
Language-Independent Model Transformation
Verification

K. Lano, S. Kolahdouz-Rahimi, T. Clark

King’s College London; University of Middlesex

Abstract. One hinderance to model transformation verification is the
large number of different MT languages which exist, resulting in a large
number of different language-specific analysis tools. As an alternative,
we define a single analysis process which can, in principle, analyse speci-
fications in several different transformation languages, by making use of
a common intermediate representation to express the semantics of trans-
formations in any of these languages. Some analyses can be performed
directly on the intermediate representation, and further semantic models
in specific verification formalisms can be derived from it. We illustrate
the approach by applying it to ATL.

1 Introduction

A large number of different transformation languages exist, ranging from declar-
ative languages such as QVT-R [13] and Triple Graph Grammars, to hybrid lan-
guages such as ATL [6] and UML-RSDS [10], to imperative. There are nonethe-
less many commonalities between the processing carried out by transformations,
regardless of the language they are written in.

In this paper we describe a general language-independent framework for
transformation verification, and describe a range of language-independent ver-
ification techniques. The framework is based upon metamodels which provide
language-independent representation of transformation specifications (Section
2). These representations can then be mapped via semantic mappings to suitable
formalisms which support verification (such as theorem provers or constraint sat-
isfaction checkers). This approach means that only one semantic mapping needs
to be defined and verified for each target formalism, rather than semantic maps
for each different transformation language and target formalism.

2 Metamodels for model transformations

Transformations operate on various models or texts which conform to some
metamodel/language. There may be several input (source) models used by a
transformation, and possibly several output (target) models. A transformation
is termed update-in-place if a model is both an input and output, otherwise it is
a separate-models transformation. Languages can be specified in many different
ways, e.g., by UML class diagrams, by BNF syntax definitions, etc. Here we

will use UML class diagrams, together with OCL constraints. These form the
concrete syntax of language descriptions.

Figure 1 shows a generic metamodel (termed LMM) which can serve di-
rectly or indirectly as a metamodel (abstract syntax) for a wide range of mod-
elling languages. The metamodel is also self-representative. EntityType repre-
sents classes and interfaces, DataFeature represents both attributes and associ-
ations. mult1lower and mult1upper refer to the multiplicity range of the source
side of the attribute/association (i.e., the side with the entity type which owns
the data feature), whilst mult2lower and mult2upper refer to the multiplicity
range of the target side (the side with the type entity type). A value of −1 for
an upper bound indicates a *-multiplicity at that end. isOrdered refers to the
ordering of the target end.

Fig. 1. Minimal metamodel (LMM) for modelling languages

Ametaclass Language representing languages has a set entityTypes of EntityType,
a set features of DataFeature, and a set constraints of Constraint . Many varia-
tions on constraint languages could be used, here we adopt the subset of OCL
2.3 used in UML-RSDS [11, 12]. This includes set and sequence collections from
OCL, operation calls and other feature application and navigation expressions,
but omits null and invalid . The set of all expressions formed over a given base
language L (a class diagram) is denoted Exp(L). To support verification, we de-
fine a proof theory and (logical) model theory with respect to any language L, by
associating a formal first order language and logic to each instance of LMM. Ta-
ble 1 gives examples showing how a formal first-order set theory (FOL) language
LL can be associated to instances L of LMM.

An optional association end (with mult2lower = 0 and mult2upper = 1) is
formally represented as a set (or sequence) of size 0 or 1. A denumerable type

Modelling concept LMM representation Formal semantics

Entity type E Element of EntityType Type symbol E ′, denoting
the set of instances of E

Single-valued DataFeature element with Function symbol
attribute att : Typ mult2upper = 1, mult2lower = 1 att ′ : E ′ → Typ′ where
of E and type ∈ PrimitiveDataType Typ′ represents Typ

Single-valued role DataFeature element with Function symbol
r of E with target mult2upper = 1, mult2lower = 1 r ′ : E ′ → E1′

entity type E1 and type ∈ EntityType

Unordered many- DataFeature element with Function symbol
valued role r of E mult2upper ̸= 1 or mult2lower ̸= 1 r ′ : E ′ → F(E1′)
with target and isOrdered = false and
entity type E1 type ∈ EntityType

Supertype E1 of E E1 ∈ E .general Type E1′ with E ′ ⊆ E1′

Table 1. Correspondence of LMM and first-order logics

Object OBJ is included in each LL to represent the set of all possible object
references. A finite set objects ⊆ Object OBJ represents the set of all existing
objects at any point in time. Each entity type E has E ⊆ objects. Constraints
in the expression language Exp(L) are mathematically represented as first-order
set theory axioms in LL, for each base language L.

At the specification level, the effect of a transformation can be characterised
by a collection of mapping specifications, which relate model elements of one or
more models involved in the transformation to each other [5]. These mapping
specifications define the intended relationships which the transformation should
establish between the input (source) and output (target) models of the trans-
formation, at its termination. That is, they define the postconditions Post of
the transformation. In the case of in-place transformations, the initial values of
entity types and features can be notated as E@pre, f@pre in postconditions to
distinguish them from their post-state values. We adapt the mapping metamodel
of [5] to represent transformation specifications (Figure 2). This metamodel is
referred to as T MM in the following.

In this figure,Mapping , TransformationSpecification,ModelEnd , andMappingEnd
are subclasses of NamedElement . Each mapping has a corresponding computa-
tion step which defines the application of the mapping to specific source elements
that satisfy its condition. Transformation specifications in declarative transfor-
mation languages can be expressed in this metamodel, using abstraction tech-
niques such as those defined for TGG (triple graph grammars) and QVT-R in
[4] and for declarative ATL in [3]: these techniques express the intended effect
of transformations by OCL constraints describing the poststate of the transfor-
mation. In this paper we show how hybrid languages such as ATL can also be
expressed in T MM. In turn, formal representations of transformation specifica-
tions can be generated from representations in T MM, into a range of formalisms
such as B [9], Z3 [15] or Alloy [1], to support semantic analysis. The metamodel

Fig. 2. Transformation specification metamodel T MM

could be extended to include generalisation relations between mappings, as in
ATL and ETL [8].

The rules.relation constraints express the postconditions Post of the trans-
formation. Typically each mapping relation constraint Cn ∈ Post has the form of
an implication SCond implies Succ forall-quantified over elements (the source
mapping ends s : Si) of the source models. The assumptions express the precon-
ditions Asm of the transformation. The invariants define properties Inv which
should be true initially, and which should be preserved by each computation step
of the transformation.

3 Verification techniques

The following verification techniques can be applied to the T MM representation
of transformations, as follows:

– Syntactic analysis to identify the definedness conditions def (Cn) and de-
terminacy conditions det(Cn) of each mapping constraint Cn. These are
the conditions necessary for Cn to have a defined and determinate value,
respectively [10].

– Data dependency analysis, to compute the read-frame rd(Cn) and write-
frame wr(Cn) for each mapping constraint Cn1 and to identify cases of
invalid data-dependency and data-use.

1 wr(Cn) is the set of feature names and entity type names which Cn’s implementation
may modify. rd(Cn) is the set which may be read.

– Syntactic analysis to establish confluence and termination in the case of
transformations not involving fixed-point iteration.

– Translation to B AMN, to verify transformation invariants, syntactic correct-
ness (that the transformation produces target models which conform to the
target metamodel) and model-level semantic preservation (that the source
and target models have equivalent semantics).

– Translation to Z3, to identify counter-examples to syntactic correctness.

Fig. 3. Data dependency analysis example

Figure 3 shows an example of data dependency analysis being performed on
the T MM representation of an ATL specification: two rules are identified as
writing to the same entity type and feature, so are potentially in conflict.

4 Mapping from ATL to transformation metamodel

Table 2 shows the mapping of ATL (standard mode) [6] elements to elements of
T MM. We assume that all rule inheritance has been statically expanded out
so that only leaf rules exist.

We denote the T MM expression equivalent of an ATL expression e by e ′.
Given an ATL module

module M;

create OUT : T from IN : S;

rule r1

{ from s1 : S1, ..., sm : Sm (SCond)

using { v1 : Typ1 = val1; ... }
to t1 : T1 (TCond1), ..., tk : Tk (TCondk)

do (Stat)

}
...

rule rn { ... }

ATL element Transformation metamodel representation

Module TransformationSpecification

Matched rule Mapping(s)

Lazy rule Operation invoked from mapping constraint

Unique lazy rule Operation using caching to
avoid re-application

Implicit rule invocation Object lookup using object indexing or traces

Using variable Variable defined in mapping condition

Functional helper Query operation

Attribute helper Operation defining navigation expression

Action blocks Operation with activity, invoked
from mapping constraint

Table 2. Mapping of ATL to T MM

the T MM representation of M is a transformation specification M ′, and each
matched rule ri is represented by two mappings riMatching and riInitialisation
of M ′, which both have readOnly mapping ends the sj : Sj . The tk : Tk
are created mapping ends of riMatching , and updated ends of riInitialisation.
The input conditions SCond are translated to a condition conjunct SCond ′ of
riMatching and riInitialisation. Any using variables are expressed by a con-
junct vt = valt ′ of the condition. The output variables become exists-quantified
variables of the relations of the ri mappings. If an action block Stat is specified,
then a new update operation opri(s2 : S2, ..., sm : Sm, t1 : T1, ..., tk : Tk) is
introduced, this operation has activity given by the interpretation Stat ′ of Stat
as a UML activity. The resulting relation of riMatching has context S1 and
predicate

T1→exists(t1 | t1.$id = $id) and ... and Tk→exists(tk | tk .$id = $id)

This creates target model elements corresponding to the source model elements
that satisfy SCond ′, and establishes tracing relations from s1 to t1, ..., tk by
assignment of an identifier attribute $id , which is added to each root class of
the source or target metamodels. The relation of riInitialisation has context S1
and predicate

T1→exists(t1 | t1.$id = $id and ... and
Tk→exists(tk | tk .$id = $id and TCond1′ and ... and TCondk ′ and

s1.opri(s2, ..., tk))...)

In this rule the previously created tj corresponding to s1 are looked-up and their
features initialised. Lazy rules r with first input entity type S1 are translated to
operations rop of S1. Calls thisModule.r(v1, ..., vm) to the rule are interpreted
as calls v1.rop(v2, ..., vm) of this operation. The operation rop is stereotyped as
≪ cached ≫ in the case of unique lazy rules2. All riMatching rules are listed

2 Iterative target patterns are not treated by this translation. These are a deprecated
feature of ATL since ATL 2.0.

before all the riInitialisation rules in M ′.rules. The translation from ATL to
T MM can be extended to update-in-place transformations, i.e., to the refining
mode of ATL (ATL 2010 version). The translation from ATL to T MM has
been implemented in the UML-RSDS tools [11].

The translated transformation in T MM represents the usual execution se-
mantics of the ATL transformation, in which target objects are created in a
first phase, followed by links between objects [6]. Thus every computation of the
translated specification corresponds to a computation of the original specifica-
tion. The computation steps (rule applications) of the translation correspond to
the steps of the original specification, so any invariant of the translation will also
be an invariant of the original.

Using B, syntactic correctness can often be proved by using invariants of the
transformation to relate the target model to the source model. Thus a proof of
syntactic correctness of this kind also demonstrates syntactic correctness for the
original transformation. Similarly, model-level semantic preservation can often be
shown by invariant-based reasoning, which can be transferred from the translated
specification to the original.

A counter-example produced by Z3 or another satisfaction-checking tool gives
a pair (m,n) of a source and target model which can result from completed exe-
cution of the translated transformation, and where n violates some constraint of
T . Such a pair is also a counter-example to syntactic correctness of the original
ATL transformation. For refining mode transformations, termination and con-
fluence of the translated specification establishes these properties of the original
specification.

5 Evaluation

In this section we evaluate the approach by considering two example case studies:
the simple UML to relational database example from the ATL Zoo, and the
refactoring transformation of [7]. We use an imperative version of the UML
to relational database ATL transformation. This has three lazy rules and one
matched rule with an action block:

rule makeTable {

from c : Entity (c.generalisation->size() = 0)

to t : Table (rdbname <- c.name)

do {

for (att in c.ownedAttribute)

{ if (att.isPrimary)

{ t.tcols->includes(thisModule.makePrimaryKeyColumn(att)); }

}

for (att in c.ownedAttribute)

{ if (att.type.oclIsKindOf(Entity))

{ t.tcols->includes(thisModule.makeForeignKeyColumn(att)); }

}

for (att in c.ownedAttribute)

{ if (att.type.oclIsKindOf(PrimitiveType) or att.isPrimary = false)

{ t.tcols->includes(thisModule.makeColumn(att)); }

}

}

} }

lazy rule makePrimaryKeyColumn {

from p : Property (p.isPrimary)

to c : Column (rdbname <- p.name, type <- p.type.name)

}

lazy rule makeForeignKeyColumn {

from p : Property (p.type.oclIsKindOf(Entity))

to c : Column (rdbname <- p.name, type <- "String"),

f : FKey (references <- p.type, fcols <- Set{ c })

}

lazy rule makeColumn {

from p : Property (true)

to c : Column (rdbname <- p.name, type <- p.type.name)

}

The matched rule is translated to two constraints C0 and C1 with context
Entity :

generalisation.size = 0 implies

Table->exists(t | t.$id = $id and t.rdbname = name)

generalisation.size = 0 implies

Table->exists(t | t.$id = $id and self.makeTable1op(t))

C1 has the condition and relation of makeTableMatching , and creates table
objects and sets their attribute values. C2 has the condition and relation of
makeTableInitialisation, and looks up table objects using the introduced pri-
mary key $id and creates and links columns to the tables. makeTable1op(t)
carries out the procedural code of makeTable’s action block, invoking operations
makePrimaryKeyColumnop, makeForeignKeyColumnop and makeColumnop of
Property corresponding to the lazy rules. For example:

makeColumnop(): Column

post:

Column->exists(c | c.$id = $id and c.rdbname = name and

c.type = type.name and result = c)

Figure 3 shows an example of data-dependency analysis on the translated
specification. Verification properties of interest for this case study include: (i)
termination; (ii) confluence (meaning that semantically equivalent source models
are always mapped to equivalent target models); (iii) that the columns of the
foreign keys are always contained in the set of columns of the tables, formalised
as the transformation invariant fcols ⊆ Table.tcols on FKey .

For this specification (i) can be shown by data-dependency analysis, estab-
lishing that a bounded iteration implementation is sufficient for C0 and C1. (ii)

fails because the association end Table :: tcols is ordered, so that different rep-
resentations of the same input model may result in semantically distinct result
models. Proof of (iii) can be carried out by establishing it as a transformation
invariant in B. Table 3 shows the results of verification for the transformation.
Atelier B version 4.0 was used.

Property ATL via T MM
Termination By data-dependency analysis

Foreign key columns contained 20 proof obligations,
in table columns 15 automatically proved

Table 3. Proof effort for refinement transformation

The refactoring transformation of [7] is an update-in-place transformation op-
erating on simplified UML class diagrams. It removes apparant attribute clones
from the diagram by applying ‘pull up feature’ refactorings. We use the ex-
tended version of ATL refining mode supported by our translator, to define
an ATL solution with a single rule. For this transformation, there are sev-
eral required correctness properties that should be verified: (i) termination;
(ii) preservation of the property of single inheritance, formalised as the in-
variant generalisation→size() ≤ 1 on Entity ; (iii) preservation of the prop-
erty of no attribute name conflicts within classes, formalised as the invariant
ownedAttribute→isUnique(name) of Entity .

Since the transformation involves fixed-point iteration, termination is shown
by proving that Property .allInstances()→size() is a variant, i.e., that the num-
ber of Property instances in the model is always strictly decreased by applying
the transformation rule. Table 4 shows the results of verification for the trans-
formation.

Property ATL via T MM
Termination 6 proof obligations, 5 automatically proved

Single inheritance 13 proof obligations, all automatically proved

No name conflicts 15 proof obligations, 13 automatically proved
Table 4. Proof effort for refactoring transformation

6 Related work

In [2], techniques for the forward engineering of ATL and other MT language
specifications from a platform-independent transformation representation are de-
fined. The focus is on development of new transformations rather than upon the
reverse-engineering and verification of existing transformations. We explicitly

represent the semantics of the MT languages within our language-independent
representation, including execution phases and the mechanism of target element
lookup/implicit rule invocation. Such semantic representation is not detailed in
[2]. In contrast to the ATL to OCL translations of [3, 4], we define a behavioural
representation of ATL transformations, capturing the semantics of transforma-
tion computation steps (individual rule applications), instead of a static post-
state relation. This permits analysis of invariants and other behavioural proper-
ties.

7 Conclusion

We have outlined a language-independent approach for model transformation
verification, and illustrated this approach by applying it to ATL. We also intend
to apply this approach to other hybrid MT languages, such as ETL, Flock,
GrGen.NET and QVT-O.

References

1. K. Anastasakis, B. Bordbar, J. Kuster, Analysis of Model Transformations via
Alloy, Modevva 2007.

2. V. Bollati, J. Vara, A. Jimenez, E. Marcos, Applying MDE to the (semi-)automatic
development of model transformations, Information and Software Technology, 2013.

3. F. Buttner, M. Egea, J. Cabot, M. Gogolla, Verification of ATL transformations
using transformation models and model finders, ICFEM 2012.

4. J. Cabot, R. Clariso, E. Guerra, J. De Lara, Verification and Validation of Declara-
tive Model-to-Model Transformations Through Invariants, Journal of Systems and
Software, 2010.

5. E. Guerra, J. de Lara, D. Kolovos, R. Paige, O. Marchi dos Santos, transML: A
family of languages to model model transformations, MODELS 2010, LNCS vol.
6394, Springer-Verlag, 2010.

6. F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, ATL: A model transformation tool,
Sci. Comput. Program. 72(1-2) (2008) 31–39.

7. S. Kolahdouz-Rahimi, K. Lano, S. Pillay, J. Troya, P. Van Gorp, Evaluation of
model transformation approaches for model refactoring, Science of Computer Pro-
gramming, 2013, http://dx.doi.org/10.1016/j.scico.2013.07.013.

8. D. Kolovos, R. Paige, F. Polack, The Epsilon Transformation Language, in ICMT
2008, LNCS Vol. 5063, pp. 46–60, Springer-Verlag, 2008.

9. K. Lano, S. Kolahdouz-Rahimi, T. Clark, Comparing verification techniques for
model transformations, Modevva workshop, MODELS 2012.

10. K. Lano, S. Kolahdouz-Rahimi, Constraint-based specification of model transforma-
tions, Journal of Systems and Software, vol 88, no. 2, February 2013, pp. 412–436.

11. K. Lano, The UML-RSDS Manual, www.dcs.kcl.ac.uk/staff/kcl/uml2web/umlrsds.pdf,
2014.

12. K. Lano, Null considered harmfull (for transformation verification), VOLT 2014.
13. OMG, MOF 2.0 Query/View/Transformation Specification, 2011.
14. OMG, Object Constraint Language 2.3 Specification, 2012.
15. Z3 Theorem Prover, http://research.microsoft.com/en-

us/um/redmond/projects/z3/, 2012.

