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Abstract: Today’s embedded systems are highly integrated in their context. Their 

functional behavior does not only result from individual functions but also arises in 

the interplay between these functions. Automotive and avionics systems consist of 

control circuits to determine values in the context and to influence context proper-

ties. Thereby, indirect interplay between functions emerges from overlapping con-

trol circuits, which influence the same context measurement. Often the resulting 

interplay must be considered as unintended. It is of importance to detect such unin-

tended functional interplay and to determine whether it is desired but unspecified 

interplay or defective interplay. To foster detecting defective functional interplay 

this paper suggests the explicit model-based documentation of context measure-

ments in the functional design. Based on this information, we propose the automat-

ed generation of dedicated review diagrams to aid in deciding whether unspecified 

functional interplay is defective. 

1 Introduction 

Function-centered engineering is commonly used in the development of automotive and 

avionics systems to address the challenges resulting from the steadily increasing number 

of system functions and their complexity (cf. [Br09], [DWP14], [Pr07]). In function-

centered engineering processes, the functions of a system and their dependencies are the 

main point of reference [Da13]. Therefore, architecture design decisions and deployment 

are influenced to a considerable degree by the dependencies on a functional level. 

In addition, functions are explicitly designed as central concept for systematic reuse. In 

industrial practice, the portfolio of the functions developed by a company is stored in 

proprietary function libraries. The functional design of systems under development is 

then composed by selecting appropriate functions from the library. Figure 1 sketches the 

relation between a system’s functional design and a company’s function library. The 

initial functional design of an embedded system is often generated from existing func-

tions that are seen as the best fit. Subsequently, functions are enhanced and adopted to fit 

the specific purposes of the particular system under development.  
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Figure 1: Functional design and function library 

By re-using existing functions in different configurations, the functional design com-

monly provides more functionality than originally intended by the requirements specifi-

cation. This additional functionality might stem from the use of a single advanced func-

tion, or from the interplay between several functions. Especially the latter may remain 

undiscovered and result in severe threats to the system’s safety. 

While it is of importance to detect unintended functional interplay, it cannot be detected 

by simple comparisons with the requirements specification: Since automotive software 

engineering is largely based on domain knowledge, best practices, and developers’ expe-

rience, in practice, not all functional interplay that has not been specified explicitly can 

be assumed to be undesired and defective. By investigations of case examples and expert 

interviews we gained the insight that a significant amount of defective functional inter-

play stems from overlapping control circuits, which monitor and control the same con-

text measurement (cf. [DHW14]). Since the context measurements relevant to an auto-

motive system, are well-known at development time, this paper suggests the explicit 

model-based documentation of context measurements within the functional design.  

Figure 2 shows a simplified cut-out from a car’s functional design, different control cir-
cuits are described by functions and the context measurement that is controlled. The 

figure exemplifies the interference between different control circuits and how safety 

defects depend on unrecognized impacts on control circuits. In detail, the figure shows 

three control circuits, which are in so far overlapping as all three influence the same 

context measurement: the torque generated by the car’s engine. In this situation the 

torque is measured to determine whether the driver accelerates. Based on this evaluation 

the e-brakes shall be disengaged. In combination with the air-conditioning system, this 

leads to undesired functional interplay because also the cooling of the car will result in 

requesting additional torque. If the air-conditioning system increases engine torque in 

order to cool down the car more, this could result in undesired and unsafe effect on the 

brakes, which are inadvertently disengaged. 
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Figure 2: Functions and context measurements build overlapping control circuits 

To foster the prevention of defective functional interplay this paper suggests a twofold 

approach. Since the explicit documentation of implicit knowledge can significantly aid 

the engineering of complex and safety-critical systems (cf. [Da14]) we suggest the ex-

plicit model-based documentation of context measurements in the functional design. The 

context measurements, their impact to system functions, and the functions influencing 

the context measurement are documented. This aids, for example, the identification of 

circular dependencies from context measurements. Since the use of dedicated review 

models to validate behavioral properties of requirements and functional design is an 

appropriate way to resolve deficiencies resulting from implicit changes in the stakehold-

er intentions (cf. [DWP15]), we suggest in the second step the automated generation of 

dedicated review diagrams, which visualize existing unintended functional interplay. 

This aids decision making whether the interplay must be considered as defective. 

The remainder of this paper is structured as follows: Section 2 reviews the current state 

of the art on detection of functional interplay. Subsequently, Section 3 presents our solu-

tion concept, consisting of the explicit documentation of context measurement and of the 

automated generation of dedicated review diagrams for analysis purposes. Section 4 

reports on first industrial evaluation activity. Finally, Section 5 concludes the paper. 

2 Related Work 

Several approaches exist to detect emergent properties, which are properties that arise 

from a specification, but are not part of the specification itself. The detection and the 

prevention of these properties are discussed in function specifications by means of fea-

ture interactions and in behavioral specifications by means of implied scenarios. Fur-

thermore, common approaches to determine and prevent safety hazards, like the failure 

mode and effects analysis (FMEA), are designed to detect any kind of undesired inter-

play. However, safety analyses in this sense do not explicitly take into account context 

measurements and are mostly conducted after the system has been specified (i.e. based 
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on platform-specific models or code). In contrast, explicit documentation of context 

measurements support the engineering in earlier stages of development. In addition, 

manifold approaches exist to detect dependencies between functions, instances, or enti-

ties, which are mostly applicable during requirements engineering or functional design 

phases. 

Approaches dealing with the feature interaction problem (e.g., [FN03], [KB98], or 

[SHR07]) stem from the telecommunication domain. They have partly been transferred 

to the automotive domain as well (cf. [Ju08]). The detection and prevention of feature 

interactions is defined as change-request problem: an existing correct specification is 

altered by a single feature. This feature does not only add its own behavior, but results in 

undesired behavior in combination with other features. It is to note that in this case a 

feature is comparable to a system function. As the functional design is developed from a 

wide variety of different newly developed, changed, and re-used functions, approaches 

dealing with feature interactions are not applicable, as they focus on one single change. 

Furthermore, according to the definition of feature interactions, any kind of resulting 

interplay between functions is undesired. In contrast, the interplay of functions is often 

explicitly introduced in the functional design and hence desired. 

Approaches dealing with implied scenarios (e.g., [AEY00], [Le05], or [UKM01]) aim at 

detecting system behavior, which emerges from an interaction-based behavior specifica-

tion, but has not been specified explicitly in a single diagram. Commonly, model-

synthesis techniques are used to derive an overall model from partial diagrams. Subse-

quently, properties of the derived model can be examined and classified by experts. Un-

desired properties must be removed from the specification and desired properties will be 

documented explicitly on their own. Current techniques investigate implicit behavior in 

sequence diagrams and must be adopted to fit the functional design. In addition, current 

approaches do not take context measurements and resulting implicit changes to overlap-

ping control circuits into account. 

Several techniques to determine dependencies between different model elements exist 

(e.g., [Cl07], [MGP09], or [Sp07]). Especially approaches dealing with the automated 

detection and documentation of traceability information deal with several kinds of de-

pendencies. These techniques do not consider context measurements to evaluate the 

existence of dependencies and can thereof not be used to detect functional interplay re-

sulting from overlapping control circuits. 

3 Solution Concept 

This section introduces our solution concept to detect functional interplay, which emerg-

es from the manipulation of context measurements by multiple functions or systems. The 

solution idea relies on the model-based documentation of the context measurements and 

their interdependencies (see Section 3.1), which is commonly seen as a promising solu-

tion in the embedded industry (cf. [STP11]). Subsequently, the documented information 

serves as an input for automated analysis techniques (see Section 3.2). 
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3.1 Explicit Documentation of Context Measurements in the Functional Design 

In the development of today’s automotive systems the functional design serves as core 

development artifact (cf. [Br09]). The functional design defines the functionality of the 

system under development by means of logical functions. The subsequent development 

phases rely on this functional design, e.g., to partition the functions into logical compo-

nents, to develop an adequate electric and electronic design, or to deploy the system 

functions onto the control units. Therefore, the functional design typically defines the 

system functions to be developed, functions that are not part of the system under devel-

opment, but are used by the system under development (in the following: context func-

tions), and the interplay between the aforementioned functions. 

The functional design defines structural properties, like the functions’ hierarchical rela-

tions and the possible interactions, which are exchanged between the functions, and be-

havioral properties, to specify single functions behavior and to specify the behavior re-

sulting from the interplay of multiple functions. Different diagram types can be used to 

define a proper functional design under consideration of all relevant perspectives:  

 Function hierarchy diagrams define the hierarchical structure of the system functions. 

Therefore, feature trees can be used [Ka98].  

 Function network diagrams define the interactions exchanged between all involved 

functions from a structural perspective. Function network diagrams are much akin to 

[JS00]. Figure 3 depicts an excerpt of the functional design of a lane keeping support 

as an example for a function network diagram. 

 Function behavior diagrams define each function’s behavior. Therefore, interface au-

tomata may be used [AH01].  
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Figure 3: Function network diagram of a lane keeping support 

Undesired functional interplay often emerges from interactions with the system’s context 

in which the system’s functions react on monitored context information. To unveil pos-

sible undesired interplay resulting from control circuits we suggest the explicit documen-

tation of the involved context measurements in the functional design. This enables the 

engineer to identify other control circuits that might conflict the desired functionality. In 

addition, this allows for automated support to detect and display functional interplay as 
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outlined in Section 3.2. Figure 4 depicts another excerpt from the lane keeping support: 

the function behavior diagrams from the functions ‘Trajectory Planning’ and ‘Steering 
Intervention’, which were already shown in Figure 3. As can be seen, the explicit docu-

mentation of context measurements allows for graphical documentation of interrelated 

function behavior that stems from changing context measurements. In detail, the yawrate 

sensed by the function ‘Trajectory Planning’ is influenced by the function ‘Steering In-

tervention’. 

Steering Intervention

Deactivate!Stop Steering?

Steering Angle?

Steering Angle!

Trajectory Planning

Activate?

Lane Angle?
Yawrate?

Request 

Yawrate!

Steering Angle!

Stop Breaking!
Steering 

Command?

Stop Steering!

Steering Angle

Stop Steering

Yawrate
Steering 

Angle

Yawrate

 

Figure 4: Function behavior diagrams with explicit interrelation through context measurements 

As the state of the art lacks formalization of the functional design to aid automated tech-

niques (cf. [BP10]), we give insight in a formalization of the functional design, which 

explicitly considers context measurements. 

The overall model of the functional design can be described as 7-tupel ��, �� , �, �, , , . The functional design consists of the following elements: 

 A set of functions � =  �� ∪ ��. Where �� is the set of system functions under de-

velopment and ��  is the set of context functions under consideration. 

 A set of interactions �, which are exchanged between the functions.  

 A set of context measurements �, which are monitored, or influenced by at least 

one function. 

 A relation ⊆ � × � × �, which defines the interactions exchanged between two 

functions. 

 A relation ⊆ � × �, which defines the set of sub functions of one function.  

 A relation = � ∪ �, where � ⊆ � × � defines, which context measurement is 

influenced by a function and � ⊆ � × �, which defines if a function is influenced 

by a context measurement. 

By enhancing the work of [AH01] by context measurements, the behavior of each func-

tion � of the functional design can be defined as 8-tupel �� , ������ , �� , ��� , �� , �� , � , � . 

The function behavior description consists of the following elements: 

 Internal states: �� is the set of all states and ������, the set of initial states. 

 A set of Actions �� = �� ∪ ��� ∪ �� . �� is the set of inputs, ��� is the set of out-

puts, and ��  a set of internal actions. 

 A set of context measurements ��, which are monitored or influenced. 
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 A transition relation connecting actions and states: � ⊆ �� × �� × ��  

 And a relation, which defines the context measurements that are affected by a mes-

sage: � ⊆ �� × �� 

To ensure consistency between the overall structure of the functional design and its sin-

gle behavior descriptions, well-formedness rules have to be fulfilled between functions 

and interactions, such that: ∀ �� , �, � ∈ : ��, � ∈ �, � ∈ � ∧ � ∈ ���� ∧ ���  

Also well-formedness rules are defined for the influence onto context measurements: ∀ �, � ∈ �: ∃ �, � ∈ � ∧ � ∈ ���  ∀ �, � ∈ �: ∃ �, � ∈ � ∧ � ∈ ��  

3.2 Generating dedicated Review Diagrams to aid Analysis of Functional Interplay 

While the explicit documentation of context measurements allows for visual inspections 

of the functional design to detect undesired functional interplay, in practice, automated 

support is necessary to keep track with complex and large specifications (cf. [DHW14]). 

Therefore, it is desirable to present functional interplay in single review diagrams that 

aid deciding whether a behavioral property resulting from functional interplay is desired. 

Message sequence charts [ITU11] have proven useful for formal verification due to their 

formal semantics and yet intuitive graphical notation commonly used during automotive 

development [WW02]. Figure 5 depicts a basic message sequence chart that displays the 

undesired functional interplay from Figure 2. It is clearly depicted, that the context 

measurement torque is affected by the cooling of the car’s interior. This effect to the 
torque leads to disengaging the car’s brakes. By visual inspection the engineers detect 

that this effect is undesired. To resolve this effect, the engineers will, for example, de-

cide to determine the intention of the driver to speed up, not by monitoring the torque 

but by monitoring the gas pedal position. 
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Figure 5: Defective functional interplay is visualized by a message sequence chart 

As the functional design consists of a formalized notation, formal methods can be ap-

plied to generate the review diagrams in fully automated manner. For example, existing 
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techniques for path generation based on traceability information can be adopted (e.g., 

[He04]). And synthesis techniques from the related work (e.g., [AEY00], [Le05], 

[UKM01]) can be used to display these paths as bMSCs. 

4 Industrial Evaluation 

We conducted an initial study to determine the state of practice regarding the function-

oriented engineering of embedded systems and current challenges (cf. [DHW14]. The 

study was conducted in the years 2012 and 2013 with several industrial and academic 

partners. Most partners stem from the automotive domain and may considered as large, 

German, world-wide operating original equipment manufacturers and suppliers. The 

study was of qualitative nature with minor quantitative parts. A comprehensive research 

roadmap was developed for the purpose of the study, which incorporated expert work-

shops and case studies. Industry partners supported case examples to ensure the appro-

priateness of the case studies. Excerpts of the functional design of one case example are 

used in Figures 3 and 4. 

During investigation, the need to deal with functional interplay was determined. This 

seems not only to be valid for the automotive domain, but also for the avionics domain. 

Investigation showed that functional interplay arising from context measurements, which 

impact different control circuits, is seen as a major threat to system’s safety by industry 
professionals. Beside this, further kinds of functional interplay exist, which are also 

needed to be investigated, and are not addressed within this approach (e.g., the unused 

functionality of re-used functions, may evolve an undesired system behavior in combina-

tion with other functions). 

Furthermore, it has to be recognized, that the documentation of context measurements is 

based on the assumption that all relevant context measurements are known. For example, 

the development team of the air condition may not recognize the increasing throttle val-

ue. Industry professionals assured that this issue can be neglected in the current situation, 

as all context measurements are well-known even before development starts. This can be 

explained with the experience-oriented development methodology and the already exist-

ing huge engineering knowledge. In the current situation development teams can easily 

check, whether one of these well-known measurements is influenced. Therefore, check-

lists may be used. 

In the interviews it was also recognized that in the development of future systems not all 

relevant context measurements will be known at design time. As interconnectivity and 

context-sensitivity rises (this is partly already valid for avionics systems) the interplay 

with other systems (e.g., planes, cars, or intelligent traffic signs) leads to several effects. 

First, the control circuits enlarge and the system under development depends on control 

circuits from other systems. Second, the control circuit may not be under control of only 

one system, which means that context measurements may be altered by different control 

circuits of different systems. Third, other systems and other control circuits may be un-

known at design time and the system will have to handle effects during runtime. In addi-
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tion, systems with long life cycles may be confronted with context measurements, which 

were not intended during system development. 

5 Discussion and Conclusion 

In summary, this paper presented an approach to detect undesired functional interplay, 

which arises from overlapping control circuits in automotive and avionics systems. The 

approach suggests the explicit documentation of context measurements in the functional 

design, which is the central artifact during function-centered engineering of embedded 

systems. Based on the explicit documentation in a formalized functional design, auto-

mated model-transformations can be used to detect and to display functional interplay in 

dedicated review diagrams. 

First evaluation result from expert investigations and industrial case studies show the 

appropriateness of the presented approach for industrial purposes. While this approach 

seems pretty useful for traditional embedded systems several challenges arise for the 

engineering of cyber physical systems (cf. [BCG12]). Due to their heterogeneous nature 

as well as their growing complexity [Fo12], it is, for example, a challenging task to en-

sure the correctness of such collaborative systems. For example, the types of functions 

and systems involved in a collaborative system network may be unknown, and addition-

ally, the numbers of participating functions and systems may be uncertain, as well. 

Hence, future work will particularly have to deal with emergent behavior in the interplay 

of collaborative system networks under consideration of uncertainty and open contexts. 
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