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Abstract.1  In this paper, we present a new approach for the 
customisation of product families. It is based on a knowledge 
framework for representing product families that combines a 
generic product structure and an extension of the classical constrain 
network model by the attachment of design functions to the 
variables. We also present a method for deriving family members 
from this framework, which consists of a two-stage process. First, a 
solution to the constraint network is found which is consistent with 
the set of customer requirements. Second, the solution is used to 
transform the generic structure into a specific one corresponding to 
a product family member that meets the customer requirements. 
One major outcome of the design functions is the establishment of 
instantiation patterns that guide the problem-solving process. 
Moreover, if a few modelling conditions are satisfied, it can be 
proved that finding solutions becomes a backtrack-free process. As 
a practical example, this approach is used for the implementation 
of a prototype configurator for a solar powered pumping system. 

1 INTRODUCTION 

Since the proposal made by Mittal and Frayman [1] to represent 

product configuration as a CSP problem, many extensions have 

been put forward to cope with the specificities of configuration 

problems [2]. Moreover, to improve the efficiency of the product 

configuration process, it is a practice to use knowledge about the 

problem domain to guide the search process [3]. Following this 

rationale, this paper presents an approach to derive members of a 

product family that exploits the specificities intrinsic to this 

concept. 

It is well known that the design of a product family is a 

“difficult and challenging task” [4], for it requires the development 

of multiple products at the same time. However, after the product 

family is designed, it should not be a surprise that the process of 

deriving its members can be turned into a routine design task. This 

claim follows from the fact that during the design process, 

designers acquire a great amount of knowledge regarding the 

product family architecture, how the variable aspects depend on 

each other and their range of variability. 

The approach presented in this paper is based on a knowledge 

framework which combines two general models. A generic product 

structure (GPS) that represents the product family architecture, and 

a constraint network model extended with design functions (CN-F) 

to complement the GPS in the definition of the product family 

members. The CN-F model is an extension of the classical 

constraint network (CN) model by the attachment of design 

functions to its variables. The primary role of these functions is to 

                                                                 
1 Centre for Information Technology Renato Archer, Campinas, Brazil, 

email: homero.schneider@cti.gov.br 

generate the values for the variables to which they are attached 

during the customisation process. However, design functions are 

also used to elicit the dependencies between the variables to form 

dependency patterns.  

In our approach, members of the product family are derived 

from the knowledge framework as instantiations into two stages. 

First, a solution to the CN-F model has to be found from the 

customer requirements. This process is guided by dependency 

patterns. Then, the solution obtained is used to transform the GPS 

into a specific physical model that corresponds to a product family 

member, one that meets the customer requirements.  

Although the instantiation patterns can restrict the design space 

to relatively few variables, they cannot avoid backtracking. Thus, 

another important contribution of this work is the setting up of 

modelling conditions such that if the CN-F model satisfies them, 

the instantiation process becomes backtrack-free. These conditions 

eliminate the sources of inconsistencies during the execution of the 

instantiation algorithm proposed for the CN-F model.  

In contrast to other approaches that claim to be backtrack-free 

[5, 6], which typically resort to a pre-processing stage and to 

computational power, our approach resort to the structuration of 

the customization process of product families. As a result, it is 

possible to implement very efficient configurators based on the 

data flow principle.  

As for the remaining of this work, in the next section we review 

the related literature. In Section 3, we present the SPPS system, 

which will be used along the paper as our practical example, the 

solar powered pumping system. In Section 4, we introduce our 

knowledge framework, by defining the elements of the GPS and 

CN-F models. In Section 5, we introduce our method for deriving 

product family members. First, we present our instantiation 

algorithm. After that, we introduce the conditions for which this 

algorithm is backtrack-free. Then, we present the method for 

transforming the GPS into a specific product model. In Section 6, 

we present the implementation of our prototype configurator. 

Finally, in Section 7, we make our concluding remarks. 

2 RELATED WORK 

One early proposal to extend the CSP model was made by Mittal 

and Falkenhainer [7], who proposed a dynamic constraint 

satisfaction problem (DCSP) to deal with the fact that the set of 

variables that are relevant for the solution of a configuration 

problem may change dynamically during the problem solving. To 

deal with the structural aspect of configuration problems, Sabin 

and Freuder [8] proposed a composite CSP. In their approach, the 

variables are allowed to represent an entire sub problem, such as 



the constituent parts of the final product or the internal structure of 

components. In [2], Veron et al. proposed to model the 

configurable product as a tree with internal nodes representing sub-

configurable components and leaf nodes corresponding to 

elementary configurable or standard components. The attributes of 

the configurable components are represented as variables and each 

component is associated to a state variable. The configuration 

process works on two levels. First, the state variables are used to 

manage the tree structure. Then, the CSP problem is addressed to 

define the attributes of the active components. The user expresses 

his choices by adding/retracting unary constraints.  

The CSP approaches have been focused mostly on discrete 

variables and binary constraints. However, in the configuration of 

engineering products, it is quite common to have continuous 

variables and constraint on multiple variables. Thus, Gelle et al. [9] 

introduced local consistency methods to handle discrete and 

numerical variables and in the same framework to address 

engineering products represented as a CSP. 

With a few exceptions, dependencies have been largely 

neglected in product configuration approaches. In [10], Xie et al. 

proposed the Dependent CSP. In this approach, the variables can 

be related by dependencies or constraints and are divided into 

independent and dependent by means of the relation of 

dependency. The independent variables are assigned values from 

their associated domains, while the values of the dependent 

variables are assigned values from the values of the independent 

variables through the relations of dependency. A solution is an 

assignment to the variables such that all dependencies and 

constraints are satisfied. The search for solutions is made by a 

backtracking method of the type "backjunping". The updating of 

values and the verification of constraints is organized by a directed 

acyclic graph. This graph is defined based on the dependencies 

between variables and of constraints in relation to the independent 

variables. Heuristics are used to establish the order in which 

variables are considered.  

To avoid response delay and dead-ends associated to search-

based methods, some recent works resorted to a two-stage process, 

by precompiling all the solutions using some form of efficient 

representation. Although these methods still have to solve a hard 

problem to find all the solutions, this is done offline and only once. 

Then, the interactive part of the configuration process can be done 

efficiently. For instance, Hadzic et al. [5] proposed a method to 

compile all the solutions of the problem using binary decision 

diagrams. Although they claim that the method has very good 

practical results, depending on the size of the configuration 

problem it may run out of space. A different pre-processing method 

is proposed by Freuder et al. in [6]. Unlike other conventional 

approaches that add constraints to the problem, thus making them 

susceptible to space limitation, they remove values from the 

domain of the variables to make their representation of the problem 

backtrack-free. The disadvantage of this method is that solutions 

are lost.  

3 THE SOLAR POWERED PUMPING 
PRODUCT FAMILY 

At the core of a solar powered pumping system (SPPS) product 

family, there is a water pump system and a photovoltaic (PV) 

array, which provides power to the pump. To improve the pump 

performance, a pump controller is used to condition the power and 

to control the pump. A float switch (ST) is used to turn the pump 

off when the water tank is full, and another switch (SW) is used to 

turn the pump off when the water level at the well is low, thus 

avoiding that it runs dry. The components of an SPPS are 

connected by wires to transmit power and control signals. The 

water is carried from the well to the tank through a piping system. 

A battery bank may be added to the system if the customer requires 

the system to have some autonomy, so that water may be pumped 

at night or during heavily clouded days. A charge controller is used 

to manage the charging of the battery bank.  

Although a typical SPPS is composed of a few components, the 

product family may have a very large number of variants. For 

example, the water pump may have many options, each one 

operating optimally within a narrow window of water head and 

flux with a specified power, and the PV array can be configured in 

many ways, based on the choice of the PV model and the 

arrangement of the components. 

Hence, configuring an SPPS to meet the customer requirements 

and optimizing its performance and cost is far from trivial, 

demanding a lot of expertise. This precludes most of the potential 

customers of participating interactively on the decision making 

along the configuration process, except for providing the 

application requirements at the beginning of the process. 

4 THE PRODUCT FAMILY KNOWLEDGE 
FRAMEWORK 

 

In the following subsections, we will present our knowledge 

framework for representing product families. In this approach we 

assume that the product family has already been developed. 

However, with this framework we will abstract all the relevant 

knowledge about the product family for deriving its members.  

4.1 The generic product structure 

The GPS is a modular architecture composed of component types, 

which stands for classes of components with the same 

functionality. In our approach, component types belong to four 

possible categories: common/generic, optional/generic, 

common/specific and optional/specific. Figure 1 illustrates 

schematically the concept of component types and their 

classification. A component type is specific if the corresponding 

class has only one component. However, if the corresponding class 

has two or more components, then the component type is generic. 

Figure 1.  Classification of component types 



If all members of the product family have a component in the 

corresponding class, the component type is common. Otherwise, if 

at least one member of the product family does not have a 

corresponding component in the class, it is optional. Note that the 

component types form a partition on the set of components that is 

used to derive all the members of the product family.  

In Figure 2, it is shown the GPS for the SPPS product family. 

The PV array, Pump system, Sensors, Wiring and Piping systems 

are common component types, i.e., they are present in every 

member of the SPPS product family. However, the Battery bank 

and Charge controller are optional component types. The Well and 

Tank sensors are assumed to be specific component types, i.e., they 

do not vary among applications. All the other components are of 

the generic type, i.e., they can vary among applications and have 

two or more variants. It should be noted that, according to our 

classification, to be a common component type in the product 

family architecture does not imply that it is fixed. Actually, in our 

example, most of the product family variability happens on the 

common part of the GPS. Hence, although the optional components 

in a product family are one main source of variability, another 

important source of diversity can be the common part of the 

product family GPS. This is the case only if it is composed of 

generic components types. 

Formally, we say that a GPS represents the architecture of a 

given product family if and only if the architecture of each member 

of that family is isomorphic to a substructure of the GPS and 

collectively the members of the product family are coherent to the 

classification of the component types on the GPS.  

Hence, given a sample of SPPS, the GPS can be used to decide 

which of them belong to the product family. On the other hand, the 

GPS is not enough to determine which configuration of 

components can lead to a member of the product family, and let 

alone, which specific configuration will meet the requirements of a 

given application. To achieve this goal, we combine the GPS with 

the CN-F model.  

4.2 The Constraint Network Extend with 
Design Functions 

The CN-F model used in our approach can be regarded as an 

extension of the traditional CN model. It is defined by the tuple 

(     ), where   is a set of variables,   is a set of constraints on 

subsets of  , and   is a set of design functions (which will be 

abbreviated as d-function), such that, every variable in   has at 

least one d-function attached to it that can generate its values. In 

what follows, we will define each of these elements and show how 

they apply to the SPPS product family in complement to the GPS. 

Variables – Variations between the members of the product family 

are identified by variables in  . Consequently, these variables can 

be mapped on the GPS. Their scope of variation can vary widely, 

since they may be related from a specific feature to a whole 

component. For example, the configuration of the PV array is 

completely specified by three variables: PV module model, PV 

modules in series and PV module strings in parallel. The pump is 

associated only to the variable Pump model. The range of values 

that can be assigned to a variable is called its domain. For example, 

the domain for the variable Pump model is composed by the set of 

pumps {HR-03, HR-03H, HR-04, HR-04H, HR-07, HR-14, HR-

20, C-SJ5-8, C-SJ8-7}.  

Since all the variability of the product family is related to 

optional and generic components, only these types of components 

are associated with variables. These variables will be referred to as 

output variables because after their values are assigned, a product 

family member is specified. A special type of output variable is the 

inclusion variable associated to optional component types (e.g., 

Battery inclusion). These are binary variables that define if the 

component is included or not in the derived product.  

However, variations can also be related to the application 

environment. For the SPPS example, the amount of Daily water 

needed, the Well yield, the Tank capacity, the System autonomy, 

etc., are variables that express the customer requirements and are 

referred to as input variables. Input and output variables are not 

necessarily disjoint subsets of  . Besides these two classes, the set 

  may contain auxiliary variables, which are neither input nor 

output variables. For example, the variable Total dynamic head is 

defined in terms of input variables, and although it is an essential 

variable for the choice of the pump system, it is not used to specify 

directly any of the components in the GPS. Therefore, it is 

classified as an auxiliary variable. In the SPPS example, we have 

identified 32 mixed discrete and continuous variables. In Figure 3, 

they appear as nodes of the constraint network, numbered from 1 to 

Figure 2..The GPS for the SPPS product family 

Figure 3.  Constraint network for the SPPS product family 



32. Some of these variables have been named explicitly within the 

text. As it will be discussed below, for convenience, variables can 

be grouped to form a composite variable. The encircled nodes in 

Figure 3 represent composite variables. 

Constraints – Constraints define how subsets of variables in   are 

related to each other, thus restricting the possible combinations of 

values that can be assigned to them simultaneously. For example, 

the following sample of constraints describes how the auxiliary 

variable Total dynamic head is related to some variables in  :  

C7: Total dynamic head (22) is equal to the sum of the Water 

level (1), Water drawdown (2), Tank elevation (6) and the 

friction loss of the piping system. 

C8: Total dynamic head (22) must be less or equal than the head 

of the pump system (defined by the combination of the pump 

and its controller). 

C18: If there is a Battery inclusion (10), the Daily water (4) 

requirement must be equal or less than 24 hours of pumping 

with the maximum available Pump output flux (32) at the 
required Total dynamic head (22). 

Note that while the constraint C8 is defined over one variable, 

the other two relate four variables. Actually, in our approach, 

constraints can involve any subset of  . To satisfy a constraint, the 

values assigned to the variables in the expression defining it must 

render the expression true. However, if a constraint involves an 

inclusion variable and the corresponding optional component will 

not be included in the custom product, it can be disregarded. 

Figure 3 depicts the complete constraint network for the SPPS 

product family. Note that, when nodes are the composition of 

variables, they may involve more than one constraint, each one 

relating a different subset of those variables. 

Design Functions – The d-functions have been introduced as an 

extension to the CN model to capture the necessary knowledge to 

generate the values for the variables in  . Generically, d-functions 

will be represented by   (       ), where   is the depended 

variable to which the d-function is attached and         are the 

independent variables from which the value for   is generated. As 

an example, Figure 4 shows the specification of d-function F4, 

which generates the values for Total dynamic head  as a function of 

Water drawdown, Water level and Tank elevation.  

As we shall see in more details below, an important 

consequence of d-functions is the dependency relation between 

variables that they establish. However, if the value generated by a 

d-function is to be consistent with the values of the variables it 

depends on, it must incorporate all the constraints involving these 

variables. We say that a d-function incorporates a constraint if and 

only if every combination of the values of the independent 

variables (for which the d-function is defined) and the value 

generated from them, satisfy that constraint. For example, from 

lines 1, 2, 3 and 4, it can be verified that constraints C7 and C8 are 

incorporated by F4.  

In general, not all the variables related (by constraints) to the 

variable which a d-function is attached to will be involved in the 

dependency. For example, the variables Daily water, Battery 

inclusion and Pump output flux are related to Total dynamic head 

by the constraint C18 but are not required for the generation of its 

values. Consequently, C18 is not incorporated by F4. If a 

d-function does not incorporate a constraint involving the variable 

to which it is attached, we say that the constraint is free regarding 

that d-function. However, a free constraint may be incorporated by 

another d-function attached to the same variable or to a related 

variable.  

Input variables are attached with special d-functions that 

request the user to assign a value chosen from a delimited range of 

values, which may be generated dynamically as a function of 

values assigned to other variables. Hence, except possibly for the 

input variables, all variables in   will necessarily depend on some 

other variable due to the d-function attached to them, forming a 

network of dependencies on  , as discussed in more detail below. 

The d-function F4 specified in Figure 4 is relatively simple. The 

CN-F model for the SPPS also contains much more complex ones. 

For example, to define the values of the variables that specify the 

component type PV array (related above), the d-function F16 finds 

the best module arrangement to cope with the power requirements 

of the SPPS without violating the voltage and current restrictions 

imposed by the pump or battery controller. As another example, 

the d-function F12 selects the pump system from a performance 

table which correlates the total dynamic head, the output flux and 

the input power for the optimal performance of the pump systems. 

If a set of variables is strongly coupled, i.e., the value of any 

one variable cannot be assigned independently of the others, as in 

the two cases just discussed, they are be grouped together to form a 

composite variable and the same d-function will generate the 

values for all of them. Otherwise, attaching a single d-function to 

each of those variables would form dependency loops between 

them, a condition that is undesirable in our approach. 

Since only values generated by the d-functions are taken into 

account in the configuration process, in our approach the domain of 

a variable in   can be defined as the set of all values that can be 

generated by the d-functions attached to it. An important 

consequence of this definition is that the domains need not to be 

defined explicitly. Moreover, they can be either discrete or 

continuous without distinction.  

Before introducing the instantiation process for the CN-F 

model, we note that the dependency between variables in   induces 

a dependency between d-functions in  . For example, the 

d-function F4 attached to Total dynamic head depends on the 

d-functions that generate the values to variables Water drawdown 

and Water level, Tank elevation.  

5 DERIVING PRODUCT FAMILY 
MEMBERS 

Members of the product family are derived from the knowledge 

framework. This process is divided into two stages. First, a solution 

to the CN-F model is found from the values of the input variables. 

Figure 4.  The d-function F4 attached to Total dynamic head 



Second, this solution is used to transform the GPS into a specific 

model representing the desired product family member. 

5.1 Finding solutions to the CN-F model 

An assignment of values to all the variables in   such that no 

constraint in   is violated is said to be a solution to the CN-F 

model. The set of all solutions will be denoted by  . As we will 

argue below, solutions in S correspond to members of the product 

family. 

The instantiation process begins with the assignment of values 

to the input variables and proceeds towards the output variables, 

through the auxiliary variables. This process is guided by the 

dependencies established over   by the d-functions. In Figure 5, 

we present an instantiation algorithm to carry out this process. In 

that algorithm, a d-function is enabled if all the variables it depends 

on have been assigned their values.  The set   represents the 

variables for which the values have already been generated and 

 ( ) represents the set of free variables in relation to  . For this 

algorithm to work properly, it is necessary to rule out loops 

between d-functions. Thus, we assume that                can 

be order by the dependency relation induce over  , that is to say, 

for            the element    is an input d-function or all 

d-functions it depends on precedes it in that order. 

Every time a d-function   (       ) from   is executed (line 

2 of the instantiation algorithm), a value is assigned to variable   

from the values of the variables        . If we represent this 

dependency by a directed graph, with arrows from the independent 

variables toward the dependent one, the execution of the 

instantiation algorithm can be represented by a dependency graph 

as the one shown in Figure 6. The nodes represent variables (single 

or composite), the same ones shown on the constraint network in 

Figure 3. Near to each node, it is indicated the d-function that was 

used to set its dependency (the incoming arrows). The dependency 

graph can be organized into dependency levels. At level 0 are the 

input variables whose values have been assigned by the customer 

and that do not depend on other variables. In general, a variable is 

localized at level   if it depends on at least one variable at level 

    . Note that the input variables Daily water and System 

autonomy, represented by nodes 4 and 5, appear at levels 2 and 3, 

respectively. Although it is the customer who assigns their values, 

they also depend on other variables for checking the consistency of 

the values assigned by the customer.  

Now, every instantiation graph can be associated to a subset of 

 , composed of exactly those d-functions used to generate it. Since 

the same set of d-functions can be elicited for a variety of inputs, 

we will call this set an instantiation pattern, represented by  . More 

specifically, every subset     satisfying the ordering condition 

and such that, for every    , there is only one      is an 

instantiation pattern. If a variable in   is attached with more than 

one d-function, the CN-F model will be associated to more than 

one instantiation pattern. However, in general, one should not 

expect many instantiation patterns. In the modelling of the SPPS 

example, there is only one instantiation pattern composed of 17 

d-functions, number from F1 to F17 in Figure 6. 

As indicated in Figure 5, there are only two points during the 

execution of the instantiation algorithm where it can terminate 

without finding a solution. Each one is associated to a different 

type of inconsistency. Type I arises when the d-functions attached 

to a variable cannot generate its value. The inconsistency of type II, 

arises if there is a free constraint in  ( ) that is violated by the 

values assigned to the variables in  . If the values assigned to the 

input variables are not part of a solution in  , then there is some 

inconsistency embedded in the input and the algorithm will fail.  

As it is well known, local consistency in a CN model does not 

guarantee global consistency [11]. Therefore, although the values 

generated by the d-functions are locally consistent, the instantiation 

pattern does not guarantee that an input without an embedded 

inconsistency will lead to a solution. Thus, in what follows we will 

introduce two consistency conditions to the CN-F model such that 

our instantiation algorithm will always be able to find a solution. 

 

Consistency condition 1 – For every    , there is at least one 

     which is defined for every instantiation of the variables it 

depends on. 

 

Consistency condition 2 – Let     be an instantiation pattern. 

Every constraint in   is incorporated by some d-function belonging 

to  .  

Figure 6. The instantiation graph for the SPPS product family 

Figure 5.  The instantiation algorithm to find solutions to the CN-F model 



It can be proved that, if the CN-F model satisfies the 

Consistency conditions 1, no inconsistency of type I will arise 

during the execution of the instantiation algorithm, and if all its 

instantiation patterns satisfy the Consistency condition 2, no 

inconsistencies of type II will arise. However, if the CN-F model 

satisfies the two conditions, lines 4-12 of the algorithm in Figure 5 

can be eliminated, since the inconsistency testing is no longer 

required. Therefore, the resulting instantiation algorithm becomes 

extremely simple. 

The CN-F model for the SPPS satisfies the second condition 

state above; however, it fails the first one. The problem is with the 

d-function attached to Total dynamic head shown in Figure 4. 

According to its specification, only after all three inputs variables it 

depends on have being assigned their values is that the Total 

dynamic head is calculated and the result is compared to the head 

of the available pumps. If the condition on line 4 is not satisfies, 

there is no solution to the application and the configuration has to 

be aborted. To satisfy the Consistency condition 1, an alternative 

approach is to restrict the range of values for the input variable 

Water level dynamically, so that the resulting total dynamic head of 

the application is always within the range of the available pump 

systems. Nevertheless, this restriction is equivalent to the abort 

condition in a disguised form. On the other hand, because the 

decision to abort is taken at the very start of the configuration 

process, and we can give explanations for why the configuration 

process cannot proceed, this modelling approach was preferred. 

However, to cope with this abort condition, it was necessary to add 

a control mechanism in the implementation of the instantiation 

algorithm, not present in its description in Figure 5. Note that the 

risk of having to abort the configuration is reduced as the 

maximum head of the available pumps is increased.  

5.2 Transforming the GPS into physical models 

Once the solution to the CN-F model has been found, all the output 

variables on the GPS have their values assigned, and its 

transformation into a specific physical model can start.  This 

process is carried out in two steps. First, it is necessary to remove 

the optional components types from the GPS that are not required 

in view of the customer requirements. For example, if the customer 

does not require any system autonomy, there is no need for 

batteries in the SPPS.  To determine if an optional component type 

have to be removed we refer to the value of the associated 

inclusion variables. In our example, if the value is 0, the 

component is removed. Otherwise, if it is 1 the component is kept 

in the structure. After the GPS has been stripped of the unnecessary 

components, the second step of the transformation process is 

carried out with the substitution of the generic components by 

specific ones from their correspondent class of components. The 

definition of which component will be selected is made based on 

the values of the output variables on the generic component type. 

For example, besides the inclusion variable, the Charge controller 

is associated to three other variables. One of these variables 

specifies the model of the charger, and the other two the 

configuration of two switches to set the output voltage of the 

charger. After all the generic component types have been 

substituted by specific ones, a physical model of the custom SPPS 

will emerge from the GSP.  

Based on the transformation process described above, every 

solution in   leads to a specific physical model. Obviously, the 

resulting physical model is isomorphic to the GPS of the product 

family and is coherent to the component types by construction. 

Now, if every relevant design constraint has been elicited and 

introduced in the CN-F model, we can conclude that every solution 

in   corresponds to a member of the product family. 

6 IMPLEMENTATION OF THE 
CONFIGURATOR  

The SPPS configurator has been conceived as a tool to support the 

sales force of a company that provides water pumping solutions to 

the rural area. The configurator requires the sales force to have 

only enough technical knowledge about SPPS to make some 

assessments at the customer site to input the customer 

requirements. This process is interactive with the configurator 

requesting specific information. To avoid inconsistencies 

embedded in the input, the configurator makes a few checks, 

suggesting appropriate corrections if necessary. But in case no 

solution can be provided to the customer, the configurator notifies 

the impossibility as early as possible.  

In Figure 7, it is shown the implementation of SPPS 

configurator using LabVIEW. At the centre, it can be seen the 

d-functions (numbered F1 to F17), each one representing a subVI 

(a kind of routine in LabVIEW), with the variables to which they 

are attached at the right of the diagram. The variables to which the 

d-functions depend on are indicated by the lines coming from 

below. Thus, this diagram arrangement clearly reveals the 

dependency between the d-functions. At the left of the diagram, it 

can be seen the control structure which operates in conjunction 

with the loop structure (the outer structure encompassing the whole 

program). Initially, only the first four d-functions will be executed. 

If the abort condition in the d-function F4 (specified in Figure 4) is 

true there is no solution for the configuration problem and the 

program ends. Otherwise, the abort variable is set to false and the 

other d-functions are executed. As the d-functions are executed, the 

values for the correspondent variables are generated, and they are 

set to inactive. The d-functions attached to variables (other than the 

inclusion variable) on optional component types, which will not be 

included in the custom product, can be set to inactive without 

generating values. When no abortion happens and all the functions 

are inactive (which is equivalent to F =   in the control algorithm 

in Figure 5), a solution has been found and the program ends. This 

happens in exactly three iterations of this configurator program. 

It is interesting to note that, if the CN-F model satisfies the two 

consistency conditions, the configurator can be implemented a data 

flow program by the concatenation of d-functions. Moreover, if it 

were not for the abort condition, the iteration structure in Figure 7 

could have been dismissed.  

7 CONCLUSIONS 

In this paper, we have proposed a new approach to the 

customisation of product families. It is based on a knowledge 

framework which combines a GPS and a CN-F model to represent 

product families. Members of the product family are derived from 

this knowledge framework by a two-stage process. First, a solution 

to the CN-F model is found from the customer requirements 

through an instantiation process. Then, in the second stage, the 

solution is used to transform the product family GPS into a specific 

model which represents the desired product family member. 



A number of contributions to the area of product configuration 

are introduced by this approach. It is provided a formal definition 

for the product family GPS and an extension to the classical CN 

model by attaching d-functions to the variables to generate their 

values. Since the domains of the variables are defined through the 

d-functions, their values need not to be predefined explicitly. As a 

consequence, we can deal with mixed discrete and continuous 

variables.  

Moreover, the d-functions provide a method to establish the 

dependency between variables as part of the modelling of the 

customisation process. Dependency patterns can reduce the design 

space for finding solution considerably. However, despite their 

local consistent, they do not avoid backtracking. To achieve this 

goal we have set up a few conditions for the CN-F model, such 

that, if satisfied, deriving product family members becomes a 

backtrack-free process. The remarkable aspect about this 

Figure 7. A view of the SPPS configurator program implemented in LabVIEW 



achievement is that it does not depend on pre-processing, but can 

be obtained by the systematization of the knowledge about product 

families.   

 It is also interesting to note that through the d-functions it may 

be possible to design components during the customization 

process, thus providing great flexibility to the customization 

process. However, this is a capability which requires further 

investigation, because making changes to components without the 

proper delimitation of the design space can compromise the 

manufacturability or performance of the product being derived.  

Our approach is suited for the configuration of complex product 

families for which the customers do not have the necessary 

expertise to participate directly during all the configuration 

process. It can deal with configuration problems for which the 

constraints between the variables are highly complex, since they 

are incorporated by the d-functions and dealt with in the form of 

procedures. The complexity of the configurator is not particularly 

affected by the number of variables, since this amounts to adding 

new d-functions. In case some of the variables are attached with 

more than one d-function, this will generate multiple instantiation 

patterns. However, the proposed instantiation algorithm is enough 

to deal with this condition, since at every moment only one 

instantiation pattern is being followed. As for the verification of the 

compliance to the consistency conditions, this is largely an analysis 

of the d-function individually. (The same is true for maintenance, 

because d-functions are high modular.) Now, if the CN-F model 

satisfies our assumption on the ordering of the set of d-function and 

the two consistency conditions, the configurators can be 

implemented in the form of dataflow programs by the 

concatenation of the d-functions.  

Despite the advantages related above, to exploit all the potential 

of our approach in practical applications, there are a number of 

issues that must be further developed. For example, concerning the 

integration of our approach into a mass customisation system, it 

will be necessary to have a more elaborate representation of the 

GPS to support the generation of customer quotations and 

production orders [13]. However, at least for a mass customization 

systems based on 3D printing, we have shown that our approach 

can be integrated with CAD tools, and that the generation of 3D 

models for the custom products can be made automatically, in a 

seamless way [14]. 
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