
Hypersonic – Model Analysis as a Service

Vlad Acretoaie and Harald Störrle

Department of Applied Mathematics and Computer Science,
Technical University of Denmark

rvac@dtu.dk, hsto@dtu.dk

Abstract. Hypersonic is a Cloud-based tool that proposes a new ap-
proach to the deployment of model analysis facilities. It is implemented
as a RESTful Web service API offering analysis features such as model
clone detection. This approach allows the migration of resource intensive
analysis algorithms from monolithic desktop modeling tools to a wide
range of mobile and Web-based clients. As a technology demonstrator,
a Web application acting as a client for the Hypersonic API has been
implemented and made publicly available.

1 Introduction

The vast majority of modeling tools are currently deployed as rich client desktop
applications. Some tools, such as those based on the Eclipse Modeling Framework
(EMF), benefit from rich plug-in ecosystems. Others, such as the MagicDraw
modeling environment [8], offer built-in access to remote resources (e. g. a ver-
sion control server). However, recent years have seen the rich client architecture
demonstrating its limitations, causing many areas of computing to consider more
flexible alternatives. A notable example are Cloud-based architectures, which
involve the deployment of computationally intensive tasks to a centralized and
fully transparent shared pool of configurable computing resources. Lightweight
clients access these resources via protocols such as RESTful Web services [4],
giving rise to the “Software as a Service (SaaS)” paradigm. The adoption of this
paradigm in the area of modeling tools is so far remarkably limited.

In this context, we have proposed Hypersonic [1], a RESTful Web service API
offering model analysis facilities including clone detection, model difference com-
putation, and model size computation. Model analysis is a particularly suitable
application area for a service-oriented architecture, since analysis algorithms of-
ten demand extensive resources. The service-based approach to modeling tools is
illustrated in Fig. 1: a subset of the model processing features deployed locally in
a rich client architecture may instead be offered as services by several providers,
while existing remote components such as model repositories remain unaffected.

This approach benefits all the involved stakeholders. For modelers, it sup-
ports access to scalable computational resources running the latest version of
the modeling tool, as well as the option to mix-and-match services offered by
different providers. For tool providers, it facilitates cross-device support and miti-
gates the distribution of unlicensed software. Furthermore, entry barriers for new

providers are lowered. For IT administrators, a service-based architecture brings
a reduction in installation and maintenance workloads. Finally, the Model-Based
Software Development (MBSD) community can expect improved standards com-
pliance and an accelerated knowledge transfer between research and industry.

The comparatively few drawbacks of a service-based approach are caused
by its distributed nature. Uploading large models may create a performance
bottleneck, while new security and privacy aspects come into play. Nevertheless,
these drawbacks are common to most Software as a Service (SaaS) solutions,
and have not undermined this architecture style’s acceptance.

Client Client Client

Provider 1 Provider k

Provider x

Provider 1 Provider 1

Provider 1

Provider y

Le
ge

n
d

Component suitable for deployment
to remote server

Component suitable for deployment
to local client

. . .

. . .

Fig. 1. Modeling tool architectures: rich client (left); Hypersonic (right)

2 Hypersonic

2.1 The Hypersonic API

The architecture of the Hypersonic API is presented in Fig. 2. Following the
REST architectural style, it exposes resources for clients to interact with via
HTTP requests. The API currently supports MagicDraw UML models (support
for EMF and Simulink [12] models is also planned). API response messages
contain the analysis results encoded as JSON [5] documents.

The Hypersonic API is implemented as a wrapper around the MACH model
analysis engine [11], though from a conceptual standpoint any other model anal-
ysis engine may be used. The RESTful API component handles HTTP interac-
tions with clients, delegating processing tasks to the MACH engine. All uploaded

API

client

RESTful

API

XMI2PL

MACH

HTTP

HTTP

.json

.xmi

.xmi

.pl

.pl

Model

warehouse

SWI-Prolog

call(…)

[…]

Fig. 2. Architecture of the Hypersonic API

models pass though the XMI2PL component, which performs a format transla-
tion from the MDXML format to the Prolog-based file format described in [10].
Once translated, models are stored in a dedicated warehouse. The MACH com-
ponent supports operations such as clone detection, model differencing, model
size computation, and basic model querying [11]. These operations can be applied
to models stored in the warehouse. Analysis results are encoded by the RESTful
API component as JSON documents to be consumed by the API client.

All processing components are executed inside a single instance of the SWI-
Prolog [13] runtime. The compact representation of models as fact databases
facilitates the effective in-memory processing of large models. Since some analysis
operations (e. g. model size computation) are embarrassingly parallel, splitting
very large models into several fact databases and executing several SWI-Prolog
instances in parallel is possible, though currently not supported.

2.2 A Web-based API Client

As a technology demonstrator, a simple, mobile device friendly Web application
acting as a client for the Hypersonic API1 has been implemented. The appli-
cation, written entirely in client-side JavaScript, currently supports uploading
a local model to the Hypersonic model warehouse and requesting a clone de-
tection report, which it subsequently displays in tabular form. The sample API
client exemplifies our vision for Web service driven modeling tools: using Web
2.0 technologies and standards (REST, JavaScript, JSON) to enable advanced
model analysis operations to be performed outside the constraints of the desktop
and of traditional modeling environments.

1 The application is available at http://www.compute.dtu.dk/~rvac/hypersonic.

Fig. 3. Screenshot of the Hypersonic API client Web application

3 Related Work

Due to the increase in size of industrially relevant models, as well as the increase
in complexity of the operations performed on them, the need for service-based,
Cloud-enabled modeling tools has become apparent [7]. The main driver in this
direction is the promise of performance and scalability gains for modeling activ-
ities such as model warehousing [9], querying [6], and transformation [3].

That being said, service-based model analysis has yet to receive signifi-
cant attention in the literature. The closest related proposal is the EMF-REST
project [2], aimed at automatically generating RESTful Web service interfaces
for EMF models, much like existing EMF tools generate Java APIs for such
models. However, while it does provide basic model manipulation operations,
EMF-REST is not primarily designed as a model analysis tool.

4 Ongoing Developments

The Hypersonic API is undergoing development with the aim of reaching feature
parity with the MACH command-line model analysis tool. Once this is achieved,
the API will be deployed to a private Cloud platform. We plan to eventually ex-
tend the API operations beyond model analysis, into the realm of model querying
and model transformation. In parallel, we will work towards creating an ecosys-
tem of API clients, including smartphone/tablet apps and modeling tool plug-ins
(see Fig. 4). For these proposals to become practical solutions, security aspects
such as user authentication and model access control must be addressed.

Smartphone app

Web app

Desktop client

Modeling tool

plug-in

HTTP

HTTP

MACH

Hypersonic API

Fig. 4. Various clients consuming the Hypersonic API

References

1. Vlad Acretoaie and Harald Störrle. Hypersonic: Model Analysis and Checking
in the Cloud. In Proc. 2nd Ws. Scalability in Model Driven Engineering (Big-
MDE’14), volume 1206 of CEUR-WS, pages 6–13, 2014.

2. Jordi Cabot. EMF-REST. http://emf-rest.com, retrieved 26.08.2014.
3. Caue Clasen, Marcos Didonet Del Fabro, and Massimo Tisi. Transforming Very

Large Models in the Cloud: a Research Roadmap. In Proc. First Intl. Ws. Model-
Driven Engineering on and for the Cloud (CloudMDE’12), pages 3–12, 2012.

4. Roy Thomas Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

5. Internet Engineering Task Force (IETF). IETF RFC 7159: The JavaScript Object
Notation (JSON) Data Interchange Format, 2014.

6. Benedek Izsó, Gábor Szárnyas, István Ráth, and Dániel Varró. IncQuery-D: Incre-
mental Graph Search in the Cloud. In Proc. 1st Ws. Scalability in Model Driven
Engineering (BigMDE’13), pages 4:1–4:4, New York, NY, USA, 2013. ACM.

7. Dimitrios S. Kolovos, Louis M. Rose, Nicholas Matragkas, Richard F. Paige, Es-
ther Guerra, Jesús Sánchez Cuadrado, Juan De Lara, István Ráth, Dániel Varró,
Massimo Tisi, and Jordi Cabot. A Research Roadmap Towards Achieving Scala-
bility in Model Driven Engineering. In Proc. 1st Ws. Scalability in Model Driven
Engineering (BigMDE’13), pages 2:1–2:10, New York, NY, USA, 2013. ACM.

8. NoMagic, Inc. MagicDraw UML 17.0.3. http://www.nomagic.com/products/

magicdraw, retrieved 26.08.2014.
9. Javier Espinazo Pagán, Jesúss Sánchez Cuadrado, and Jesús Garćıa Molina. Morsa:

A Scalable Approach for Persisting and Accessing Large Models. In Proc. 14th Intl.
Conf. Model Driven Engineering Languages and Systems (MODELS’11), volume
6981 of LNCS, pages 77–92. Springer Berlin Heidelberg, 2011.

10. Harald Störrle. Towards Clone Detection in UML Domain Models. J. Softw. Syst.
Model., 12(2), 2013.

11. Harald Störrle. UML Model Analysis and Checking with MACH. In Proc. 4th Intl.
Ws. Academic Softw. Development Tools and Techniques (WASDETT’13), 2013.

12. The MathWorks, Inc. Simulink. http://www.mathworks.se/products/simulink/,
retrieved 26.08.2014.

13. Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-Prolog.
Theory and Practice of Logic Programming, 12(1-2):67–96, 2012.

