Evolution of the E-Assessment Framework JACK

Michael Striewe, Bjorn Zurmaar, Michael Goedicke
{michael.striewe,bjoern.zurmaar,michael.goedicke } @paluno.uni-due.de

paluno - The Ruhr Institute for Software Technology
University of Duisburg-Essen

Abstract

This paper discusses the architecture of the e-assessment system JACK
as a case study for planned and unplanned architecture evolution. It
presents the original architecture and provides examples for both kinds
of evolution.

1 Introduction and System History

The system JACK is a framework for e-assessment of complex exercises like programming, modeling, and math-
ematics. Its development started in early 2006 with a first version going live in late 2006. A sketch of the
architecture and first plans for evolution have been published as technical report in 2008 [2], just before a major
revision of the system was performed. The aim of this revision was to make the architecture more evolution
friendly. An overview on the resulting system has been published in [1].1

This paper aims to provide a case study for evolution by presenting three sections: Section 2 gives an overview
on the system architecture and some key design decision. Section 3 discusses evolution scenarios that were taken
into account during the design, while section 4 reports on experiences with unplanned cases of architecture
evolution.

2 Framework Overview

JACK is a server application and basically divided into two major parts: The core system including user in-
terfaces, data storage, and short-running marking processes (called synchronous checks), as well as the backend
system for long-running marking processes (called asynchronous checks). Each part is subdivided into several
components (see figure 1). Particularly, the backend may use different components to provide different actual
marking techniques, such as static or dynamic checks on programming exercises.

The main decision driver for this design was performance. The connection between core and backend is
designed following the master-worker-principle, where one or more backend instances can handle the marking
tasks provided by the core system. Hence the core system is not generally slowed down by a long queue of jobs
waiting for completion. However, this only works for asynchronous checks, while synchronous checks still have
to be performed on the core system.

A second decision driver was interface flexibility. The core system was designed to be able to receive solution
submissions on different ways, such as submission via browser or upload via a plug-in for the Eclipse-IDE. At
the same time, the core system also should be able to connect to different services to authenticate users.

The system is implemented in Java, using EJB as component model for the core system and OSGi as component
model for the backend system. The core system including the web-frontend is deployed on an JBOSS application
server, while the backend is deployed as a standalone OSGI application.

Copyright © by the paper’s authors. Copying permitted for private and academic purposes.

IThe system is not available as open source system, but the source code of a recent version can be provided for research purposes
upon request.

118

cmp JACK Main Components /
Web-Frontend Web-Service for
Eclipse
Business Legic Core including Synchrenous —@— Web-Service for
Marking Compenents Workers
Legend
I:‘ Compeonents running cn core server
Authentication Persistence . Compeonents running on worker servers
Senvices l:l External services

Figure 1: Component structure of JACK: The core system (light grey) is responsible for user interaction, data
storage, and marking for exercises with immediate feedback (synchronous marking). The backend system (dark
grey) is responsible for long-running marking processes (asynchronous marking) and can use an arbitrary number
of actual marking components per backend system. In general, there is a many-to-many relationship between
core systems and backend systems.

3 Planned Evolution

As the backend was designed to host different components for different types of marking techniques, it was
planned that additional components will be developed later and have to be integrated into the system. This
integration worked as expected and also allowed to integrate external systems into JACK by writing an appro-
priate component that serves as a broker. Since there was a clearly defined interface both between core system
and backend system, and between backend system and marking components, it was also possible to extend these
interfaces systematically to allow for more data to be transferred.

The original design included no actual components for synchronous marking, but only the concept of inte-
grating such components into the core system. Work on the first component of this type was started in 2011 and
the architectural concept turned out to be insufficient. Particularly, it was not possible to use the same interface
as the one running on the backend system, as the latter uses some data types specific for the backend system.
Hence it can be concluded that planning has failed with respect to this aspect, or that implementations have not
realized all ideas from the original plans correctly.

4 Unplanned Evolution

While the integration of components for synchronous checks was planned from the beginning, it also brought
some unplanned evolution with it. The original concept assumed that there is only few data that actually
needs be handled by the core system, as marking happens in dedicated marking components. Consequently,
the system employed one component for all exercise related low level tasks (ExerciseManagementBean in figure
2(a)) and two distinct components for the teacher oriented and student oriented user interface, respectively
(ExerciseManagerBean and StudExerciseManagerBean in figure 2(a)). A similar set of sub-components was
used for tasks related to exams and user management. It was supposed that this is a good and sustainable way
to divide the system into sub-components.

However, soon after working with exercises with synchronous feedback we started to develop exercise types
with flexible content that had to be generated by the core system. Thus it turned out that here is a strong
need for several kinds of utilities for the internal representation of exercise content for some exercise types
(ExerciseChainDefinitionHandler and StageDataDefinitionHandler in figure 2(b)). The new exercise types
also influenced the design of the web-frontend in the way that additional components specialised to the needs
of a particular exercise type were created (JavaExerciseManagerBean and FormBasedExerciseManagerBean in

119

composite structure 2014/
Web-Frentend @
— | o B mm— [—
composite structure 2008/ L 1 | '] : ! !
| MH| StudExerci | : |5tudCum Daull‘
E [1L 11 []
Wieb-Frontend - s sl5er o,
| — p Fa
| e | | R
UserManagerBean | |] [] ; | ; |
| ' |
/ﬁl)\
? Business Logic Core including Synchronous Marking Components E
E ||, = | Cour |
Business Logic Core including Synchronous Marking Components t i t i | I
- ’ X ~
.- - Al i
[uze: |l = | P
L 1L 1T 1 ‘ iseChainDefiniti ‘ ‘SGgeDahDe || FilllnChecker | | MultipleChoiceChecker
L | i] L])
(a) Sub-components structure of business logic and (b) Sub-components structure of business logic and web-frontend
web-frontend as originally created in 2008. after six years of software evolution.

Figure 2: Comparison of the original component structure with the one after six years of evolution. The original
version shows a clear separation between components according to their scope (user-centric, exercises-centric,
exam-centric) as well as a separation between the teacher-oriented and student-oriented part of the web-frontend.
After six years, a third separation according to exercise types has been introduced which got more important
than the others.

figure 2(b)). This was also used to avoid duplicated code in the teacher and student oriented parts of the web-
frontend, as the separation between these parts in the component structure turned out to be less helpful. Finally,
an additional way of handling collections of exercises was introduced, resulting in “courses" as an alternative
way to group exercises in contrast to the already existing “exams". Hence another set of components had to be
introduced into the web-frontend and the business logic core to handle that concept. As can be seen from the
figures, the resulting architecture got populated with many components and there is no longer a clear rule what
is grouped into one sub-component and what is placed in another one.

As a consequence we decided that we can achieve much better design by having one sub-component in the
business logic core per exercise type, which handles all specific task for this type and is accompanied by one
web-frontend component per exercise type both for the teacher and the student interface. This change will result
in a fundamentally different component structure in the next major revision of the whole system.?

Another case of unplanned evolution was encountered with respect to authentication interfaces, although inter-
face flexibility was one of the key factors in system design: In 2012, we were required to implement the IMS-LTT
standard® to allow integration of JACK into e-learning platforms like MOODLE. The solution involved creation of
a new component to accept specific HT TP-requests (LTIServlet in figure 2(b)), integration of an OAuTH library
to decode authentication requests, and internal changes in the login module (UserManagementBean). While this
were quite a lot of changes touching several parts of the architecture, they did not affect the architecture in any
negative way. However, the consequence for future versions is to consider interfaces for HT'TP-request right from
the beginning for all places in which interaction with users or other systems can happen.

References

[1] Michael Striewe, Moritz Balz, and Michael Goedicke. A Flexible and Modular Software Architecture for
Computer Aided Assessments and Automated Marking. In Proceedings of the First International Conference
on Computer Supported Education (CSEDU), 28 - 26 March 2009, Lisboa, Portugal, volume 2, pages 54-61.
INSTICC, 2009.

[2] Michael Striewe, Michael Goedicke, and Moritz Balz. Computer Aided Assessments and Programming Ex-
ercises with JACK. Technical Report 28, ICB, University of Duisburg-Essen, 2008.

2The component architecture planned for the next evolution step is available upon request for research.
Shttp://www.imsglobal.org/lti/index.html

120

