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Abstract. Link prediction is a link mining task that tries to find new
edges within a given graph. Among the targets of link prediction there
is large directed graphs, which are frequent structures nowadays. The
typical sparsity of large graphs demands of high precision predictions in
order to obtain usable results. However, the size of those graphs only per-
mits the execution of scalable algorithms. As a trade-off between those
two problems we recently proposed a link prediction algorithm for di-
rected graphs that exploits hierarchical properties. The algorithm can
be classified as a local score, which entails scalability. Unlike the rest of
local scores, our proposal assumes the existence of an underlying model
for the data which allows it to produce predictions with a higher preci-
sion. We test the validity of its hierarchical assumptions on two clearly
hierarchical data sets, one of them based on RDF. Then we test it on a
non-hierarchical data set based on Wikipedia to demonstrate its broad
applicability. Given the computational complexity of link prediction in
very large graphs we also introduce some general recommendations useful
to make of link prediction an efficiently parallelized problem.

1 Introduction

Graphs have become a frequently used structure for Knowledge Representation
(KR). The task of extracting knowledge from graphs however has only become
popular recently, motivated by the availability of very large, multi-dimensional
data sets. One of the most active fields in this line of research is link mining
[Getoor and Diehl, 2005], which comprises all tasks building predictive or descrip-
tive models of linked data. Link mining includes problems such as link-based ob-
ject ranking (e.g., PageRank [Page et al., 1999], HITS [Kleinberg, 1999]), group
detection (e.g., through stochastic blockmodeling [Karrer and Newman, 2011])
and frequent subgraph discovery (e.g., Apriori based algorithms [Inokuchi et al.,
2000]). Among those, Link Prediction (LP) is as a particularly interesting one,
as it directly enriches existing graphs by adding new edges.

Similarity-based algorithms are the most scalable approach to LP [Lü and
Zhou, 2011]. These algorithms score each pair of nodes independently to esti-
mate the likelihood of their link. The rest of approaches to LP require a model



of the whole graph, a model which becomes unfeasible to compute as the graph
grows. Among similarity-based algorithms the ones that scale the best are those
using information local to the pair of nodes (i.e., its direct neighbours) in order
to calculate each link score. For graphs with hundreds of thousands, or even
millions of nodes, these algorithms are the only ones that scale well enough as
to be a feasible solution nowadays. In this context we recently proposed a local
similarity-based algorithm to LP [Garcia-Gasulla and Cortés, 2014]. Our algo-
rithm differs from the rest of its kind in that it assumes the existence of a local
model in the graph (a hierarchy) so that it does not need to compute it. To pre-
dict links based on that model the algorithm estimates the likelihood with which
a node is below another one in the graph given their local neighbours. Although
our algorithm requires the graph to be directed while most LP proposals work
for undirected graphs, nowadays there are as many available directed graphs as
there are undirected.

Making of LP in large, sparse graphs a profitable problem is complicated, as
the huge class imbalance strongly penalizes any lack of precision. At the same
time, the cost of computing very large graphs requires that applied algorithms
scale well, which can affect their precision. Between these two problems, our goal
is to obtain a scalable methodology that can be easily applied to a variety of
relevant and large data sets, and that is precise enough to be broadly applicable.
To do so, first we compare our algorithm with the current best algorithm of its
kind on two large graphs with clear hierarchical semantics. After that we test our
algorithm on a very large graph (obtained from the Wikipedia) which does not
implement a hierarchical structure. The rest of the paper is organized as follows,
in §2 we review the related work in LP. In §3 we discuss and introduce our
proposal. In §4 we present a performance analysis on three different data sets.
Then, in §5 we outline our parallelization method and discuss some efficiency
issues of LP. Finally, in §6 we present our conclusions.

2 Related Work

There are three main approaches to LP [Lü and Zhou, 2011]: similarity-based al-
gorithms, maximum likelihood algorithms and probabilistic models. The last two
need to build and compute a model for the whole graph, which becomes unfea-
sible once the graph reaches a certain size (e.g., millions of nodes). Probabilistic
models are typically based on Markov and Bayesian Networks, while maximum
likelihood algorithm assume and compute a certain model for the whole graph
(often hierarchical or community based). An interesting example of maximum
likelihood algorithm is the Hierarchical Random Graph [Clauset et al., 2008].

The third family of LP methods are similarity-based algorithms. These al-
gorithms compute a measure of distance or score between each possible pair of
nodes within the graph. This score is then used to determine the likelihood of
each possible edge within the graph. Even for this simpler type of algorithms
there are solutions which cannot be scaled to graphs with millions of nodes. If
the information used to obtain each score is global, i.e., it is derived from the



complete graph topology, the cost of fully traversing the graph quickly becomes
prohibitive [Lü and Zhou, 2011]. On the other hand, if the information used
is local, i.e., it is derived from the direct neighbours of the pair of nodes, the
reduced cost allows one to compute extremely large graphs.

Quasi-local indices are a compromise between global an local scores. These
indices execute a variable number of steps, typically increasing the depth of the
graph being explored. As the number of steps grows, the algorithm becomes more
expensive (often exponentially [Lü and Zhou, 2011, Liu and Lü, 2010]). The most
popular quasi-local indices are based on the random walk model [Liu and Lü,
2010] and on the number of paths between the pair of nodes [Lü et al., 2009].
In essence quasi-local indices originate from local scores: when the minimum
number of steps is set quasi-local indices are equivalent to a local score. For
example, local path index reduces to the local score common neighbours [Zhou
et al., 2009], while superposed random walk and local random walk reduce to the
local score resource allocation [Liu and Lü, 2010]. Beyond the cost of computing
a larger part of the graph, the sampling process required by quasi-local indices to
determine the optimum number of steps to be performed also adds a significant
overhead. In that regard, no test has been performed so far to evaluate the
performance and cost of quasi-local indices on graphs with millions of nodes.

Finally, let us mention a completely different family of algorithms which have
come close to the field of LP are tensor factorization algorithms. These algebraic
methods were first used for link-based object ranking of entities extracted from
RDF triplets [Franz et al., 2009], and have also been used to obtain a score for
non existing triplets in a given KB [Drumond et al., 2012].

2.1 Local similarity-based algorithms

Similarity-based algorithms were first evaluated on five different scientific co-
authorship graphs in the field of physics [Liben-Nowell and Kleinberg, 2007].
Three scores consistently achieved the best results in all data sets: local algo-
rithms Adamic/Adar (AA) and Common Neighbours (CN), and global algo-
rithm Katz. In [Murata and Moriyasu, 2008] similar results were obtained, with
AA and CN achieving the best results among local algorithms. In [Zhou et al.,
2009] a new local algorithm called Resource Allocation (RA) was proposed and
compared with other local similarity-based algorithms. Testing on six different
datasets showed once again that AA and CN provide the best results among
local algorithms, but it also showed that RA could improve them.

In [Garcia-Gasulla and Cortés, 2014] we evaluate AA, CN and RA on two
of the data sets used here (Cyc and Wordnet), with RA clearly outperforming
the others. We therefore decided to use RA as a baseline for our algorithm in
§4. The RA algorithm is based on the resource allocation process of networks.
In its simpler implementation each node transmits a single resource unit, having
this resource evenly distributed among its neighbours. In this case, the similarity
between nodes x and y becomes the amount of resource obtained by y from x



(Γ (x) represents the set of nodes connected with x)

sRAx,y =
∑

z∈Γ (x)∩Γ (y)

1

|Γ (z)|

Most LP algorithms are currently designed for undirected graphs, disregard-
ing all information related with directionality. In practice that means scores like
RA cannot separately characterize the pair of edges x → y and y → x (i.e.,
sx,y = sy,x). To mitigate this handicap so that we can test RA against our own
algorithm under similar conditions, we adapt RA to directed graphs following
our own hierarchical approach. We make RA consider only those edges going
from specific nodes towards generic nodes. We define how specific a node is as
the number of nodes below it in the hierarchy (i.e., the number of nodes each
node can be reached from). In previous work [Garcia-Gasulla and Cortés, 2014]
we saw how this modification consistently improves the performance of undi-
rected similarity-based algorithms in hierarchical graphs (CN, AA and RA all
improved their results this way). Formally, the Hierarchical Resource Allocation
score (HRA) is defined as

Definition 1.

sHRAx→y =

{
sRAx,y if x is more or equally specific than y

0 if x is more abstract than y

3 Hierarchical Link Prediction

Our proposed LP score is based on the concept of hierarchy, one of the most
general structures, if not the most general structure, used for knowledge organi-
zation. The core semantics of hierarchies (e.g., generalization and specialization)
are found in domains as diverse as protein structure or terrorist organizations,
and constitute backbone core of most KR schemes. Within Knowledge Bases
(KB) hierarchical properties are found in a variety of ways: through the lin-
guistic relation hyponym/hypernym, in ontologies through the is a relation, in
RDFS through relations such as rdf:type and rdfs:subClassOf, etc.. Regard-
less of the method used to represent hierarchies, the universal semantics of these
structures makes them essential for representing concepts more complex than a
hierarchy itself.

For evaluating the importance of hierarchical properties in knowledge defini-
tion, in [Garcia-Gasulla and Cortés, 2014] we presented INF, a hierarchy-based
LP score (introduced next in §3.1). We tested its predictive capability on two
semi-formal domains which contained explicit representations of a hierarchy:
Wordnet and Cyc. We will introduce these results in §4.1 and §4.2. Next we
intend to evaluate the importance of hierarchical properties in domains with
no explicit hierarchical structure. Our hypothesis is that most directed graphs
contain a sense of hierarchy in them which can be exploited as defined by edge
directionality: while undirected edges represent relations between nodes, directed
edges represent asymmetric relations, the source of hierarchical structure.



3.1 INF Score

According to our interpretation of a hierarchy, generalization and specialization
are the two main semantic properties available for each node. We impose only two
restrictions on what generalization and specialization actually represent w.r.t.
the relation between elements. First, an element is partly defined by the
elements it generalizes, as it somehow reduces their semantics. And
second, an element is partly defined by the elements it specializes, as
it somehow aggregates their semantics.

Given an element x, we name the elements that generalize x the ancestors of x
(A(x)), and the elements that specialize x the descendants of x (D(x)). Mapping
these concepts into directed graphs is straightforward, as A(x) represents the set
of nodes destination of an edge originated in x, and D(x) the set of nodes origin
of an edge which ends in x. Considering → as the directed edge of a graph
G = (V,E) we formalize the ancestors and descendants sets

Definition 2.

∀x, y ∈ V : x ∈ D(y)↔ x→ y ∈ E

∀x, y ∈ V : x ∈ A(y)↔ y → x ∈ E

At this point we define the hierarchical scores we propose to predict links. We
start with one suggested by the following deductive reasoning and supported by
the generalizations of a node: if most of my parents are mortal, I will probably
be mortal too. Or in other words, if most of my ancestors share an edge, I should
probably share it as well. We call this the the deductive score (DED for short)

Definition 3.

sDEDx→y =
|A(x) ∩D(y)|
|A(x)|

The second main hierarchical score we use is suggested by the following
inductive reasoning and supported by the specializations of a node: if most of
my children are mortal, I will probably be mortal too. In other words, if most
my descendants share an edge, I should probably share it as well. We call this
the the inductive score (IND for short)

Definition 4.

sINDx→y =
|D(x) ∪D(y)|
|D(x)|

We combine the DED and IND scores within a single score by adding them.
This produces a hierarchical affinity measure for each possible pair of nodes
based on the combined evidence of their generalizations and specializations. This
algorithm we called the inference score (INF for short).

Definition 5.

sINFx→y = sDEDx→y + sINDx→y



In this implementation of INF i.e., only those elements directly connected
with x compose A(x) or D(x). Consequently, according to the definitions given
here DED, IND and INF are local similarity-based scores. However, like the
quasi-local indices discussed in §2, our proposed score can be extended to a
quasi-local index by executing a variable number steps. These steps would allow
the algorithm to consider further nodes, simply by extending Definition 2 to
include within A(x) and D(x) nodes reachable at a larger distance.

4 Evaluation

LP algorithms are often evaluated using the Receiver Operating Characteristic
(ROC) curve [Murata and Moriyasu, 2008, Lü and Zhou, 2011]. This metric
compares the False Positive Rate (FPR, in the x axis) with the True Positive
Rate (TPR, in the y axis) at various thresholds. In the ROC curve the straight
line between points [0,0] and [1,1] represents the random predictor; the func-
tion defined by points [0,0], [0,1] and [1,1] represents the perfect classifier. We
randomly split our first pair of graphs to build the ROC curve. 90% of edges
will be used as input for the algorithms and the remaining 10% will be used to
evaluate them. To evaluate the third graph (Wikipedia of 2012) we will use a
later, incremental version of the input graph (Wikipedia of 2013). The size of
the graphs used are summarized in Table 1.

The smallest graph we use has 89,000 nodes and the largest 17 million. Their
ratio of positive:negative edges goes from 1:11,000 in the best case (Wordnet) to
1:27 million in the worse case (Wikipedia). This huge imbalance makes of LP a
needle in a haystack problem, where we are trying to find a tiny set of correct
edges within a huge set of incorrect ones. This inconvenient setting must not be
considered as something abnormal or to be fixed. Instead we must accept it as
an intrinsic property of large and sparse graphs and try to work around it. In the
case of LP we deal with the class skew problem by focusing on high certainty
link predictions. Low certainty predictions typically entail a large number of
mistakes (i.e., a large FPR), which makes LP useless: for graphs the size of
the ones we use here, incorrectly accepting a 0.01% of all non-existent edges
(FPR of 0.0001) represents more incorrectly accepted edges than the 100% of
all positive edges (TPR of 1). If we intend find real domains of application
for LP in graphs this size we must reduce the number of miss-classifications.
For that reason we consider the overall AUC measure is not appropriate for
evaluating the performance impact of LP algorithms in large sparse graphs. More
relevant is the left-bottom corner of the ROC curve, where the best TPR/FPR
ratios are achieved. The high threshold predictions found in that section of the
curve represent the most precise and therefore applicable results. In that regard
we have found that LP scores which perform better at high thresholds do so
consistently.



Data set source Number of nodes Number of edges (Input + Test)

Cyc 116,835 345,599

Wordnet 89,178 698,588

Wikipedia 17,170,894 166,719,367
Table 1. Size of graphs used for evaluation

4.1 Cyc

The Cyc [Lenat, 1995] project was started in 1984, by D. Lenat, with the goal of
enabling AI applications with human-like common sense reasoning. In its almost
thirty years of existence the Cyc project has developed a large KB containing
those facts that define common sense according to its creators. The project uses
a declarative language based on first-order logic (FOL) called CycL to formally
represent knowledge. OpenCyc is a reduced version of Cyc which contains most of
the same concepts, taxonomic relationships, well-formedness information about
predicates and natural language strings associated with each term. In 2012 a
version of OpenCyc was released which included the entire Cyc ontology in
OWL, implementing RDF vocabulary.

We build a semi-formal hierarchy from the OpenCyc’s OWL ontology by
extracting the rdfs:Class elements. These will become the nodes of the graph
we try to predict links on. To implement the edges of the graph we use the RDF
relations rdf:type and rdfs:subClassOf, as these define a kind of hierarchy.
Consequently, a LP process in this graph will discover new edges of a merged
rdf:type and rdfs:subClassOf kind, among rdfs:Class elements. Notice that
only the relation rdfs:subClassOf is transitive [RDF Working Group, 2014], a
common property of hierarchical knowledge partially assumed by our algorithm.
These two types of relations, rdf:type and rdfs:subClassOf, account for over
the 80% of all relations among rdfs:Class entities in the OpenCyc ontology.

The resultant graph obtained from OpenCyc is directed, unlabelled and com-
posed by 116,835 nodes and 345,599 edges. We run the RA, HRA and INF algo-
rithms on it and compare their results. Considering the whole ROC curve, RA
outperforms INF and HRA, as INF can only retrieve the 33% of all correct links
before accepting all links. RA on the other hand retrieves the 61% of all correct
edges in its less demanding setting (a single shared neighbour), while erring in a
10% of all incorrect edges. Due to that fact, RA has a much better AUC measure
w.r.t. the full ROC curve than INF. This is consequence of INF being a more de-
manding score: while RA considers one shared neighbour as minimum evidence
of similarity between nodes, INF requires more than that (see Definitions 3 and
4). When the minimum requirements of INF are met for one or more pairs of
nodes (at TPR of 0.33 and FPR of 0.0007), INF outperforms RA by a large mar-
gin. And it does so continuously for the rest of the ROC curve with a minimum
difference in the FPR of 2 orders of magnitude (see Figure 1). To emphasize on
the importance of performance at high thresholds, let us remark that a FPR
of 0.01 in the Cyc graph represents 136 million misclassified edges, while the
evaluation set contains 34,559 edges. Regarding HRA, it is always worse than



INF but it outperforms RA at high certainty inferences, up to a point where it
becomes worse and remains so thereafter (see Figure 1).

Fig. 1. ROC curve of RA, HRA and INF on the OpenCyc graph for TPRs<12%

Results in the OpenCyc graph indicate that INF is a particularly useful LP lo-
cal similarity score for predicting hierarchical links in KBs implemented through
RDF. The hierarchical assumptions of the INF algorithm match the semantic
nature of rdf:type and rdfs:subClassOf among rdfs:Class entities. In that
regard, the transitivity property of the rdfs:subClassOf relation covers part of
the assumptions of the DED score, although DED makes considers transitivity
as a weighted measure.

4.2 Wordnet

Wordnet [Miller, 1995] is a lexical database containing words with associated lex-
ical information. In this KB words compose synsets, groups of synonym words.
Synsets are related to one another through semantic relations such as hyper-
nym/hyponym, meronym/holonym, etc. We build the Wordnet directed graph
by considering each synset as a node and each hyponym/hypernym relation as
a directed edge (from hyponym to hypernym). The hyponym/hypernym rela-
tion in Wordnet is a transitive property. The resultant graph is composed by
89,178 nodes and 698,588 edges. The LP process in this graph will be predicting
hyponym/hypernym relations among synsets.

Wordnet results (see Figure 2) are similar to those of Cyc: RA is better in the
AUC measure for the whole ROC curve, but when the minimum requirements
of INF are met this score continuously outperforms RA, reducing its FPR up
to 6 orders of magnitude. The INF algorithm predicts a 15% of all positive
edges without making a single mistake (i.e., TPR of 0.15, FPR of 0). To predict



that same 15%, the RA incorrectly accepts 119,289 false positives (i.e., FPR
of 1.5e−05), and the HRA incorrectly accepts 68,710 false positives (i.e., FPR
of 9e−06). HRA once again is worse than INF but outperforms RA at high
thresholds, becoming worse than it at a certain point. All three scores perform
better in the Wordnet graph than they do in the Cyc graph, probably affected
by Wordnet’s 3 times smaller sparsity.

Fig. 2. ROC curve of RA, HRA and INF on the Wordnet graph for TPRs<10%

4.3 Wikipedia

The Wikipedia is a free online encyclopedia containing millions of articles. Arti-
cles are linked to one another through pagelinks, informal references implemented
as hyperlinks. The DBpedia project [Lehmann et al., 2014] periodically extracts
data from Wikipedia. We obtained two pagelinks data sets from DBpedia cor-
responding to the Wikipedia states of June 2012 and June 2013. We build the
Wikipedia directed graph using the June 2012 data set, by considering each ar-
ticle as a node and each pagelink as a directed edge. Notice that in this graph,
bidirectional relations are frequent (e.g., Spain↔Barcelona). To evaluate LP we
use the June 2013 data set as test set. Therefore, we will be evaluating the algo-
rithm capability at predicting real future links in Wikipedia. Links in the 2013
set involving at least one node not found in the input set are removed since they
cannot be predicted using only LP methods. The resultant Wikipedia graph has
17,170,894 nodes and 156,028,404 edges. The test set contains 10,690,963 new
edges to be predicted. To reduce the cost of exhaustively calculating all possible
edges of the graph (294 billion) we focus on those originating from one of the
200,000 nodes with more relations (|A(x)|+ |D(x)|). We will therefore evaluate



over 3.4 billion edges (the equivalent to fully compute a graph with 1.8 million
nodes). Of those 3.4 billion edges only 1,804,089 are found in the test set (a
0.000052%). Results of the INF algorithm can be seen in Figure 3.

Fig. 3. ROC curve of INF on the Wikipedia graph for TPRs<2%

The Cyc and Wordnet graphs contained a explicit, semi-formal hierarchical
structure empowered by transitivity. The Wikipedia pagelink graph however
does not. Instead, we hypothesized that such structure was implicitly found in it
and that it was relevant for defining its edges, even though in the style guidelines
of Wikipedia it says nothing in that regard. The results of the INF algorithm
seem to validate our hypothesis as it achieves a TPR of 0.01 (106,909 correctly
identified edges) with a FPR of 5.2e−8 (15M incorrectly identified edges). This
rate is better at more demanding thresholds, e.g., a TPR of 0.0001 (1,069 correct
edges) with a FPR of 2.5e−10 (73K wrong edges). The ratio of correct:incorrect
predicted edges reaches a minimum difference of one order of magnitude, while
the positive:negative class imbalance for this graph is 1:1,903,552 (six orders
of magnitude). To further contextualize these results let us remark that, even
though all edges not found in the 2013 Wikipedia graph are considered prediction
mistakes in this test, many of these edges would be coherent in the Wikipedia.
While this test methodology can help us compare the performance of algorithms
objectively, it cannot capture the complete potential utility of the results for real
domains.

5 Parallelization

Local similarity-based algorithms are the only LP approach currently capable of
computing huge graphs. The problem resides in building the whole ROC curve,



as for a directed graph we need to evaluate N ∗ (N − 1) different links. In our
Wikipedia graph (§4.3) where we tested only links going from the 200,000 most
linked nodes to the rest (17,170,894), and the total number of tested edges were
already 3.4 billion. Parallelizing this problem is therefore a necessity, even with
the simplest of models. As we will see next, LP perfectly fits the paradigm
of parallel computing. This notion further reinforces our idea that this type
of approach will be key in the future of large graph mining. Next we outline
some general features of LP parallelization which may be of interest to the
community. All code used in this paper was parallelized using the OpenMP
shared memory API [ARB, 2013]. Tests were performed on a single machine
with 16 cores running in parallel. In this environment, the most computationally
expensive test performed (the Wikipedia graph) finished in 36 hours.

5.1 Embarrassing Parallelization

The task of building the whole ROC curve requires to compute the likelihood
of all possible edges. Since each edge can be computed independently from the
rest, the task can be parallelized without dependencies. In other words, there
are no waiting times between individual link evaluations, which maximizes the
use of computational resources. This kind of application is called embarrassingly
parallel. By calculating the score of all edges we are effectively building the list of
all the ROC curve points, each distinct score being a different point. To obtain
the position of each point within the curve we need to consider all occurrences of
that score within the graph: for each distinct score calculate the total number of
true positives (TP) and false positives (FP) obtained by it. Fortunately, this is
also an embarrassingly parallel problem as each distinct score can be computed
independently. In a first parallel block we calculate the score of all edges and
their achieved TP and FP. Then in a second parallel block, we build the ROC
curve by adding the TP and FP obtained by each score throughout the graph.
As a result the process runs efficiently in parallel most of the time.

5.2 Approximation

The size of the LP problem in very large graphs motivates an approximate
approach. In the case of the ROC curve we can afford to lose some precision in
each edge score without impacting the curve significantly. The number of digits
used to represent the score can be of single precision, which are faster to compute
and require less storage space than double precision. The resultant ROC curve
is virtually indistinguishable from one obtained with double precision digits.

Through the use of single precision digits the number of total points in the
final ROC curve diminishes, as points which were very close become the same
one. However, for very large graphs, that may still result in an unnecessary large
number of points. For example, in the Wikipedia graph (§4.3) our algorithm
obtained 11,646,150 points defining the ROC curve. Obviously we do not need
so many points to properly represent the curve. We avoid unnecessary points by
considering the fact that the ROC curve is a monotonic function (it is entirely



non-decreasing). All points aligned between two previously found points w.r.t.
to one of the two axis can be removed without modifying the overall shape of
the ROC curve. As a result we speed up the ROC building process in proportion
to the number of points discarded.

5.3 Data Locality

LP is a data-intensive tasks as it requires continuous accesses to graph data.
When arithmetic operations are simple (as with local scores), data access in-
structions become the most relevant ones w.r.t. algorithm computational effi-
ciency. When data is requested but not found in cache the process must fetch it
from main memory (RAM) with the consequent loss of computation cycles. This
is specially important for huge data sets that do not fit in memory. To increase
data locality and decrease cache misses, we store the graph data sequentially in
memory. We use containers that allow us to decide the order in which data is
stored, and compute nodes in our algorithm using that same order. This way we
maximize data reuse and reduce the number of RAM memory accesses. In our
experience, this approach can reduce the computation time by a factor of four.

6 Conclusions

The availability of large graphs motivates research in the field of scalable link
mining. The size of graphs originated from the web, social networks or biological
relations forces us to use very simple algorithms if those graphs are to be com-
puted in acceptable time. At the same time, since these graphs tend to be very
sparse LP must achieve a high precision to obtain usable results. As a trade-off
between both problems, solutions exploiting inherent low-level properties like
the one presented here represent a scalable and rather precise approach to this
type of graphs. Advances in this direction can significantly contribute to close
the gap between graph mining theory and its practical application.

To compute very large graphs one must find ways of efficiently parallelizing
its algorithms. In that regard we have noticed that LP is a very appropriate
problem for parallel computing, as it can be divided into independent tasks. This
matching makes of LP a field with a promising future, as it will benefit from
the ongoing research on parallel computing. This also opens up the possibility
of performing LP on even larger graphs than the ones presented here.
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[Lü et al., 2009] Lü, L., Jin, C.-H., and Zhou, T. (2009). Similarity index based on local
paths for link prediction of complex networks. Physical Review E, 80(4):046122.
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