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Abstract. We provide a new approach to synthesis of Formal Concept
Analysis and Rough Set Theory. In this approach, the formal concept is
considered to be a collection of objects accompanied with two collections
of attributes—those which are shared by all the objects and those which
are possessed by at least one of the objects. We define concept-forming
operators for these concepts and describe their properties. Furthermore,
we deal with reduction of the data by rough approximation by given
equivalence. The results are elaborated in a fuzzy setting.

1 Introduction

Formal concept analysis (FCA) [12] is a method of relational data analysis iden-
tifying interesting clusters (formal concepts) in a collection of objects and their
attributes (formal context), and organizing them into a structure called concept
lattice. Numerous generalizations of FCA, which allow to work with graded data,
were provided; see [19] and references therein.

In a graded (fuzzy) setting, two main kinds of concept forming-operators—
antitone and isotone one—were studied [2, 13, 20, 21], compared [7, 8] and even
covered under a unifying framework [4, 18]. We describe concept-forming oper-
ators combining both isotone and antitone operators in such a way that each
formal (fuzzy) concept is given by two sets of attributes. The first one is a
lower intent approximation, containing attributes shared by all objects of the
concept; the second one is an upper intent approximation, containing those at-
tributes which are possessed by at least one object of the concept. Thus, one can
consider the two intents to be a lower and upper approximation of attributes
possessed by an object.

Several authors dealing with synthesis of FCA and Rough Set Theory have
noticed that intents formed by isotone and antitone operators (in both, crisp
and fuzzy setting) correspond to upper and lower approximations, respectively
(see e.g. [15, 16, 24]). To the best of our knowledge, no one has studied concept-
forming operators which would provide both approximations being present in
one concept lattice.

In this papers we present such concept-forming operators, structure of their
concepts, and reduction of the data by means of rough approximations by equiv-
alences. Due to page limitation we omit proofs of some theorems.

‹ Supported by grant no. P202/14-11585S of the Czech Science Foundation.



2 Preliminaries

In this section we summarize the basic notions used in the paper.

Residuated Lattices and Fuzzy Sets We use complete residuated lattices as basic
structures of truth-degrees. A complete residuated lattice [1, 14, 23] is a struc-
ture L “ xL,^,_,b,Ñ, 0, 1y such that xL,^,_, 0, 1y is a complete lattice, i.e.
a partially ordered set in which arbitrary infima and suprema exist; xL,b, 1y is
a commutative monoid, i.e. b is a binary operation which is commutative, asso-
ciative, and ab 1 “ a for each a P L; b and Ñ satisfy adjointness, i.e. ab b ď c
iff a ď bÑ c. 0 and 1 denote the least and greatest elements. The partial order
of L is denoted by ď. Throughout this work, L denotes an arbitrary complete
residuated lattice.

Elements a of L are called truth degrees. Operations b (multiplication) and
Ñ (residuum) play the role of (truth functions of) “fuzzy conjunction” and
“fuzzy implication”. Furthermore, we define the complement of a P L as  a “
aÑ 0.

An L-set (or fuzzy set) A in a universe set X is a mapping assigning to each
x P X some truth degree Apxq P L. The set of all L-sets in a universe X is
denoted LX , or LX if the structure of L is to be emphasized.

The operations with L-sets are defined componentwise. For instance, the
intersection of L-sets A,B P LX is an L-set AXB in X such that pAXBqpxq “
Apxq ^ Bpxq for each x P X. An L-set A P LX is also denoted tApxq{x | x P
Xu. If for all y P X distinct from x1, . . . , xn we have Apyq “ 0, we also write
tApx1q{x1, . . . ,

Apxnq{xnu.
An L-set A P LX is called normal if there is x P X such that Apxq “ 1, and

it is called crisp if Apxq P t0, 1u for each x P X. Crisp L-sets can be identified
with ordinary sets. For a crisp A, we also write x P A for Apxq “ 1 and x R A
for Apxq “ 0.

Binary L-relations (binary fuzzy relations) between X and Y can be thought
of as L-sets in the universe X ˆ Y . That is, a binary L-relation I P LXˆY

between a set X and a set Y is a mapping assigning to each x P X and each
y P Y a truth degree Ipx, yq P L (a degree to which x and y are related by I). For
L-relation I P LXˆY we define its transpose IT P LYˆX as ITpy, xq “ Ipx, yq
for all x P X, y P Y .

The composition operators are defined by

pI ˝ Jqpx, zq “
ł

yPY

Ipx, yq b Jpy, zq,

pI Ž Jqpx, zq “
ľ

yPY

Ipx, yq Ñ Jpy, zq,

pI Ż Jqpx, zq “
ľ

yPY

Jpy, zq Ñ Ipx, yq

for every I P LXˆY and J P LYˆZ .



A binary L-relation E is called an L-equivalence if it satisfies IdX Ď E
(reflexivity), E “ ET (symmetry), E ˝ E Ď E (transitivity).

An L-set B P LY is compatible w.r.t. L-equivalence E P LYˆY if

Bpy1q b Epy1, y2q ď Bpy2q.

for any y1, y2 P Y .

Formal Concept Analysis in the Fuzzy Setting An L-context is a triplet xX,Y, Iy
where X and Y are (ordinary) sets and I P LXˆY is an L-relation between X
and Y . Elements of X are called objects, elements of Y are called attributes,
I is called an incidence relation. Ipx, yq “ a is read: “The object x has the
attribute y to degree a.” An L-context may be described as a table with the
objects corresponding to the rows of the table, the attributes corresponding to
the columns of the table and Ipx, yq written in cells of the table (for an example
see Fig. 1).

α β γ δ

A 0.5 0 1 0
B 1 0.5 1 0.5
C 0 0.5 0.5 0.5
D 0.5 0.5 1 0.5

Fig. 1. Example of L-context with objects A,B,C,D and attributes α, β, γ, δ.

Consider the following pairs of operators induced by an L-context xX,Y, Iy.
First, the pair xÒ, Óy of operators Ò : LX Ñ LY and Ó : LY Ñ LX is defined by

AÒpyq “
ľ

xPX

Apxq Ñ Ipx, yq, BÓpxq “
ľ

yPY

Bpyq Ñ Ipx, yq. (1)

Second, the pair xX, Yy of operators X : LX Ñ LY and Y : LY Ñ LX is defined by

AXpyq “
ł

xPX

Apxq b Ipx, yq, BYpxq “
ľ

yPY

Ipx, yq Ñ Bpyq. (2)

To emphasize that the operators are induced by I, we also denote the op-
erators by xÒI , ÓIy and xXI , YIy. Fixpoints of these operators are called formal
concepts. The set of all formal concepts (along with set inclusion) forms a com-
plete lattice, called L-concept lattice. We denote the sets of all concepts (as well
as the corresponding L-concept lattice) by BÒÓpX,Y, Iq and BXYpX,Y, Iq, i.e.

BÒÓpX,Y, Iq “ txA,By P LX ˆ LY | AÒ “ B, BÓ “ Au,

BXYpX,Y, Iq “ txA,By P LX ˆ LY | AX “ B, BY “ Au.
(3)



For an L-concept lattice BpX,Y, Iq, where B is either BÒÓ or BXY, denote the
corresponding sets of extents and intents by ExtpX,Y, Iq and IntpX,Y, Iq. That
is,

ExtpX,Y, Iq “ tA P LX | xA,By P BpX,Y, Iq for some Bu,

IntpX,Y, Iq “ tB P LY | xA,By P BpX,Y, Iq for some Au.
(4)

When displaying L-concept lattices, we use labeled Hasse diagrams to include
all the information on extents and intents. In BÒÓpX,Y, Iq, for any x P X, y P Y
and formal L-concept xA,By we have Apxq ě a and Bpyq ě b if and only if
there is a formal concept xA1, B1y ď xA,By, labeled by a{x and a formal concept
xA2, B2y ě xA,By, labeled by b{y. We use labels x resp. y instead of 1{x resp.
1{y and omit redundant labels (i.e., if a concept has both the labels a{x and b{x
then we keep only that with the greater degree; dually for attributes). The whole
structure of BÒÓpX,Y, Iq can be determined from the labeled diagram using the
results from [2] (see also [1]).

In BXYpX,Y, Iq, for any x P X, y P Y and formal L-concept xA,By we have
Apxq ě a and Bpyq ď b if and only if there is a formal concept xA1, B1y ď

xA,By, labeled by a{x and a formal concept xA2, B2y ě xA,By, labeled by b{y
(see examples depicted in Fig. 2).
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Fig. 2. Concept lattice BÒÓpX,Y, Iq (left) and BXY
pX,Y, Iq (right) of the L-context in

Fig. 1.



3 L-rough concepts

We consider concept-forming operators induced by L-context xX,Y, Iy defined
as follows:

Definition 1. Let xX,Y, Iy be an L-context. Define L-rough concept-forming
operators as

AM “ xAÒ, AXy and xB,By
O
“ BÓ XB

Y

for A P LX , B,B P LY . L-rough concept is then a fixed point of xM,Oy, i.e. a

pair xA, xB,Byy P LX ˆpLˆLqY such that AM “ xB,By and xB,By
O
“ A.1 AÒ

and AX are called lower intent approximation and upper intent approximation,
respectively.

That means, M gives intents w.r.t. both xÒ, Óy and xX, Yy; O then gives inter-
section of extents related to the corresponding intents.

We denote the set of all fixed-points of xM,Oy, in correspondence with (3),
as BMOpX,Y, Iq and call it L-rough concept lattice. Below, we present an analogy
of the Main theorem on concept lattices for L-rough setting.

Theorem 1 (Main theorem on L-rough concept lattices).

(a) L-rough concept lattice BMOpX,Y, Iq is a complete lattice with suprema and
infima defined as follows

ľ

i

xAi, Bi, Biy “ x
č

i

Ai, x
ď

i

Bi,
č

i

Biy
OM
y,

ł

i

xAi, Bi, Biy “ xp
ď

i

Aiq
MO,

č

i

Bi,
ď

i

Biy.

(b) Moreover, a complete lattice V “ xV,ďy is isomorphic to BMOpX,Y, Iq iff
there are mappings

γ : X ˆ LÑ V and µ : Y ˆ Lˆ LÑ V

such that γpXˆLq is supremally dense in V, µpY ˆLˆLq is infimally dense
in V, and

ab b ď Ipx, yq and Ipx, yq ď aÑ b is equivalent to γpx, aq ď µpy, b, bq

for all x P X, y P Y, a, b, b P L.

When drawing a concept lattice we label nodes as in BÒÓ for lower intent
approximations and BXY for upper intent approximations. We write a{y or a{y
instead of just a{y to distinguish them. Fig. 3 (middle) shows an L-rough concept
lattice for the L-context from Fig. 1.

The following theorem explains that normal extents have natural intent ap-
proximations; that is B Ď B.

1 In what follows, we naturally identify xA, xB,Byy with xA,B,By.



Theorem 2. For normal A P LX , we have AÒ Ď AX, for crisp singleton A P LX ,
we have AÒ “ AX.

Proof. Since A is normal, there is x1 P X such that Apx1q “ 1. Then we have

AÒpyq “
ľ

xPX

Apxq Ñ Ipx, yq ď Apx1q Ñ Ipx1, yq “ Ipx1, yq “

“ Apx1q b Ipx1, yq ď
ł

xPX

Apxq b Ipx, yq “ AXpyq
(5)

for each y P Y .

For A being a crisp singleton, one can show AÒ “ AX by changing all inequal-
ities in (5) to equalities. [\

Since xM,Oy is defined via xÒ, Óy and xX, Yy, one can expect that there is a
strong relationship between the associated concept lattices. In the rest of this
section, we summarize them.

Theorem 3. For S Ď LX , let rSs denote an L-closure span of S, i.e. the small-
est L-closure system containing S. We have

rExtÒÓpX,Y, Iq Y ExtXYpX,Y, Iqs “ ExtMOpX,Y, Iq.

Proof. “Ď”: LetA P ExtÒÓpX,Y, Iq. ThenA “ AXX “ xAÒ, Y y
O
P ExtMOpX,Y, Iq.

Similarly for A P ExtXYpX,Y, Iq.

“Ě”: Let A P ExtMOpX,Y, Iq and let xB1, B2y “ AM. Then we have A “

BÓ XBY P rExtÒÓpX,Y, Iq Y ExtXYpX,Y, Iqs since BÓ P ExtÒÓpX,Y, Iq and BY P

ExtXYpX,Y, Iq.

From Theorem 3 one can observe that no extent from ExtÒÓpX,Y, Iq and
ExtXYpX,Y, Iq is lost.

Corollary 1. ExtÒÓpX,Y, Iq Ď ExtMOpX,Y, Iq and ExtXYpX,Y, Iq Ď ExtMOpX,Y, Iq.

In addition, no concept is lost.

Corollary 2. For each xA,By P BÒÓpX,Y, Iq there is xA,B,AXy P BMOpX,Y, Iq.

For each xA,By P BXYpX,Y, Iq there is xA,AÒ, By P BMOpX,Y, Iq.

Remark 1. One can observe from Fig. 3 that in ExtMOpX,Y, Iq there exist ex-
tents which are present neither in ExtÒÓpX,Y, Iq nor in ExtXYpX,Y, Iq. On the
other hand, lower intent approximations are exactly those from IntÒÓpX,Y, Iq
and upper intent approximations are exactly those from IntXYpX,Y, Iq.

With results on mutual reducibility from [8] we can state the following the-
orem on representation of BMO by BÒÓ.
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Theorem 4. For a L-context xX,Y, Iy, consider the L-context xX,Y ˆ L, Jy
where J is defined by

Jpx, xy, ayq “

#

Ipx, yq if a “ 1,

Ipx, yq Ñ a otherwise.

Then we have that BÒÓpX,Y ˆ L, Jq is isomorphic to BMOpX,Y, Iq as a lattice.
In addition,

ExtÒÓpX,Y ˆ L, Jq “ ExtMOpX,Y, Iq.

Proof (sketch). In [8] we show that for L-contexts xX,Y, Iy and xX,Y ˆ Lzt1u, Jy
such that

Jpx, xy, ayq “ Ipx, yq Ñ a

it holds that ExtXYpX,Y, Iq “ ExtÒÓpX,Y ˆ Lzt1u, Jq. Using this fact, one can
check that mapping i defined as

ipxA,B,Byq ÞÑ xA,B1 YB
1
y,

where B1 P LYˆt1u, B
1
P LYˆLzt1u with

B1pxy, 1yq “ Bpyq,

B
1
pxy, ayq “ Bpyq Ñ a,

is the desired isomorphism from BMOpX,Y, Iq to BÒÓpX,Y ˆ L, Jq.

Theorem 4 shows how we can obtain a concept lattice formed by xÒ, Óy which
is isomorphic to L-rough concept lattice of given L-context.

4 Rough approximation of an L-context and L-concept
lattice

In [17] Pawlak introduced Rough Set Theory where uncertain elements are ap-
proximated with respect to an equivalence relation representing indiscernibility.

Formally, given Pawlak approximation space xU,Ey, where U is a non-empty
set of objects (universe) and E is an equivalence relation on U , the rough approx-
imation of a crisp set A Ď U by E is the pair xAóE , AòE y of sets in U defined
by

x P AóE iff for all y P U, xx, yy P E implies y P A,

x P AòE iff there exists y P U such that xx, yy P E and y P A.

AóE and AòE are called lower and upper approximation of the set A by E,
respectively.



In the fuzzy setting, one can generalize xAóE , AòE y as in [10, 11, 22],

AóE pxq “
ľ

yPU

pEpx, yq Ñ Apyqq,

AòE pxq “
ł

yPU

pApyq b Epx, yqq

for L-equivalence E P LUˆU and L-set A P LU .
Considering L-context xU,U,Ey, we can easily see that óE is equivalent to

YE ; and òE is equivalent to XET . Since E is symmetric, we can also write

xóE ,òEy “ xYE , XEy. (6)

Note that for L-set A, AóE is its largest subset compatible with E and AòE

is its smallest superset compatible with E.
Below, we deal with situation where lower and upper intent approximations

are further approximated using Pawlak’s approach. In other words, instead of
lower intent approximation AÒ we consider the largest subset of AÒ compatible
with a given indiscernibility relation E, and similarly, instead of upper intent
approximation AX we consider its smallest superset compatible with E. In The-
orem 5 we show how to express this setting using L-rough concept forming
operators.

Definition 2. Let xX,Y, Iy be an L-context, E be an L-equivalence on Y . Define
L-rough concept-forming operators as follows:

AME “ xAÒóE , AXòE y,

xB,By
OE
“ BòEÓ XB

óEY
.

Directly from (6) and results in [5] we have:

Theorem 5. Let xX,Y, Iy be an L-context, E be an L-equivalence on Y . We
have

AME “ xAÒIŻE , AXI˝E y and xB,By
OE
“ BÓIŻE XB

YI˝E
.

Again, for normal extents we obtain natural upper and lower intent approx-
imations.

Theorem 6. For normal A P LX we have AÒIŻE Ď AXI˝E .

In correspondence with (3) and (4), we denote set of the set of fixpoints of
xME ,OEy in L-context xX,Y, Iy by BMEOE pX,Y, Iq and set of its extents and
intents by ExtMEOE pX,Y, Iq and IntMEOE pX,Y, Iq, respectively.

The following theorem shows that a use of a rougher L-equivalence relation
leads to a reduction of size of the L-rough concept lattices. Furthermore, this
reduction is natural, i.e. it preserves extents.



Theorem 7. Let xX,Y, Iy be an L-context, and E1, E2 be L-equivalences on Y ,
such that E1 Ď E2. Then

ExtME2
OE2 pX,Y, Iq Ď ExtME1

OE1 pX,Y, Iq.

Example 1. Fig. 4 shows L-rough concept lattice of the L-context in Fig. 1 and
rough L-concept lattice approximated using the following L-equivalence relation
on Y .

α β γ δ
α 1 0.5 0 0
β 0.5 1 0 0
γ 0 0 1 0.5
δ 0 0 0.5 1

To demonstrate Theorem 7, the concepts with the same extents in the two
lattices are connected.

5 Conclusions and further research

We proposed a novel approach to synthesis of RTS na FCA. It provides a lot of
directions to be further explored. Our future research includes:

Study of attribute implications using whose semantics is related to the present
setting. That will combine results on fuzzy attribute implications [9] and at-
tribute containment formulas [6].

Generalization of the current setting. Note that the operators Ò and X which
compute the universal and the existential intent, need not be induced by the
same relation to keep most of the described properties. Actually, this feature is
used in Section 4. In our future research, we want to elaborate more on this.
For instance, it can provide interesting solution of problem of missing values
in a formal fuzzy context—the idea is to use Ò induced by the context with
missing values substituted by 0, and X induced by the context with missing
values substituted by 1.

Reduction of L-rough concept lattice via linguistic hedges As two intents are
considered in each L-rough concept, the size of concept lattice can grow very
large. The RST approach to reduction of data, i.e. use of rougher L-relation,
directly leads to reduction of L-rough concept lattice as we showed in Theorem 7.
FFCA provides other ways to reduce the size, one of them is parametrization of
concept-forming operators using hedges.
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