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Abstract. The application of classical artificial intelligence techniques to real-
istic dynamic scenarios arises interesting challenges which require, often, the
tailoring of state-of-the-art solvers to the specific domains. The introduction of
a “light” and highly customizable framework allows to facilitate the way a high
number of possible problems are addressed. This paper introduces the ongoing
work for a novel domain-independent reasoning environment called J-TRE that
takes its inspiration from Constraint Logic Programming flavoring it with Object
Oriented features. The paper also addresses the customization of such an envi-
ronment to a particular kind of automated planning, referred to as timeline-based,
particularly suitable for complex domains. As a result, an alternative formaliza-
tion of the timeline-based planning problem is proposed that allows for an in-
teresting ability to solve both planning and scheduling problems in a uniform
schema.

1 Introduction
Planning is the abstract and explicit deliberation process that chooses and organizes
actions by anticipating their expected outcomes [24]. The area of Artificial Intelligence
(AI) that studies this deliberation process computationally is called automated planning.
Among the different qualities a cognitive architecture should have, automated planning
constitutes a mandatory one.

This paper fits inside this context by introducing the ongoing work for a novel
domain-independent reasoning environment, endowed with a special emphasis on au-
tomated planning, called Timeline Reasoning Environment for Java (J-TRE1). Specifi-
cally, J-TRE represents a general architecture for logic and constraint-based reasoning
that brings together some key aspects of intelligent reasoning leaving freedom to spe-
cific implementations on both constraint reasoning engines and resolution heuristics.
The proposed architecture is characterized by a basic core that allows the definition of
classic AI problems providing the possibility for defining particular “components” de-
voted to the resolution of specific AI problems (in our case, timeline-based planning
problems).

The paper is structured as follow. Section 2 describes the J-TRE reasoning envi-
ronment with a special attention to its basic core. Section 3 describes how the basic

1The J-TRE environment is the tool that has been developed on purpose for performing re-
search along my PhD route.



core and the general solving procedure have been extended to provide timeline-based
planning capabilities. Section 4 contains a generic discussion about some related ap-
proaches while section 5 contains conclusions and a description of the current state of
the environment.

2 The J-TRE Reasoning Environment

J-TRE is the result of last years studies on timeline-based planning [14, 15] and its ap-
plication on field [4]. The reason for introducing a new architecture is to obtain a “light”
and general framework for the resolution of classic AI problems, which might provide a
common glue for the definition of different problems, coming from different AI fields,
yet sharing constraints among them. A complex cognitive architecture, for example,
might handle both temporal and spatial problems. Although there exist efficient tempo-
ral reasoners and spatial reasoners, the definition of constraints among these problems
might be cumbersome and highly inefficient to be managed.

The basic core of the J-TRE environment provides an object oriented virtual envi-
ronment for the definition of objects and constraints among them. The aim here is to
provide to the user a minimalistic core that should be both sufficiently expressive as
well as easily extensible so as to adapt as much as possible to the most variety of user
requirements.

Similar to most object oriented environments, every object in the J-TRE environ-
ment is an instance of a specific type. J-TRE distinguishes among primitive types (e.g.,
bools, numbers, enums, strings, etc.) and user defined complex types (e.g., robots, trucks,
locations, etc.) endowed with their member variables (variables associated to a specific
object of either primitive or complex type), constructors (a special type of subroutine
called to create an instance of the complex type) and methods (subroutines associated
with an object of a complex type). Defining a navigation problem, for example, might
require the definition of a Location complex type having two numeric member variables
x and y representing the coordinates of each Location instance. In the following, we will
address objects and their member variables using a Java style dot notation (i.e., given a
Location instance l, its x-coordinate will be expressed as l.x).

Once objects are defined, J-TRE allows the definition of constraints among them.
For example, in case the x-coordinate of a location l is partially known, the J-TRE user
could assert a constraint such l.x ≤ 10. J-TRE considers constraints as logic propo-
sitions and, as such, it allows the possibility for negating them (e.g., ¬l.x ≤ 5), for
expressing conjunctions (e.g., l.x≤ 10∧ l.x≥ 5), disjunctions (e.g., l.x≤ 5∨ l.x≥ 10)
and logic implications (e.g., l.x≥ 10→ l.y≥ 10). Furthermore, it is possible to impose
constraints on instance existential (e.g., ∃l ∈ Locations : l.x ≥ 10) and universal (e.g.,
∀l ∈ Locations : l.x ≤ 100) quantifiers. It is worth noting that, in case the defined con-
straints are inconsistent among themselves (e.g., l.x ≤ 10∧ l.x ≥ 15) the system will
return a failure.

A rather straightforward method for managing this kind of problems is to translate
them into a Satisfiability Modulo Theories (SMT) problem (see, for example, [29]).
There are several available SMT solvers having different performances, capabilities as
well as licenses. Since J-TRE has been written in Java the only available choices are, to



the best of our knowledge, the SMTInterpol [9], the MathSAT 5 [11] and the Z3 [16]
solvers2.

Although this basic core allows the definition of quite complex problems (with-
out providing any demonstration, we can state that all NP-Complete [22] problems are
covered), some of the planning problems we are interested in are excluded from the
possibility of being modelled with this formalism ([13], for example, traces a thresh-
old on planning problems that can be modelled with what we have shown till now).
In order to overcome these limitations, we need something more powerful. Something
that, roughly speaking, is able to “decide” the number of involved variables, together
with their value. For this purpose, we have chosen to endow complex types the possi-
bility to define predicate schemas over them (and, consequently, predicate instances on
type instances). Intuitively, these predicate schemas are intended to define in which
case their instances are logically true. An example of predicate schema that might
be used for describing locations in the first quadrant of a Cartesian coordinate sys-
tem is FirstQuadrant (Location l)⇒{l.x≥ 0∧ l.y≥ 0}. By creating a FirstQuadrant
“query”, J-TRE will create a new FirstQuadrant predicate instance and will assign a
location to its l variable such that its coordinates belong to the first quadrant of the
Cartesian coordinate system. If such location does not exists, the system will return a
failure.

Similarly to standard objects, J-TRE allows the possibility to impose constraints on
predicate instances as well. Moreover, it is worth to note that predicate schemas might
include other predicate “queries” with a different predicate schema, possibly defined on
other complex types, or even the same predicate schema (in the latter case we talk of
a recursive definition of the predicate schema)3. In both cases the system will require
some form of subgoaling during the reasoning process. Finally, when possible, two
predicate instances might be “unified” by the reasoner meaning that, from now on, the
two predicates will be considered as a unique object (i.e., the reasoner puts bindings
among their variables).

In the following we provide some formal definition of the concept informally intro-
duced till now.

Definition 1. Given n complex types T = {T0, . . . ,Tn}, a domain theory D = {c0, . . . ,cm}
is the collection of the predicate schemas defined over T . A predicate schema is a tuple
c = (name(c) ,R(c)), where:

– name(c) is the master (or reference) predicate and is an expression of the form
n(x0 . . .xk), where n is a unique predicate symbol with respect to a complex type
(i.e., no two predicate schemas in a given complex type can have the same predicate
symbol), and x0 . . .xk are its associated variable symbols having either primitive
types or complex types (in the latter case the variable will be considered as an
existential quantifier).

2While SMTInterpol provides a pure Java implementation, MathSAT and Z3 provide Java
wrappers to their native API. We have not found other SMT solvers that provide, directly or
indirectly, a Java API.

3Recursive definitions produce a remarkably increase in expressiveness with the predictable
side effect of a decrease in performances.



– R(c) is a requirement, i.e. either a slave (or target) predicate, a constraint, a con-
junction of requirements, a disjunction of requirements or a preferred requirement.

In this regard, it is worth to recall that constraints can be combined in any logical
combination (i.e., negations, disjunctions, etc.).

Definition 2. A predicate instance is an expression of the form:

n(x0, . . . ,xk)

where n is a predicate name and x0, . . . ,xk are constants, numeric variables or object
variables.

The set of objects, predicate instances and constraints among objects and/or predi-
cate instances is called a partial solution and, as we shall soon, will be used to represent
nodes of the J-TRE search space. More formally we have that:

Definition 3. A partial solution is a tuple π = (O,T,C), where:

– O = {o0, . . . ,oi} is a set of objects.
– T =

{
t0, . . . , t j

}
is a set of predicate instances.

– C is a set of constraints on objects and/or on variables of predicate instances in T .

C is required to be consistent, i.e., there exist values for all the variables that meet all
the constraints. Moreover, since the real world has high degrees of uncertainty, we might
be interested in maintaining different possible solutions in a single partial solution.

Finally, given a domain theory D , a set of objects O, we can reuse the concept
of requirement for defining a J-TRE problem, i.e. either a slave (or, in the case of a
problem, a goal) predicate, a constraint, a conjunction of requirements, a disjunction of
requirements or a preferred requirement.

Definition 4. A problem is a tuple P = (D ,O,R), where:

– D is a domain theory.
– O = {o0, . . . ,ok} is a set of objects.
– R is a requirement.

From an operational point of view, J-TRE uses an adaptation of the resolution prin-
ciple [28] extended for managing constraints in a more general scheme usually known
as constraint logic programming (CLP) [1]. More in general, we give the name flaw to
anything that keeps the current partial solution from being a solution. While flaws can
be of different types and can arise for different reasons, what they all have in common
is that a search choice is necessary to solve each of them, thus the basic operations for
refining a partial solution π toward a solution are the following:

1. find the flaws of π , i.e., its subgoals.
2. select one such flaw.
3. find ways to resolve it.
4. choose a resolver for the flaw.



5. refine π according to that resolver.

Starting from an initial node corresponding to an empty solution, the search aims at
a final node containing a solution that correctly achieves the required goals, i.e, when
there is no flaw in π and all of its constraints are consistent then π is a solution. When
possible, resolution will try to unify goals with existing predicate instances, creating a
branch for all possible unifications. In case unification is not possible, resolution will
create a new branch of the search space, will create a new predicate instance, will find
a predicate schema suitable for the instance and will apply it.

How can such a generic framework be related with automated planning? Is it pos-
sible to extend the framework to manage other forms of reasoning? In the following,
after some basic introductory information on classical and timeline-based planning, we
will try to convince the reader that it is possible to give an affirmative answer to these
questions.

3 Timeline-based Planning and J-TRE

Classical planning4 approaches the planning problem as the search for a path in the
graph of a state-transition system [17], thus, the search space is given directly by the
state-transition system: nodes are states of the domain; arcs are state transitions or ac-
tions; a plan is a sequence of actions corresponding to a path from the initial state to a
goal state.

The timeline-based approach to planning represents an effective alternative to clas-
sical planning for complex domains requiring the use of both temporal reasoning and
scheduling features. The timeline-based approach models the planning and scheduling
problem by identifying a set of relevant features of the planning domain which need to
be controlled to obtain a desired temporal behaviour. Timelines model entities whose
properties may vary in time and which represent one or more physical (or logical) sub-
systems which are relevant to a given planning context. The planner/scheduler plays the
role of the controller for these entities, and reasons in terms of constraints that bound
their internal evolutions and the desired properties of the generated behaviours.

Most of the timeline-based planners use a more elaborate search space that is not
the state-transition system anymore. Their search space has partially specified plans as
nodes and plan refinement operations as arcs. Plan refinement operations are intended
to further complete a partial solution, i.e., to achieve an open goal or to remove some
possible inconsistency. Intuitively, these refinement operations avoid adding to the par-
tial plan any constraint that is not strictly needed for addressing the refinement purpose
(this is called the least commitment principle). The solving procedure starts from an ini-
tial node corresponding to an empty solution. The search aims at a final node containing
a solution that correctly achieves the required goals.

Given these premises, a possible approach to the resolution of timeline-based plan-
ning problems is to provide the predicate instances introduced in the previous section
with numerical variables in order to represent their starting times, their ending times

4Classical planning is also referred to in the literature as STRIPS planning, in reference to
STRIPS, an early planner for restricted state-transition systems [18].



and their durations. Also, it will be required to define some specific complex types,
whose instances will be called timelines, in order to add further “implicit” constraints
on the predicate instances defined over their instances. Finally, we need to enhance the
resolution procedure in order to check the consistency for every object in the current
partial solution so as to make explicit the just mentioned implicit constraints.

(a) State variable (b) Reusable resource (c) Consumable resource

Fig. 1. Different kinds of timelines with predicate instances and resource profiles.

The minimal set of the complex types, commonly used in timeline-based planning,
is the following:

– State variables are used to describe the “state” of a dynamical system as, for ex-
ample, the position of a specific object at a given time or a simple manufacturing
tool that might be operating or not. The semantics of a state variable (and thus the
implicit constraints on predicate instances associated to it) is simply that, for each
time instant t ∈ T, the timeline can assume only one value. State variable predicate
schemas are defined by the user during domain definition (temporal parameters are
implicitly defined). Figure 1(a) represents an example of state variable with three
predicate instances.

– Resources are characterized by a resource level L :T→R, representing the amount
of available resource at any given time, and by a resource capacity C ∈ R, repre-
senting the physical limit of the available resource. We can identify several types
of resources depending on how the resource level can be increased or decreased in
time. A consumable resource is a resource whose level is increased or decreased
by some activities in the system. An example of consumable resource is a reservoir
which is produced when a plan activity “fills” it (i.e., a tank refueling task) as well
as consumed if a plan activity “empties” it (i.e., driving a car uses gas). Consumable
resources have two empty predicate schemas having a predicate Produce(a,s,e,d)
to represent a resource production of amount a from time s to time e with duration d,
and a predicate Consume(a,s,e,d) to represent a resource consumption of amount
a from time s to time e with duration d. In addition, consumable resources have
four member variables representing the initial and the final amount of the resource,
the min and the max value for the profile. Reusable resources have one empty
predicate schema having a predicate Use(a,s,e,d) that represent an instantaneous
production of resource of amount a at time s and an instantaneous consumption
of resource of the same amount a at time e (e.g., a given number of programmers
employed on a given project for a given time interval). Reusable resources have a
single member variable representing the capacity of the resource. Figures 1(c) and
1(b) represent, respectively, an example of consumable resource and an example of
reusable resource with some associated predicate instances.



By introducing these complex types, we require the reasoner to identify an ordering
of the involved predicate instances in order to avoid object inconsistencies (e.g., dif-
ferent states overlapping on some state variable; resource levels L exceeding resource
capacity C or going lower than zero, etc.).

The aim of the reasoner becomes now to find a legal state of the predicate instances
that brings the objects into a final configuration that verifies domain theory, goals and
implicit constraints. Nodes of the search space are still partially specified solutions
while arcs are problem refinement operations intended to further complete a partial
solution, i.e., to achieve an open goal (by applying the “consequences” of the goal as
defined in the associated predicate schema), to remove a possible object inconsistency
(e.g., by adding some further constraint), to chose a disjunct among a disjunction or to
chose whether to satisfy a preference or not. We just need to redefine the concept of
flaw so as to include the just introduced object inconsistencies.

Definition 5. A flaw in a partial solution π = (O,T,C) is either: (i) an open goal, (ii)
an object inconsistency, (iii) a disjunction or (iv) a preference.

As expected, the refinement operations avoid adding to the partial solutions con-
straints that are not strictly needed following preserving the least commitment princi-
ple. Starting from an initial node corresponding to an empty solution, the search aims at
a final node containing a solution that correctly achieves the required goals. This algo-
rithm (specified as a recursive non-deterministic schema in Figure 2) represents a slight
adaptation of the classical Partial Order Planning algorithm (see, for example, [30]).

procedure SOLVE(π)
f laws← OpenGoals(π)∪ Inconsistencies(π)∪Disjs(π)∪Prefs(π)
if f laws = /0 then return π
select any flaw ϕ ∈ f laws
resolvers← Resolve(ϕ ,π)
if resolvers = /0 then return ⊥
non-deterministically choose a resolver ρ ∈ resolvers
π ′← Refine(ρ,π)
return Solve(π ′)

Fig. 2. The J-TRE solving procedure.

4 General Discussion
There is plenty of related literature which achieve different results from those presented
in this paper. The concept of predicate schema has its roots in the research on automatic
theorem proving. Exception made for mathematical constraints, predicate schemas are
very similar to standard Logic Programming (LP) clauses. Although standard Prolog
implementations allow the imposition of mathematical constraints, imposing such con-
straints in a general manner would possibly lead to run-time errors since arithmetic
tests can be made only if the arguments are instantiated. Constraint Logic Program-
ming overcomes this limitation by extending LP so as to allow linear constraints over



real variables CLP(R) (with namesake implementation [25]) and among variables rang-
ing over finite domains CLP(FD) (like ECLiPSe [1], SWI-Prolog [31] and many others).

Many results have been achieved also with regard to the timeline-based planning.
Similar to what has been described in this paper, [10] proposes a theoretical formal-
ism (and the relative implementation) for the timeline-based planning problem. [12]
exploits SMT technology to address a similar problem, also taking into account tempo-
ral uncertainty. Some theoretical work on timeline-based planning like [20] was mostly
dedicated to explain details of EUROPA [26], or to identify connections with classical
planning a-la PDDL [19]. The work on ASPEN [8], IxTET [23] and TRF [21, 5] have
tried to clarify some key underlying principles but mostly succeeded in underscoring
the role of time and resource reasoning [7, 27].

The object oriented environment, provided by J-TRE, allows an easy customization
for specific problems, such those required for timeline-based planning, yet maintaining
a shared glue, made by a uniform resolution procedure and a unified constraint prop-
agation infrastructure, among the different problems. This flexibility could be highly
appreciated when using the tool in real contexts.

The search control part has always remained significantly under explored. The cur-
rent realm is that although these planners capture elements that are very relevant for
applications, their theories are often quite challenging from a computational point of
view and their performance are rather weak compared with those of state of the art
classical planners. Indeed, timeline-based planners are mostly based on the notion of
partial order planning [30] and have almost neglected advantages in classical planning
triggered from the use of GRAPHPLAN and/or modern heuristic search [2, 3]. Further-
more, these architectures rely on a clear distinction between temporal reasoning and
other forms of constraint reasoning and there is no sign of attempts to change.

Constraint disjunctions, provided by the underlying SMT solver, should be ex-
ploited as much as possible. When available, for example, the J-TRE solver creates
a disjunction of all possible unifications for a goal. Temporal mutual exclusion for state
variable predicate instances, as well as overproductions and overconsumptions of re-
sources, could be handled, without resorting to the concept of flaw, by imposing tem-
poral disjunctions. The reason for preferring disjunctions to flaws is that SMT solvers
have their own internal search space that is highly optimized thanks to state-of-the-art
techniques such as backjumping and nogood learning. It is not yet clear if (and how)
backjumping and nogood learning techniques could be applied to the J-TRE search
procedure.

5 Conclusions and current status
This paper presents the ongoing work on J-TRE, a novel domain-independent reasoning
environment, and its particular customization to a timeline-based planning domain. We
have proposed a constraint-logic based formalism for the J-TRE reasoner and we have
seen that it can be easily extended to the timeline-based case.

Despite the practical use of timeline-based planning is often more intuitive than
classical planning, these kind of planners have to cope with performance issues due to
the complexity that derives from their expressiveness. The use of Satisfiability Modulo
Theories (SMT) for performing constraint propagation and for managing disjunctions



has proved to be effective for solving these kinds of problems. We are currently work-
ing on the development of benchmark problems for the proposed formalism as well
as translators from other planning languages such as PDDL2.1 [19] and later versions.
Despite the reasoner has not been extensively tested yet, [6] contains some promising
initial results. Finally, unlike [12] we do not (yet) account uncertainty in our domains.

Thanks to its domain causality and its constraint reasoning capabilities, J-TRE has
been successfully used as the back-end reasoner for the PANDORA European project to
create, reproduce and adapt a crisis scenario simulation suitable for the psychophysi-
ological state of the involved users (see [4] for further details). Since the complexity
of the possible interactions of an intelligent system with a real environment might be
overly complex to be encoded in predicate schemas, inside the PANDORA project we
have supported J-TRE with machine learning techniques so as to achieve an high level
interpretation of psychophysiological features and user classification. A tighter integra-
tion of these technologies might be further investigated in order to reach a more com-
plex cognitive architecture that might be able to perform complex tasks in a dynamic
environment.
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