistency of type I will arise

during the execution of the instantiation algorithm, and if all its

instantiation patterns satisfy the Consistency condition 2, no

inconsistencies of type II will arise. However, if the CN-F model

satisfies the two conditions, lines 4-12 of the algorithm in Figure 5

can be eliminated, since the inconsistency testing is no longer

required. Therefore, the resulting instantiation algorithm becomes

extremely simple.

The CN-F model for the SPPS satisfies the second condition

state above; however, it fails the first one. The problem is with the

d-function attached to Total dynamic head shown in Figure 4.

According to its specification, only after all three inputs variables it

depends on have being assigned their values is that the Total

dynamic head is calculated and the result is compared to the head

of the available pumps. If the condition on line 4 is not satisfies,

there is no solution to the application and the configuration has to

be aborted. To satisfy the Consistency condition 1, an alternative

approach is to restrict the range of values for the input variable

Water level dynamically, so that the resulting total dynamic head of

the application is always within the range of the available pump

systems. Nevertheless, this restriction is equivalent to the abort

condition in a disguised form. On the other hand, because the

decision to abort is taken at the very start of the configuration

process, and we can give explanations for why the configuration

process cannot proceed, this modelling approach was preferred.

However, to cope with this abort condition, it was necessary to add

a control mechanism in the implementation of the instantiation

algorithm, not present in its description in Figure 5. Note that the

risk of having to abort the configuration is reduced as the

maximum head of the available pumps is increased.

5.2 Transforming the GPS into physical models

Once the solution to the CN-F model has been found, all the output

variables on the GPS have their values assigned, and its

transformation into a specific physical model can start. This

process is carried out in two steps. First, it is necessary to remove

the optional components types from the GPS that are not required

in view of the customer requirements. For example, if the customer

does not require any system autonomy, there is no need for

batteries in the SPPS. To determine if an optional component type

have to be removed we refer to the value of the associated

inclusion variables. In our example, if the value is 0, the

component is removed. Otherwise, if it is 1 the component is kept

in the structure. After the GPS has been stripped of the unnecessary

components, the second step of the transformation process is

carried out with the substitution of the generic components by

specific ones from their correspondent class of components. The

definition of which component will be selected is made based on

the values of the output variables on the generic component type.

For example, besides the inclusion variable, the Charge controller

is associated to three other variables. One of these variables

specifies the model of the charger, and the other two the

configuration of two switches to set the output voltage of the

charger. After all the generic component types have been

substituted by specific ones, a physical model of the custom SPPS

will emerge from the GSP.

Based on the transformation process described above, every

solution in leads to a specific physical model. Obviously, the

resulting physical model is isomorphic to the GPS of the product

family and is coherent to the component types by construction.

Now, if every relevant design constraint has been elicited and

introduced in the CN-F model, we can conclude that every solution

in corresponds to a member of the product family.

6 IMPLEMENTATION OF THE
CONFIGURATOR

The SPPS configurator has been conceived as a tool to support the

sales force of a company that provides water pumping solutions to

the rural area. The configurator requires the sales force to have

only enough technical knowledge about SPPS to make some

assessments at the customer site to input the customer

requirements. This process is interactive with the configurator

requesting specific information. To avoid inconsistencies

embedded in the input, the configurator makes a few checks,

suggesting appropriate corrections if necessary. But in case no

solution can be provided to the customer, the configurator notifies

the impossibility as early as possible.

In Figure 7, it is shown the implementation of SPPS

configurator using LabVIEW. At the centre, it can be seen the

d-functions (numbered F1 to F17), each one representing a subVI

(a kind of routine in LabVIEW), with the variables to which they

are attached at the right of the diagram. The variables to which the

d-functions depend on are indicated by the lines coming from

below. Thus, this diagram arrangement clearly reveals the

dependency between the d-functions. At the left of the diagram, it

can be seen the control structure which operates in conjunction

with the loop structure (the outer structure encompassing the whole

program). Initially, only the first four d-functions will be executed.

If the abort condition in the d-function F4 (specified in Figure 4) is

true there is no solution for the configuration problem and the

program ends. Otherwise, the abort variable is set to false and the

other d-functions are executed. As the d-functions are executed, the

values for the correspondent variables are generated, and they are

set to inactive. The d-functions attached to variables (other than the

inclusion variable) on optional component types, which will not be

included in the custom product, can be set to inactive without

generating values. When no abortion happens and all the functions

are inactive (which is equivalent to F = in the control algorithm

in Figure 5), a solution has been found and the program ends. This

happens in exactly three iterations of this configurator program.

It is interesting to note that, if the CN-F model satisfies the two

consistency conditions, the configurator can be implemented a data

flow program by the concatenation of d-functions. Moreover, if it

were not for the abort condition, the iteration structure in Figure 7

could have been dismissed.

7 CONCLUSIONS

In this paper, we have proposed a new approach to the

customisation of product families. It is based on a knowledge

framework which combines a GPS and a CN-F model to represent

product families. Members of the product family are derived from

this knowledge framework by a two-stage process. First, a solution

to the CN-F model is found from the customer requirements

through an instantiation process. Then, in the second stage, the

solution is used to transform the product family GPS into a specific

model which represents the desired product family member.

A number of contributions to the area of product configuration

are introduced by this approach. It is provided a formal definition

for the product family GPS and an extension to the classical CN

model by attaching d-functions to the variables to generate their

values. Since the domains of the variables are defined through the

d-functions, their values need not to be predefined explicitly. As a

consequence, we can deal with mixed discrete and continuous

variables.

Moreover, the d-functions provide a method to establish the

dependency between variables as part of the modelling of the

customisation process. Dependency patterns can reduce the design

space for finding solution considerably. However, despite their

local consistent, they do not avoid backtracking. To achieve this

goal we have set up a few conditions for the CN-F model, such

that, if satisfied, deriving product family members becomes a

backtrack-free process. The remarkable aspect about this

Figure 7. A view of the SPPS configurator program implemented in LabVIEW

achievement is that it does not depend on pre-processing, but can

be obtained by the systematization of the knowledge about product

families.

 It is also interesting to note that through the d-functions it may

be possible to design components during the customization

process, thus providing great flexibility to the customization

process. However, this is a capability which requires further

investigation, because making changes to components without the

proper delimitation of the design space can compromise the

manufacturability or performance of the product being derived.

Our approach is suited for the configuration of complex product

families for which the customers do not have the necessary

expertise to participate directly during all the configuration

process. It can deal with configuration problems for which the

constraints between the variables are highly complex, since they

are incorporated by the d-functions and dealt with in the form of

procedures. The complexity of the configurator is not particularly

affected by the number of variables, since this amounts to adding

new d-functions. In case some of the variables are attached with

more than one d-function, this will generate multiple instantiation

patterns. However, the proposed instantiation algorithm is enough

to deal with this condition, since at every moment only one

instantiation pattern is being followed. As for the verification of the

compliance to the consistency conditions, this is largely an analysis

of the d-function individually. (The same is true for maintenance,

because d-functions are high modular.) Now, if the CN-F model

satisfies our assumption on the ordering of the set of d-function and

the two consistency conditions, the configurators can be

implemented in the form of dataflow programs by the

concatenation of the d-functions.

Despite the advantages related above, to exploit all the potential

of our approach in practical applications, there are a number of

issues that must be further developed. For example, concerning the

integration of our approach into a mass customisation system, it

will be necessary to have a more elaborate representation of the

GPS to support the generation of customer quotations and

production orders [13]. However, at least for a mass customization

systems based on 3D printing, we have shown that our approach

can be integrated with CAD tools, and that the generation of 3D

models for the custom products can be made automatically, in a

seamless way [14].

ACKNOWLEDGEMENTS

The author wish to gratefully acknowledge the financial support of

FINEP for the realization of this work.

REFERENCES

[1] S. Mittal and F. Frayman, “Towards a Generic Model of

Configuration Tasks,” in Proceedings of the 11th International Joint

Conference of Artificial Intelligence, San Francisco: Morgan

Kaufman, 1989, pp.1395–1401.

[2] M. Veron, H. Fargier and M. Aldanondo, “From CSP to

Configuration Problems,” in AAAI-99 Workshop on Configuration,

Orlando, Florida, July 18–19, 1999.

[3] B. Wielinga and G. Schreiber, “Configuration design problem

solving,” IEEE Expert, vol. 12, no. 2, pp. 49–56, 1997.

[4] T. W. Simpson, B. Aaron, L. A. Slingerland, S. Brennan, D. Logan

and K. Reichard, “From user requirements to commonality

specifications: an integrated approach to product family design,”

Research in Engineering Design, vol. 23, no. 2, pp. 141–153, 2012.

[5] T. Hadzic, S. Subbarayan, R. M. Jensen, H. R. Andersen, H.

Hulgaard and J. Moller, “Fast backtrack-free product configuration

using a precompiled solution space representation,” in International

Conference on Economic, Technical and Organizational aspects of

Product Configuration Systems, Technical University of Denmark,

Lyngby, Denmark, June 28–29, 2004.

[6] E. C. Freuder, T. Carchrae and J. C. Beck, “Satisfaction Guaranteed,”

in Workshop on Configuration, Eighteenth International Joint

Conference on Artificial Intelligence, 2003.

[7] Mittal, S. and Falkenhainer, B., “Dynamic Constraint Satisfaction

Problems,” in Proceedings of the 8th National Conference on

Artificial Intelligence, 1990, pp. 25-32.

[8] D. Sabin and F. Freuder, “Configuration as Composite Constraint

Satisfaction,” in Technical Report FS-96-03, Workshop on

Configuration, Menlo Park: AAAI Press, 1996, pp. 28–36.

[9] E. Gelle, B. V. Faltings, D. E. Clement, and I. F. C. Smith,

“Constraint Satisfaction Methods for Applications in Engineering,”

Engineering with Computers, vol. 16, no. 2, pp. 81–85, 2000.

[10] H. Xie, P. Henderson, J. Neelankavil and J. Li, “A Systematic search

strategy for product Configuration,” in 17th International Conference

on Industrial & Engineering Applications of Artificial Intelligence &

Expert Systems Manufacturing (IEA), Ottawa, Ontario, January 1,

2004.

[11] R. Dechter, “Constraint Networks,” in Encyclopedia of Artificial

Intelligence, S. C. Shapiro, Ed. New York, Wiley, pp. 276–285,

1992.

[12] C. Forza and F. Salvador, “Managing for variety in the order

acquisition and fulfillment process: The contribution of product

configuration systems,” International Journal of Production

Economics, vol. 76, pp. 87–98, 2002.

[13] A. Haug, L. Hvam and N. H. Mortensen, “A layout technique for

class diagrams to be used in product configuration projects,”

Computers in Industry, vol. 61, pp. 409–418, 2010.

[14] H. M. Schneider, D. T. Kemmoku, P. Y. Moritomi, J. V. L. da Silva,

Y. Iano, “Matching the Capabilities of Additive Technologies with a

Flexible and Backtrack-free Product Family Customisation Process,”

in Proceedings of the Fraunhofer Direct Digital Manufacturing

Conference 2014, Berlin, Germany, March 12-13, 2014.

