
Null Considered Harmful (for Transformation
Verification)

K. Lano

Dept. of Informatics, King’s College London, UK

Abstract. The use of explicit null and invalid values in OCL can lead
to complex and hard-to-verify specifications. In addition, these values
complicate the logic of OCL and of transformation languages that use
OCL, making it difficult to provide effective verification support for these
languages. We define an alternative technique for using OCL with UML
and model transformations which avoids the use of null and undefined
values, and we present verification techniques for a transformation lan-
guage, UML-RSDS, based on this approach.

1 Introduction

OCL is the official textual specification language used with the UML, and it
is also widely used as a constraint language within model transformation lan-
guages, such as ATL, QVT, ETL, Kermeta and others to define transformation
rules, although each of these languages tend to adopt variations with the OCL
standard. For example, Kermeta uses the keyword void for the null value, and
ETL uses isDefined() instead of oclIsUndefined() in its variant OCL, EOL.

The OCL standard [13] defines a type OclVoid which has a single instance,
null . OclVoid is a subtype of all other OCL types (except OclInvalid , which
contains the invalid element), so that each of these types, including Boolean and
Integer, also have null elements. null represents the absence of a valid value, in
contrast to invalid , which represents an invalid evaluation. Confusingly, null is
sometimes used as the value of expressions which would normally be considered
invalid (eg., 1/0 = null on page 17 of [3]).

The principal reason why null arises in UML and OCL is the need to represent
the value of optional association ends (e.g., Figure 1): if a person has no spouse,
this is expressed by spouse = null . An attempt to evaluate a feature of a null
object results in invalid , however null is treated as being Bag{} when a collection
operation is applied to it. Thus spouse.age is undefined if spouse is null , but
spouse→collect(age) is Bag{}, contradicting the usual expectation that these
expressions should have the same value.

Null values can also be returned by operations, and this leads to a problem
which OCL shares with object-oriented programming languages: that program-
mers may return null from an operation to indicate that it has failed, instead of
using exceptions or other error-handing facilities. For example an operation to

Fig. 1. Example of optional association ends

marry two Person objects could return null if the operation cannot be success-
fully completed, but this does not inform the caller why the operation failed: it
can fail for several different reasons.

The explicit use of null therefore complicates system specification and ver-
ification by introducing undefinedness into expressions and by encouraging the
use of hard-to-verify specification styles. It also has a direct impact on the use
of verification tools by complicating the logic used for reasoning about systems
and models. The truth tables for each logical operator not , and , or , xor and
implies of OCL must incorporate cases for null , for example:

null and null = null

false and null = false

true and null = null

null and false = false

null and true = null

null acts as an unspecified or ‘unknown’ element in these tables, resulting in
a 3-valued logic [3]. Additionally, the value invalid combined with any logical
operater results in invalid , since a logical expression is invalid if any argument
of its logical operators is invalid. To use verification tools which work in classical
2-valued logic, such as B [4] or Z3 [17], an analyst must therefore model this
3 or 4-valued OCL logic within the tool and formulate a specialised inference
system in order to reason about OCL specifications that use null . This may
lead to inefficiency and reduce the effectiveness of proof techniques, which are
usually optimised for the inbuilt logic of the tool. In addition, the more complex
3 or 4-valued logic can be difficult for specifiers and analysts to understand and
reason with.

Even within the UML standards there remain unclear issues with the se-
mantics of null and invalid , for example, whether an allInstances() collection
can contain an undefined element, or whether null .oclIsKindOf (A) should re-
turn true/false or invalid (http://www.omg.org/issues/ocl2-rtf.open.html). Lan-
guages based on OCL often adopt variant semantics to the standard. For exam-

ple, whilst OCL permits null elements in collections, in QVT-O assignments null
elements in collections are ignored (Section 8.2.2.11 of [14]).

This lack of clear semantics for null and invalid means that tools which
do attempt to handle full OCL necessarily make specific assumptions about
the semantics, which may not match the specifier’s intentions. For example, in
order to formally model null and invalid in HOL, [2] proposes that these values
may occur in attribute values only if no multiplicity bounds are defined for the
attribute.

We consider that this lack of a clear semantics, and the variability of defini-
tions in different MT languages is an indication that the use of explicit null and
undefined elements is unsuited to situations where formal verification of model
transformations is required.

In this paper we propose an alternative approach for the use of OCL and re-
lated constraint languages in model transformation specifications, in accordance
with the following principles:

(1) Transformation specifications should use expressions which are en-
sured by their context to be well-defined (not null or invalid) and deter-
minate in value. null or invalid values should not be used.
(2) Expressions which are used as conditional tests or pure values should
be non-side-effecting.

These principles greatly facilitate analysis and verification of model transforma-
tions, by ensuring that expressions can be given consistent meanings in (i) the
transformation language; (ii) in formal languages used to analyse the transforma-
tion, and (iii) in programming languages used to implement the transformation.

In Section 2 we describe our proposed alternative to standard OCL, in Section
3 we describe how it can be used for transformation specification, and in Section
4 describe transformation verification based on alternative OCL.

2 Alternative OCL

In order to generally resolve the difficulties caused by explicit null and invalid
values, we have developed and applied an alternative OCL-like formalism, which
retains most of the notation and concepts of OCL, but which has no null or
invalid elements, and is based on classical 2-valued logic and set theory. Trans-
formation specifiers should ensure that invalid expression evaluations cannot
occur in their transformations, using the definedness conditions of expressions
(Table 1). In cases where operators can produce invalid evaluations, additional
operators are provided to test for validity before the evaluation is attempted.
Eg., for toInteger() on String we provide an operation isInteger() to check that
a string represents a valid integer before attempting to convert it [11].

Side-effects are only permitted for expressions which are calls obj .op(e) of
update (non-query) operations op. Expressions should not have side-effects when
used as conditions or pure values. Together with the restriction that undefined
values cannot occur, this leads to the same logic for the logical connectives both

in OCL and in the formal and programming languages which we treat (B AMN,
Java, C# and C++): in programming languages ‘short-circuit’ evaluation is used
to determine that P and Q is false if P is false, without the need to evaluate
Q . This is semantically equivalent to an ‘evaluate all arguments completely’
semantics if undefined values and side effects are prohibited.

We use some minor extensions of OCL. For entity types E with one attribute
id designated as an identity attribute (primary key), the abbreviation E [v] is in-
troduced to represent the standard OCL expression E .allInstances()→any(id =
v), if v is single-valued, and to represent E .allInstances()→select(v→includes(id))
if v is collection-valued. For an instance-scope attribute att of E , E .att denotes
E .allInstances()→collect(att).

Examples of the clauses for the definedness function def : Exp(L) → Exp(L)
are given in Table 1. Expression determinacy det : Exp(L) → Exp(L) can be
similarly defined.

Constraint expression e Definedness condition def(e)

a/b b ̸= 0 and def (a) and def (b)

e.f def (e) and E .allInstances()→includes(e)
Data feature application where E is the declared classifier of e

Operation call e.op(p) def (e) and E .allInstances()→includes(e) and
def (p) and def (e.Postop(p)) where E is the declared
classifier of e, Postop the postcondition of op

s→at(ind) ind > 0 and ind ≤ s→size() and
sequence, string s def (s) and def (ind)

E [v] E .id→includes(v) and def (v)
entity type E with identity
attribute id , v single-valued

A and B def (A) and def (B)
A implies B def (A) and (A implies def (B))

str .toInteger() def (str) and str .isInteger()
str .toReal() def (str) and str .isReal()
obj .oclAsType(E) def (obj) and obj .oclIsKindOf (E)

Table 1. Definedness conditions for expressions

Inductive proof of definedness may be needed for recursive operation calls.
The main difference between our constraint language and standard OCL is

that optional association ends are treated as being collections of size 0 or 1,
rather than being null or a single defined object. This interpretation is consis-
tent with the use of multiplicity bounds for other many-valued association ends,
and is also already adopted in OCL in the case that collection operators are
applied to the optional association end (because of the implicit casting of null
to Bag{} in such cases). The test spouse→isEmpty() can then be used in place
of spouse.oclIsUndefined(), and spouse→any(true) returns the Person object if
spouse is non-empty.

This approach has several advantages:

– Classical logic can be used in reasoning, there is no need for null and invalid .
– It is simple to evolve a model using a 0..1 multiplicity association end to

one with a 0..n or * multiplicity, and vice-versa, since the association end
remains a collection.

– Collections cannot contain null elements, simplifying their processing, both
in OCL and in programs synthesised from the OCL.

In our alternative OCL semantics there is no null element, however there are
‘unallocated object references’. There is a fixed denumerable type Object OBJ
of possible object references, a finite set objects ⊆ Object OBJ of object ref-
erences of existing objects, and for each class or interface E in a UML class
diagram, a finite set, E .allInstances() ⊆ objects, of the references that refer to
actually existing E objects. Creation of an E instance selects an element ex
from Object OBJ − objects, adds it to E .allInstances(), objects and to all su-
perclass instance sets of E , and allocates an object for ex , including values for
all features of E (including inherited features). On deletion ex→isDeleted(), the
reverse process applies, and ex is returned to the set of available object refer-
ences. It is removed from any association end or other collection in the system.
It is a semantic error to refer again to ex after it has been deleted.

Applying our approach to the red-black tree specification of [2] yields a more
concise specification, eg., the redinv can be expressed as:

color implies left→forAll(not color) and right→forAll(not color)

in comparison to

color implies ((left = null or not left .color) and (right = null or not right .color))

in [2].
OCL was originally intended as a language for logical expression evaluation,

to express declarative constraints of UML models. However, transformation lan-
guages such as QVT and Kermeta now use OCL to define executable effects, to
update models. The imperative use of OCL as a programming language intro-
duces semantic problems, for example, how a forAll or other iteration should
behave if (logically) its evaluation can be terminated before all elements are
processed, whilst (imperatively) some intended side-effect behaviour could still
arise if additional elements are considered. Failing to evaluate all of the quan-
tified collection would also violate the requirement that the expression should
evaluate to invalid if any of its individual element evaluations do.

We rule out such cases by clearly distinguishing the logical and imperative use
of OCL. A function stat gives an imperative denotation of certain expressions as
statements (activities). This defines precisely when an expression e is interpreted
imperatively, i.e., as an activity stat(e) [10]. We exclude side-effects when an
expression is used logically. Thus the logical evaluation of iterators can be made
more efficient. In an imperative interpretation stat(e) of expression e, however,

the computation only terminates when e is established (which may require fixed-
point iteration, etc.).

For example, logical evaluation of s→forAll(x | x .att = v) can return false
as soon as some x ∈ s with x .att ̸= v is found, and no updates are performed.
But stat(s→forAll(x | x .att = v)) is for x : s do x .att := v and always iterates
completely through all elements of s, assigning v to x .att for each x ∈ s. The
logical and imperative interpretations are related naturally by the property

def (e) ⇒ [stat(e)]e

where [] is the weakest-precondition operator on activities.

3 Transformation specification

The alternative OCL described in the preceding section can be used to define
model transformations at a declarative level. In UML-RSDS [11], such OCL-
style constraints define pre and postconditions of transformations, represented
as UML use cases. Each use case (transformation) τ has assumptions Asm on
the starting state of the models that it operates on, and a sequence Cons of
postconditions, which also define the imperative behaviour of the use case as a
sequential composition of the activities stat(Ci) of the postconditions Ci .

The typical form of a postcondition Cn in Cons is an implication constraint

Ante implies Succ

on a context entity type ST belonging to the source language S of τ . This
represents a declarative assertion that, at termination of the transformation, for
each instance self of ST which satisfies Ante, Succ also holds. The definedness
condition def (Cn) from Table 1 is

def (Ante) and (Ante implies def (Succ))

so that the context ST of Cn must ensure that Ante is defined, and that Ante
ensures definedness of Succ. The succedent should normally have an imperative
denotation stat(Succ). The definedness of each constraint in Cons is a proof
obligation which the transformation specifier should establish. Asm and preced-
ing postconditions can be used as assumptions for the definedness obligations.
These obligations can be submitted to a proof tool. Likewise, the determinacy
condition det(Cn) of each postcondition should normally be established for the
specification, and specifiers should ensure that no update (non-query) operation
is invoked in any Ante condition or other conditional test/value expression in
any Cn. Whilst these obligations are additional proof burdens for the developer,
they can help to identify errors in the specification, and provide assurance of
correctness.

For separate-models transformations, ST and other source model data are
not modified by τ , instead instances of target language entity types are created

and their features defined. A typical postcondition constraint for this kind of
transformation has the form

Ante implies TT→exists(t | Succ1)

which specifies that corresponding target model instances t of target entity type
TT should exist for each source model instance self of ST that satisfies Ante.
Succ1 can define the feature values of t based upon those of self (or on any other
source or target model data).

Executable code in Java, C# and C++ can be generated for transformations
(or for general software systems) from UML-RSDS specifications. A postcondi-
tion constraint Cn is implemented by stat(Cn), and this activity serves as an
intermediate representation from which program code in specific programming
languages can be generated. A guarantee is given that no collection in the ex-
ecutable program can ever contain null objects. In addition, when an object a
of class C is explicitly deleted (by the expression a→isDeleted()), then it is also
removed from any collection in the system (objects b with a 1-multiplicity asso-
ciation end with value a are deleted along with a), so removing the possibility
of ‘dangling references’.

UML-RSDS has been successfully used for a large number of transformation
problems, including industrial case studies. For example, it was used in the
comparative case study of [5] and in the transformation tool contest (TTC) in
2010 [6], 2011 [7, 8], 2013 [12] and 2014. This history of use has demonstrated
the practical effectiveness of null-free specifications for model transformations.

As an example of UML-RSDS specification, Figure 2 shows the metamodels
of a UML to relational database transformation which maps root classes to
tables, and attributes to columns of the table of the root class of their class.

Fig. 2. Example of system specification

The assumption Asm is that each class has an ancestor with empty superclass
set. The transformation use case has two postconditions C1, C2, both with
context Entity . C1 is:

superclass.size = 0 implies Table->exists(t | t.name = name)

This creates a table for each root class. C2 is:

p : ownedAttribute and t = Table[rootClass().name] implies

Column->exists(cl | cl.name = p.name and cl : t.tcols)

This adds, for each attribute p of self , a column cl to the table t corresponding
to the root class of self . rootClass is an auxiliary query operation of Entity
defined as:

rootClass() : Entity

post:

(superclass.size = 0 implies result = self) and

(superclass.size > 0 implies

result = superclass.rootClass()->any(true))

To prove def (C2) requires proof that the call to rootClass is well-defined,
which follows from Asm, and then that Table[rootClass().name] is well-defined,
which follows from C1.

4 Transformation verification

The use of a simplified subset of OCL facilities transformation verification, via
the use of semantic mappings from transformation languages into verification
formalisms and tools such as B [9], Alloy [1] and Z3 [17]. In the case of UML-
RSDS, the classical logic formalisms of B and Z3 are used. For B, class extents
E .allInstances() and features E :: f : T are represented by sets es and maps
f : es → T ′, respectively, where T ′ represents T , and OCL expressions are
mapped into their semantic representation in B. Table 2 summarises some cases
of representation of UML in B.

The mapping from UML to B has been implemented in the UML-RSDS tools
[11]. This enables a wide range of transformation properties to be verified (in
principle) using B proof tools (such as Atelier B or the Rodin Event-B toolkit),
which provide both automated and interactive proof support.

The following verification properties of a UML-RSDS transformation specifi-
cation τ from a source language S to a target language T can be checked using
B:

1. Syntactic correctness: if a source model m of S satisfies all the assumptions
Asm of τ , then the transformation will produce valid target models n from
m which satisfy the language constraints ΓT of T .

2. Invariance: an invariant Inv is true throughout execution of τ .

UML concept Formal semantics/B representation

Entity type E variable es, denoting the
set of instances of E

Single-valued attribute Map att ′ : es → Typ′ where
att : Typ of E Typ′ represents Typ

Single-valued role r of E Map from es to e1s:
with target entity type E1 r ′ : es → e1s

Unordered many-valued role r of E Map from es to e1s-sets:
with target entity type E1 r ′ : es → F(e1s)
Ordered many-valued role r of E Map from es to e1s-sequences:
with target entity type E1 r ′ : es → seq(e1s)

Supertype E1 of E Axiom es ⊆ e1s
Table 2. Representation of UML in B

3. Semantic preservation: if a predicate φ holds in m, then any target model n
produced from m by τ satisfies an interpretation χ(φ) of the formula via a
language morphism χ.

4. Semantic correctness: that a given implementation for τ satisfies its specifi-
cation.

5. Confluence: that all result models n produced from a given source model m
must be isomorphic.

6. Termination: that τ is guaranteed to terminate if applied to valid source
models which satisfy Asm.

7. Model-level semantic preservation: the internal semantics of source models
is preserved, possibly under some interpretation ζ, by τ .

For the UML to relational database example above, a possible invariant (with
context Table) is that every table corresponds to a root class:

Entity→exists(e | e.name = name and e.superclass = Set{})

This can be used to support syntactic correctness proof, i.e., that tables have
unique names. Termination, confluence and semantic correctness of the imple-
mentation stat(C1); stat(C2) follows from the syntactic form of the constraints
(that they can both be implemented by bounded loops).

5 Related work

There has been considerable work on the formalisation of OCL and UML for
semantic analysis [1, 2, 16]. The complexity of modelling both OCL null and
invalid , together with gaps in the OCL semantic definitions of these values,
means that systems such as [2] must make additional assumptions to provide a
reasoning framework for full OCL. Instead, we choose to rule out such values
completely and to work with classical logic, which has the advantage of unambi-
guity and the existence of many powerful proof and analysis tools. We agree with

[2] that OCL invalid should not be used for modelling, but we would go further
and forbid the use of null also. By considering that 0..1 multiplicity association
ends are collection-valued (of size 0 or 1), a simple and uniform treatment of
many data structure properties can be given, without the need to test for null
values. A similar approach is taken in [15], where association ends are modelled
as sequences except for those of multiplicity 1.

6 Conclusion

We have provided arguments to justify restrictions upon OCL-style constraint
specification in transformation languages, and provided examples to show the
practical benefits of such restrictions.

References

1. K. Anastasakis, B. Bordbar, J. Kuster, Analysis of Model Transformations via
Alloy, Modevva 2007.

2. A. Brucker, M. Krieger, B. Wolff, Extending OCL with null-references, MODELS
2009 Workshops, LNCS 6002, pp. 261–275, 2010.

3. J. Cabot, M. Gogolla, Object Constraint Language (OCL): a Definitive Guide,
INRIA, 2012.

4. ClearSy, Atelier B, http://www.atelierb.eu, 2012.
5. S. Kolahdouz-Rahimi, K. Lano, S. Pillay, J. Troya, P. Van Gorp, Evaluation of

Model Transformation approaches for Model Refactoring, Science of Computer Pro-
gramming, 85 (2014), pp. 5–40.

6. K. Lano, S. Kolahdouz-Rahimi,Migration case study using UML-RSDS, TTC 2010,
Malaga, Spain, July 2010.

7. K. Lano, S. Kolahdouz-Rahimi, Specification of the “Hello World” case study, TTC
2011.

8. K. Lano, S. Kolahdouz-Rahimi, Specification of the GMF migration case study,
TTC 2011.

9. K. Lano, S. Kolahdouz-Rahimi, T. Clark, Comparing verification techniques for
model transformations, Modevva workshop, MODELS 2012.

10. K. Lano, S. Kolahdouz-Rahimi, Constraint-based specification of model transforma-
tions, Journal of Systems and Software, vol. 88, no. 2, February 2013, pp. 412–436.

11. K. Lano, The UML-RSDS manual, http://www.dcs.kcl.ac.uk/staff/kcl/umlrsds.pdf,
2013.

12. K. Lano, S. Kolahdouz-Rahimi, K. Maroukian, Solving the Petri-Nets to State-
charts Transformation Case with UML-RSDS, TTC 2013.

13. OMG, Object Constraint Language 2.3.1 Specification, 2012.
14. OMG, QVT Specification, Version 1.1, 2011.
15. I. Poernomo, A type theoretic semantics for the OMG Meta-Object Facility,

PALAB, Dept. of Informatics, King’s College London, 2009.
16. M. Soeken, R. Wille, R. Drechsler, Encoding OCL data types for SAT-based veri-

fication of UML/OCL models, University of Bremen, 2012.
17. Z3 Theorem Prover, http://research.microsoft.com/en-

us/um/redmond/projects/z3/, 2012.

