
On Metamodel Superstructures Employing

UML Generalization Features

Martin Gogolla, Matthias Sedlmeier, Lars Hamann, Frank Hilken

Database Systems Group, University of Bremen, Germany
{gogolla|ms|lhamann|fhilken}@informatik.uni-bremen.de

Abstract. We employ UML generalization features in order to describe
multi-level metamodels and their connections. The basic idea is to repre-
sent several metamodel levels in one UML and OCL model and to connect
the metamodels with (what we call) a superstructure. The advantage of
having various levels in one model lies in the uniform handling of all levels
and in the availability of OCL for constraining models and navigating be-
tween them. We establish the connection between the metamodel levels
by typing links that represent the instance-of relationship. These typing
links are derived from associations that are defined on an abstraction of
the metamodel classes and that are restricted by redefines and union

constraints in order to achieve level-conformant typing. The abstraction
of the metamodel classes together with the connecting associations and
generalizations constitutes the superstructure.
Keywords. UML, OCL, Model, Metamodel, Metamodel constraint,
Generalization, Redefines constraint, Union constraint.

1 Introduction

Software engineering research activities and results indicate that metamodeling
is becoming more and more important [3, 4, 9]. However, there are a lot of discus-
sions about notions in connection with metamodels like potency or clabject where
no final conceptual definition has been achieved. On the other hand, software
tools for metamodeling are beginning to be developed [5, 2].

Here, we propose to join the metamodels of several levels into one model (as
in our previous work [7] without the use of redefines constraints) and to
connect the levels with associations and generalizations. Typing conformance
and strictness can be achieved through particular UML and OCL generalization
constraints. General restrictions between the metamodel levels can be specified
through the power of OCL. Restrictions can be built on metamodels and on
the metamodel architecture. The metamodel architecture is the connection be-
tween (what we call) the metamodel superstructure and the contributing meta-
models.

Our work has links to other metamodeling approaches. The tool Melanie [2] is
designed as an Eclipse plug-in supporting strict multi-level metamodeling and

13

support for general purpose as well as domain specific languages. Another tool
is MetaDepth [5] allowing linguistic as well as ontological instantiation with
an arbitrary number of metalevels supporting the potency concept. In [9] the
authors describe an approach to flatten metalevel hierarchies and seek for a level-
agnostic metamodeling style in contrast to the OMG four-layer architecture.

The structure of the rest of the paper is as follows. Section 2 gives a first, smaller
example for a metamodel superstructure. Section 3 discusses a larger example.
Section 4 shows other metamodel superstructures. The contribution is closed
with a conclusion and future work in sect. 5.

2 Superstructure Example with Ada, Person, Class, and
MetaClass

The example in Fig. 1 shows a substantially reduced and abstracted version
of the OMG four-level metamodel architecture with modeling levels M0, M1,
M2, and M3. Roughly speaking, the figure states: Ada is a Person, Person is a
Class, and Class is a MetaClass. The figure does so by formally building an
object diagram for a precisely defined class diagram including an OCL invariant
that requires cyclefreeness when constructing instance-of connections. The dis-
tinction between MetaClass and Class is that when MetaClass is instantiated
something is created that can be instantiated on two lower levels whereas for
Class instantiation can only be done on one lower level. The model has been
formally checked with the tool USE [6]. In particular, we have employed the
features supporting UML generalization constraints as discussed in [1, 8].

Concepts on a respective level Mx are represented in a simplified way as a class
Mx. All classes Mx are specializations of the abstract class Thing whose objects
cover all objects in the classes Mx. On that abstract class Thing one association
Instantiation is defined that is intended to represent the instance-of connec-
tions between a higher level object and a lower level: an object of a lower level
is intended to be an instance of an object on a higher level. The association
Instantiation on Thing (with role names instantiater and instantiated)
is employed for the definition of the associations Typing0, Typing1, and Typing2

between Mx and Mx+1 all having roles typer and typed. The role typer is a
redefinition of instantiater, and typed is a redefinition of instantiated. The
multiplicity 1 of typer narrows the multiplicity 0..1 of instantiater.

In the abstract class Thing the transitive closure instantiatedPlus() of
instantiated is defined by means of OCL. Analogously, instantiaterPlus()
is defined for instantiater. The closure operations are needed to define an
invariant in class Thing requiring Instantiation links to be acyclic.

abstract class Thing

operations

instantiatedPlus():Set(Thing)=

self.instantiated->closure(t|t.instantiated)

instantiaterPlus():Set(Thing)= ...

14

Fig. 1. Ada, Person, Class, MetaClass within Single Object Diagram.

15

constraints

inv acyclicInstantiation: self.instantiatedPlus()->excludes(self)

end

The class diagram from the left side of Fig. 1 is made concrete with an object
diagram on the right side. The fact that the three associations Typing0, Typing1,
and Typing2 are all redefinitions of association Instantiation is reflected in
the object diagram by the three dashed links for association Instantiation

with common role names instantiater and instantiated (dashed links in
contrast to continuous links for ordinary links). Viewing Instantiation as a
generalization (in terms of redefinition) of all Typingx associations allows to use
the closure operations from class Thing on objects from classes M0, M1, M2 or
M3. Thus the displayed OCL expressions and their results reflect the following
facts: object Person is a (direct resp. indirect) instantiation of objects Class and
MetaClass; objects Ada and Person are (direct resp. indirect) instantiations of
object Class.

Summary: Metamodeling means to construct models for several levels. The
metamodels on the respective level should be described and modeled indepen-
dently (e.g., as M0, M1, M2, and M3). The connection between the models should
be established in a formal way by a typing association (e.g., Typing0 gives a
type object from M1 to a typed object from M0). The Typing associations are
introduced as redefined versions of the association Instantiation from (what
we call) a multi-level superstructure. This superstructure contains the abstract
class Thing which is an abstraction of all metamodel elements across all lev-
els and additionally contains the association Instantiation and accompanying
constraints. Because Instantiation is defined as union, an Instantiation link
can only connect elements of adjacent levels, i.e., the Typingx links are level-
conformant and strict. The aim of the devices in the superstructure is to establish
the connection between metamodel levels in a formal way and to provide support
for formally restricting the connections.

3 Superstructure Example for Relational Database
Model

In Fig. 2 we show two metamodels, one for the syntax and one for the seman-
tics part of the relational database model. The upper part catches the syntax,
i.e., relational database schemas, relational schemas, attributes, and data types.
With regard to the class names, please recall that in the database field a re-
lational database schema consists of possibly many relational schemas.1 The
lower part deals with the semantics (or runtime interpretation), i.e., database
states, tuples, attribute mappings (for short attribute maps), and values. One
also identifies two collections of invariant names, one collection for the syntax,

1 A relational schema is called a table in SQL.

16

Fig. 2. Metamodels for Relational Database Schemas and States.

17

and one for the semantics. For example, RelSchema::relSchemaKeyNotEmpty
requires that each relational schema must have at least one key attribute, and
Tupel::keyMapUnique requires that two different tuples2 must be distinguish-
able by at least one key attribute in each database state. The constraints start-
ing with c are (what we call) commutativity constraints which require that the
evaluation of two different paths through the class diagram coincide. Both paths
start in one class and typically end in one different class. For example, the con-
straint AttrMap::c AttrMap Attr Tupel RelSchema requires that for an object
am:AttrMap the paths am.attr.relSchema and am.tupel.relSchema coincide.

In the left of the class diagram we identify the metamodel superstruc-
ture established by the abstract classes SynElem, SemElem, and the associ-
ation Instantiation. Instantiation is specialized through redefinition to
RelDBStateTyping, TupelTyping, AttrMapTyping, and ValueTyping. We re-
gard the syntax model, i.e., SynElem and its specializations together with the
associations, as a metamodel of the semantics model, i.e., SemElem and its spe-
cializations together with the associations. We take this view because each higher
level class (in the syntax part) serves to instantiate a lower level class (in the
semantics part), and thus each lower level object has exactly one type that
is defined in the higher level. Another argument supporting the view that we
here have two connected metamodels is the factor that the relationship be-
tween RelSchema and Tupel is the same as the relationship between Class

and Object in the OMG four-level architecture. The same holds for the other
(SynElem,SemElem) class pairs: (RelDBSchema,RelDBState), (Attr,AttrMap),
and (DataType,Value).

Interestingly, some invariants span across metamodel boundaries, i.e., an invari-
ant from the semantics part sometimes uses elements from the syntax part. For
example, the mentioned uniqueness requirement for tuples with regard to their
key attributes is only required, if the tuples under consideration belong to the
same relational schema. Thus the invariants of the semantics part rely on or use
information from the syntax part.

In Fig. 3 we make the metamodels from Fig. 2 concrete by presenting a sim-
ple relational database schema consisting of one relational schema and a very
simple accompanying database state with only one tuple. The presentation is
done in form of an object diagram. The figure shows also OCL queries and
their result that demonstrate how one can bridge the boundary between the
metamodels. All queries either use the roles instantiater or instantiated

which cross a metamodel boundary. For example, the fourth query from the
top (RelSchema.allInstances()->select(rs | rs.name=’Person’).attr.

instantiated.value.content) retrieves all values that are present in one of
the attributes of the relational schema Person.

In Fig. 4 we show a larger object diagram3 with two relational database states,
two relational schemas and three tuples. The object diagram satisfies all invari-

2 We have used the German spelling Tupel because Tuple is a keyword in OCL.
3 In order to make the figure easier to grasp some links are hidden.

18

Fig. 3. Single Tuple Represented within Metamodel.

19

Fig. 4. Three Tuples Represented within Metamodel.

20

ants. The metamodels reflect the syntactical and semantical requirements, in
particular through the use of constraints. For example, if one changes in the
object Attr1:Attr the isKey attribute value from true to false, the syntac-
tical requirement that relational schemas must have at least one key attribute
value would be violated and this would be indicated by a constraint violation for
the respective constraint RelSchema::relSchemaKeyNotEmpty. As an example
on the semantical side, if one changes in the object Value1:Value the content

attribute value from ‘muddi’ to ‘nodrama’, the semantical requirement that
each two tuples must have at least one distinguishing key attribute would be
violated and this would be indicated by a constraint violation for the respective
constraint Tupel::keyMapUnique.

4 Other Metamodel Superstructures

In the two examples above we have employed different metamodel superstruc-
tures. The first example Ada-Person-Class-MetaClass used the superstructure
displayed in the upper left part of Fig. 5. The second example for the relational

Fig. 5. Three Different Multi-Level Metamodel Superstructures.

database model used more or less the superstructure shown in the upper right
part of the figure. However instead of the generic class names ThingH[igh] and
ThingL[ow] the example used SynElem and SemElem, and instead of M1 and M0

the example used a bunch of connected classes like {RelDBSchema, RelSchema,
Attr, DataType} and {RelDBState, Tupel, AttrMap, Value}. Other metamod-

21

eling superstructures could be used as well, for example the one displayed in
the lower part of Fig. 5 utilizing multiple inheritance. Dependent on the actual
needs for the metamodels at hand, a suitable superstructure with fitting classes,
associations, and constraints can be chosen.

In our example superstructures we have been using the multiplicities 0..1 or 1
for the roles instantiater and typer. However, in principle other multiplicities
like 1..* could be used. It is an open question whether this could make sense,
for example, in the context of multiple inheritance.

5 Conclusion

This paper proposed to describe different metamodels in one model and to con-
nect the metamodels with a (so-called) superstructure consisting of generaliza-
tions and associations with appropriate UML and OCL constraints. We explained
our ideas in particular with an example expressing the syntax and the semantics
of the relational database model on different metamodel levels.

Future research includes the following topics. We would like to work out for our
approach formal definitions for notions like potency or strictness. The notion of
powertype will be given special attention in order to explore how far this concept
can be integrated. Our tool USE could be extended to deal with different meta-
model levels simultaneously. So far USE deals with class and object diagram.
In essence, we think of at least a three-level USE (cubeUSE) where the middle
level can be seen at the same time as an object and class diagram. Furthermore,
larger examples and case studies must check the practicability of the proposal.

References

1. Alanen, M., Porres, I.: A Metamodeling Language Supporting Subset and Union
Properties. Software and System Modeling 7(1) (2008) 103–124

2. Atkinson, C.: Multi-Level Modeling with Melanie. Commit Workshop 2012 (2012)
commit.wim.uni-mannheim.de/uploads/media/commitWorkshop Atkinson.pdf.

3. Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodeling Foundation.
IEEE Software 20(5) (2003) 36–41

4. Bézivin, J.: On the Unification Power of Models. Software and System Modeling
4(2) (2005) 171–188

5. de Lara, J., Guerra, E.: Deep Meta-Modelling with Metadepth. In Vitek, J., ed.:
TOOLS (48). Volume 6141 of LNCS., Springer (2010) 1–20

6. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Comp. Prog. 69 (2007) 27–34

7. Gogolla, M., Favre, J.M., Büttner, F.: On Squeezing M0, M1, M2, and M3 into a
Single Object Diagram. In Baar, T. et al., eds.: Proc. MoDELS’2005 Workshop Tool
Support for OCL and Related Formalisms, EPFL (Switzerland), LGL-REPORT-
2005-001 (2005)

8. Hamann, L., Gogolla, M.: Endogenous Metamodeling Semantics for Structural
UML2 Concepts. In Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P.J.,
eds.: MoDELS. Volume 8107 of LNCS., Springer (2013) 488–504

9. Henderson-Sellers, B., Clark, T., Gonzalez-Perez, C.: On the Search for a Level-
Agnostic Modelling Language. In Salinesi, C., Norrie, M.C., Pastor, O., eds.: CAiSE.
Volume 7908 of LNCS., Springer (2013) 240–255

22

