
Using dedicated Review Diagrams to detect Defective

Functional Interplay in Function-Centered Engineering

Marian Daun, Andrea Salmon, Thorsten Weyer

paluno – The Ruhr Institute for Software Technology

University of Duisburg-Essen

Gerlingstraße 16, 45127 Essen, Germany

{marian.daun, andrea.salmon, thorsten.weyer}@paluno.uni-due.de

Abstract: Today’s embedded systems are highly integrated in their context. Their

functional behavior does not only result from individual functions but also arises in

the interplay between these functions. Automotive and avionics systems consist of

control circuits to determine values in the context and to influence context proper-

ties. Thereby, indirect interplay between functions emerges from overlapping con-

trol circuits, which influence the same context measurement. Often the resulting

interplay must be considered as unintended. It is of importance to detect such unin-

tended functional interplay and to determine whether it is desired but unspecified

interplay or defective interplay. To foster detecting defective functional interplay

this paper suggests the explicit model-based documentation of context measure-

ments in the functional design. Based on this information, we propose the automat-

ed generation of dedicated review diagrams to aid in deciding whether unspecified

functional interplay is defective.

1 Introduction

Function-centered engineering is commonly used in the development of automotive and

avionics systems to address the challenges resulting from the steadily increasing number

of system functions and their complexity (cf. [Br09], [DWP14], [Pr07]). In function-

centered engineering processes, the functions of a system and their dependencies are the

main point of reference [Da13]. Therefore, architecture design decisions and deployment

are influenced to a considerable degree by the dependencies on a functional level.

In addition, functions are explicitly designed as central concept for systematic reuse. In

industrial practice, the portfolio of the functions developed by a company is stored in

proprietary function libraries. The functional design of systems under development is

then composed by selecting appropriate functions from the library. Figure 1 sketches the

relation between a system’s functional design and a company’s function library. The

initial functional design of an embedded system is often generated from existing func-

tions that are seen as the best fit. Subsequently, functions are enhanced and adopted to fit

the specific purposes of the particular system under development.

31

System

Function D

System

Function F

System

Function E

Context

Function B

Context

Function C

Context

Function A

Function

Library

Context Functions:

Can be used, but are not

under control of the

development team

Function D is

developed from

scratch, and

subsequently stored

in the function library
Function F is

re-used from the

function library

Function E stems

from the function

library, is updated

during develop-

ment, and stored

as new additional

function E‘

Behavior Specification of Function E

Function behavior

is modified, e.g., to

handle a further

input to the

function
Figure 1: Functional design and function library

By re-using existing functions in different configurations, the functional design com-

monly provides more functionality than originally intended by the requirements specifi-

cation. This additional functionality might stem from the use of a single advanced func-

tion, or from the interplay between several functions. Especially the latter may remain

undiscovered and result in severe threats to the system’s safety.

While it is of importance to detect unintended functional interplay, it cannot be detected

by simple comparisons with the requirements specification: Since automotive software

engineering is largely based on domain knowledge, best practices, and developers’ expe-

rience, in practice, not all functional interplay that has not been specified explicitly can

be assumed to be undesired and defective. By investigations of case examples and expert

interviews we gained the insight that a significant amount of defective functional inter-

play stems from overlapping control circuits, which monitor and control the same con-

text measurement (cf. [DHW14]). Since the context measurements relevant to an auto-

motive system, are well-known at development time, this paper suggests the explicit

model-based documentation of context measurements within the functional design.

Figure 2 shows a simplified cut-out from a car’s functional design, different control cir-
cuits are described by functions and the context measurement that is controlled. The

figure exemplifies the interference between different control circuits and how safety

defects depend on unrecognized impacts on control circuits. In detail, the figure shows

three control circuits, which are in so far overlapping as all three influence the same

context measurement: the torque generated by the car’s engine. In this situation the

torque is measured to determine whether the driver accelerates. Based on this evaluation

the e-brakes shall be disengaged. In combination with the air-conditioning system, this

leads to undesired functional interplay because also the cooling of the car will result in

requesting additional torque. If the air-conditioning system increases engine torque in

order to cool down the car more, this could result in undesired and unsafe effect on the

brakes, which are inadvertently disengaged.

32

Measure

Interior

Temperature

Disengage

Brakes

Change Gear
Monitor

Torque

Accelerate

Drive with

Desired Speed

Measure Car‘s
Speed

Decelerate Regulate

Interior

Temperature

Heat Up

Cool Down

<<Context Measurement>>

Torque

<<Context Measurement>>

Speed

<<Context Measurement>>

Interior Temp.

Control Circuit to

Regulate Car‘s Speed

Control Circuit to

Regulate Car‘s Gear

Control Circuit to

Regulate Interior Temperature

1

2

1

1

2

Control circuit influences a context measurement

under control of another control circuit

The function „Disengage Brakes“ shall be triggered

when the driver accelerates, which is determined by an

increasing torque value. The control circuit to regulate

the interior temperature, which also influences the

torque, is not considered. Hence an safety defects can

emerge from the overlapping control circuits.

Figure 2: Functions and context measurements build overlapping control circuits

To foster the prevention of defective functional interplay this paper suggests a twofold

approach. Since the explicit documentation of implicit knowledge can significantly aid

the engineering of complex and safety-critical systems (cf. [Da14]) we suggest the ex-

plicit model-based documentation of context measurements in the functional design. The

context measurements, their impact to system functions, and the functions influencing

the context measurement are documented. This aids, for example, the identification of

circular dependencies from context measurements. Since the use of dedicated review

models to validate behavioral properties of requirements and functional design is an

appropriate way to resolve deficiencies resulting from implicit changes in the stakehold-

er intentions (cf. [DWP15]), we suggest in the second step the automated generation of

dedicated review diagrams, which visualize existing unintended functional interplay.

This aids decision making whether the interplay must be considered as defective.

The remainder of this paper is structured as follows: Section 2 reviews the current state

of the art on detection of functional interplay. Subsequently, Section 3 presents our solu-

tion concept, consisting of the explicit documentation of context measurement and of the

automated generation of dedicated review diagrams for analysis purposes. Section 4

reports on first industrial evaluation activity. Finally, Section 5 concludes the paper.

2 Related Work

Several approaches exist to detect emergent properties, which are properties that arise

from a specification, but are not part of the specification itself. The detection and the

prevention of these properties are discussed in function specifications by means of fea-

ture interactions and in behavioral specifications by means of implied scenarios. Fur-

thermore, common approaches to determine and prevent safety hazards, like the failure

mode and effects analysis (FMEA), are designed to detect any kind of undesired inter-

play. However, safety analyses in this sense do not explicitly take into account context

measurements and are mostly conducted after the system has been specified (i.e. based

33

on platform-specific models or code). In contrast, explicit documentation of context

measurements support the engineering in earlier stages of development. In addition,

manifold approaches exist to detect dependencies between functions, instances, or enti-

ties, which are mostly applicable during requirements engineering or functional design

phases.

Approaches dealing with the feature interaction problem (e.g., [FN03], [KB98], or

[SHR07]) stem from the telecommunication domain. They have partly been transferred

to the automotive domain as well (cf. [Ju08]). The detection and prevention of feature

interactions is defined as change-request problem: an existing correct specification is

altered by a single feature. This feature does not only add its own behavior, but results in

undesired behavior in combination with other features. It is to note that in this case a

feature is comparable to a system function. As the functional design is developed from a

wide variety of different newly developed, changed, and re-used functions, approaches

dealing with feature interactions are not applicable, as they focus on one single change.

Furthermore, according to the definition of feature interactions, any kind of resulting

interplay between functions is undesired. In contrast, the interplay of functions is often

explicitly introduced in the functional design and hence desired.

Approaches dealing with implied scenarios (e.g., [AEY00], [Le05], or [UKM01]) aim at

detecting system behavior, which emerges from an interaction-based behavior specifica-

tion, but has not been specified explicitly in a single diagram. Commonly, model-

synthesis techniques are used to derive an overall model from partial diagrams. Subse-

quently, properties of the derived model can be examined and classified by experts. Un-

desired properties must be removed from the specification and desired properties will be

documented explicitly on their own. Current techniques investigate implicit behavior in

sequence diagrams and must be adopted to fit the functional design. In addition, current

approaches do not take context measurements and resulting implicit changes to overlap-

ping control circuits into account.

Several techniques to determine dependencies between different model elements exist

(e.g., [Cl07], [MGP09], or [Sp07]). Especially approaches dealing with the automated

detection and documentation of traceability information deal with several kinds of de-

pendencies. These techniques do not consider context measurements to evaluate the

existence of dependencies and can thereof not be used to detect functional interplay re-

sulting from overlapping control circuits.

3 Solution Concept

This section introduces our solution concept to detect functional interplay, which emerg-

es from the manipulation of context measurements by multiple functions or systems. The

solution idea relies on the model-based documentation of the context measurements and

their interdependencies (see Section 3.1), which is commonly seen as a promising solu-

tion in the embedded industry (cf. [STP11]). Subsequently, the documented information

serves as an input for automated analysis techniques (see Section 3.2).

34

3.1 Explicit Documentation of Context Measurements in the Functional Design

In the development of today’s automotive systems the functional design serves as core

development artifact (cf. [Br09]). The functional design defines the functionality of the

system under development by means of logical functions. The subsequent development

phases rely on this functional design, e.g., to partition the functions into logical compo-

nents, to develop an adequate electric and electronic design, or to deploy the system

functions onto the control units. Therefore, the functional design typically defines the

system functions to be developed, functions that are not part of the system under devel-

opment, but are used by the system under development (in the following: context func-

tions), and the interplay between the aforementioned functions.

The functional design defines structural properties, like the functions’ hierarchical rela-

tions and the possible interactions, which are exchanged between the functions, and be-

havioral properties, to specify single functions behavior and to specify the behavior re-

sulting from the interplay of multiple functions. Different diagram types can be used to

define a proper functional design under consideration of all relevant perspectives:

 Function hierarchy diagrams define the hierarchical structure of the system functions.

Therefore, feature trees can be used [Ka98].

 Function network diagrams define the interactions exchanged between all involved

functions from a structural perspective. Function network diagrams are much akin to

[JS00]. Figure 3 depicts an excerpt of the functional design of a lane keeping support

as an example for a function network diagram.

 Function behavior diagrams define each function’s behavior. Therefore, interface au-

tomata may be used [AH01].

Video Sensing Line Detection

Line to Lane

Fusion

Situation

Evaluation

Trajectory

Planning

Braking

Intervention

Steering

Intervention

Automatic Braking

left side

Automatic Braking

right side

Automatic

Steering

Yawrate Sensing
Detecting Human

Activities

Measuring

Steering Angle Yawrate

Line Signals

Lane Position &

Lane Angle

Request indicator Indicator = (true, false)

Steering Angle

Steering Command

Request Yawrate

Yawrate

activate

Steering angle Stop Braking

Brake left deactivate

deactivateSteering angle

Lane Angle

Radar

Radar Signal

Figure 3: Function network diagram of a lane keeping support

Undesired functional interplay often emerges from interactions with the system’s context

in which the system’s functions react on monitored context information. To unveil pos-

sible undesired interplay resulting from control circuits we suggest the explicit documen-

tation of the involved context measurements in the functional design. This enables the

engineer to identify other control circuits that might conflict the desired functionality. In

addition, this allows for automated support to detect and display functional interplay as

35

outlined in Section 3.2. Figure 4 depicts another excerpt from the lane keeping support:

the function behavior diagrams from the functions ‘Trajectory Planning’ and ‘Steering
Intervention’, which were already shown in Figure 3. As can be seen, the explicit docu-

mentation of context measurements allows for graphical documentation of interrelated

function behavior that stems from changing context measurements. In detail, the yawrate

sensed by the function ‘Trajectory Planning’ is influenced by the function ‘Steering In-

tervention’.

Steering Intervention

Deactivate!Stop Steering?

Steering Angle?

Steering Angle!

Trajectory Planning

Activate?

Lane Angle?
Yawrate?

Request

Yawrate!

Steering Angle!

Stop Breaking!
Steering

Command?

Stop Steering!

Steering Angle

Stop Steering

Yawrate
Steering

Angle

Yawrate

Figure 4: Function behavior diagrams with explicit interrelation through context measurements

As the state of the art lacks formalization of the functional design to aid automated tech-

niques (cf. [BP10]), we give insight in a formalization of the functional design, which

explicitly considers context measurements.

The overall model of the functional design can be described as 7-tupel ��, �� , �, �, , , . The functional design consists of the following elements:

 A set of functions � = �� ∪ ��. Where �� is the set of system functions under de-

velopment and �� is the set of context functions under consideration.

 A set of interactions �, which are exchanged between the functions.

 A set of context measurements �, which are monitored, or influenced by at least

one function.

 A relation ⊆ � × � × �, which defines the interactions exchanged between two

functions.

 A relation ⊆ � × �, which defines the set of sub functions of one function.

 A relation = � ∪ �, where � ⊆ � × � defines, which context measurement is

influenced by a function and � ⊆ � × �, which defines if a function is influenced

by a context measurement.

By enhancing the work of [AH01] by context measurements, the behavior of each func-

tion � of the functional design can be defined as 8-tupel �� , ������ , �� , ��� , �� , �� , � , � .

The function behavior description consists of the following elements:

 Internal states: �� is the set of all states and ������, the set of initial states.

 A set of Actions �� = �� ∪ ��� ∪ �� . �� is the set of inputs, ��� is the set of out-

puts, and �� a set of internal actions.

 A set of context measurements ��, which are monitored or influenced.

36

 A transition relation connecting actions and states: � ⊆ �� × �� × ��

 And a relation, which defines the context measurements that are affected by a mes-

sage: � ⊆ �� × ��

To ensure consistency between the overall structure of the functional design and its sin-

gle behavior descriptions, well-formedness rules have to be fulfilled between functions

and interactions, such that: ∀ �� , �, � ∈ : ��, � ∈ �, � ∈ � ∧ � ∈ ���� ∧ ���

Also well-formedness rules are defined for the influence onto context measurements: ∀ �, � ∈ �: ∃ �, � ∈ � ∧ � ∈ ��� ∀ �, � ∈ �: ∃ �, � ∈ � ∧ � ∈ ��

3.2 Generating dedicated Review Diagrams to aid Analysis of Functional Interplay

While the explicit documentation of context measurements allows for visual inspections

of the functional design to detect undesired functional interplay, in practice, automated

support is necessary to keep track with complex and large specifications (cf. [DHW14]).

Therefore, it is desirable to present functional interplay in single review diagrams that

aid deciding whether a behavioral property resulting from functional interplay is desired.

Message sequence charts [ITU11] have proven useful for formal verification due to their

formal semantics and yet intuitive graphical notation commonly used during automotive

development [WW02]. Figure 5 depicts a basic message sequence chart that displays the

undesired functional interplay from Figure 2. It is clearly depicted, that the context

measurement torque is affected by the cooling of the car’s interior. This effect to the
torque leads to disengaging the car’s brakes. By visual inspection the engineers detect

that this effect is undesired. To resolve this effect, the engineers will, for example, de-

cide to determine the intention of the driver to speed up, not by monitoring the torque

but by monitoring the gas pedal position.

Temp >

Des. Temp

Temp

cool

Torque rises

from Idle Disengage

Breaks

Measure

Int. Temp

Regulate

Int. Temp Cool Down

Monitor

Torque Losen Brake

Effect on

Torque

Figure 5: Defective functional interplay is visualized by a message sequence chart

As the functional design consists of a formalized notation, formal methods can be ap-

plied to generate the review diagrams in fully automated manner. For example, existing

37

techniques for path generation based on traceability information can be adopted (e.g.,

[He04]). And synthesis techniques from the related work (e.g., [AEY00], [Le05],

[UKM01]) can be used to display these paths as bMSCs.

4 Industrial Evaluation

We conducted an initial study to determine the state of practice regarding the function-

oriented engineering of embedded systems and current challenges (cf. [DHW14]. The

study was conducted in the years 2012 and 2013 with several industrial and academic

partners. Most partners stem from the automotive domain and may considered as large,

German, world-wide operating original equipment manufacturers and suppliers. The

study was of qualitative nature with minor quantitative parts. A comprehensive research

roadmap was developed for the purpose of the study, which incorporated expert work-

shops and case studies. Industry partners supported case examples to ensure the appro-

priateness of the case studies. Excerpts of the functional design of one case example are

used in Figures 3 and 4.

During investigation, the need to deal with functional interplay was determined. This

seems not only to be valid for the automotive domain, but also for the avionics domain.

Investigation showed that functional interplay arising from context measurements, which

impact different control circuits, is seen as a major threat to system’s safety by industry
professionals. Beside this, further kinds of functional interplay exist, which are also

needed to be investigated, and are not addressed within this approach (e.g., the unused

functionality of re-used functions, may evolve an undesired system behavior in combina-

tion with other functions).

Furthermore, it has to be recognized, that the documentation of context measurements is

based on the assumption that all relevant context measurements are known. For example,

the development team of the air condition may not recognize the increasing throttle val-

ue. Industry professionals assured that this issue can be neglected in the current situation,

as all context measurements are well-known even before development starts. This can be

explained with the experience-oriented development methodology and the already exist-

ing huge engineering knowledge. In the current situation development teams can easily

check, whether one of these well-known measurements is influenced. Therefore, check-

lists may be used.

In the interviews it was also recognized that in the development of future systems not all

relevant context measurements will be known at design time. As interconnectivity and

context-sensitivity rises (this is partly already valid for avionics systems) the interplay

with other systems (e.g., planes, cars, or intelligent traffic signs) leads to several effects.

First, the control circuits enlarge and the system under development depends on control

circuits from other systems. Second, the control circuit may not be under control of only

one system, which means that context measurements may be altered by different control

circuits of different systems. Third, other systems and other control circuits may be un-

known at design time and the system will have to handle effects during runtime. In addi-

38

tion, systems with long life cycles may be confronted with context measurements, which

were not intended during system development.

5 Discussion and Conclusion

In summary, this paper presented an approach to detect undesired functional interplay,

which arises from overlapping control circuits in automotive and avionics systems. The

approach suggests the explicit documentation of context measurements in the functional

design, which is the central artifact during function-centered engineering of embedded

systems. Based on the explicit documentation in a formalized functional design, auto-

mated model-transformations can be used to detect and to display functional interplay in

dedicated review diagrams.

First evaluation result from expert investigations and industrial case studies show the

appropriateness of the presented approach for industrial purposes. While this approach

seems pretty useful for traditional embedded systems several challenges arise for the

engineering of cyber physical systems (cf. [BCG12]). Due to their heterogeneous nature

as well as their growing complexity [Fo12], it is, for example, a challenging task to en-

sure the correctness of such collaborative systems. For example, the types of functions

and systems involved in a collaborative system network may be unknown, and addition-

ally, the numbers of participating functions and systems may be uncertain, as well.

Hence, future work will particularly have to deal with emergent behavior in the interplay

of collaborative system networks under consideration of uncertainty and open contexts.

Acknowledgements

This research was funded by the German Federal Ministry of Education and Research

(grant no. 01IS12005C).

References

[AH01] Alfaro, L.; Henzinger, T.: Interface Automata. In: Proc. ESEC/FSE, 2001; pp. 109–120.

[AEY00] Alur, R.; Etessami, K.; Yannakakis, M.: Inference of Message Sequence Charts. In: Proc.

ICSE, 2000; pp. 304-313.

[BP10] Brinkkemper, S.; Pachidi, S.: Functional Architecture Modeling for the Software Product

Industry. In: Proc. Europ. Conf. Softw. Arch., 2010; pp. 198-213.

[BCG12] Broy, M.; Cengarle, M.V.; Geisberger, E.: Cyber Physical Systems: Imminent Challeng-

es. In: Proc. Monterey WS Large Scale Complex IT Systems, 2012; pp. 1-28.

[Br09] Broy, M.; Gleirscher, M.; Merenda, S.; Wild, D.; Kluge, P.; Krenzer, W.: Toward a

Holistic and Standardized Automotive Architecture Description. In: IEEE Computer

42(12), 2009; pp. 98-101.

[Cl07] Cleland-Huang, J.; Settimi, R.; Romanova, E.; Berenbach, B.; Clark, S.: Best Practices

for Automated Traceability. In: IEEE Computer 40(6), 2007; pp. 27-35.

39

[Da13] Daun, M.; Brings, J.; Höfflinger, J.; Weyer, T.: Funktionsgetriebene Entwicklung soft-

ware-intensiver eingebetteter Systeme in der Automobilindustrie – Stand der Wissen-

schaft und Forschungsfragestellungen. In: Proc. Envision’13, 2013; pp. 293-302.

[Da14] Daun, M.; Brings, J.; Tenbergen, B.; Weyer, T.: On the Model-based Documentation of

Knowledge Sources in the Engineering of Embedded Systems. In: Proc. Envision’14,

2014; pp 67-76.

[DHP14] Daun, M.; Höfflinger, J.; Weyer, T.: Function-centered Engineering of Embedded Sys-

tems – Evaluating Industry Needs and Possible Solutions. Proc. Int. Conf. Eval. of Novel

Approaches to Softw. Eng., 2014; pp. 226-234.

[DWP14] Daun, M.; Weyer, T.; Pohl, K.: Validating the Functional Design of Embedded Systems

Against Stakeholder Intentions. In: Proc. Int. Conf. Model-Driven Eng. and Softw. Dev.,

2014; pp. 333-339.

[DWP15] Daun, M.; Weyer, T.; Pohl, K.: Detecting and Correcting Outdated Requirements in

Function-Centered Engineering of Embedded Systems. In: Proc. Int. Working Conf.

Req. Eng.: Foundations for Softw. Qual., 2015; pp. 65-80.

[Er05] Ericson, C.A.: Hazard Analysis Techniques for System Safety, Wiley, 2005.

[FN03] Felty, A.; Namjoshi, K.: Feature Specification and Automated Conflict Detection. In:

ACM Trans. on Softw. Eng. and Methodology 12(1), 2003; pp. 3-27.

[Fo12] Fouquet, F.; Morin, B.; Fleurey, F.; Barais, O.; Plouzeau, N.; Jezequel, J.: A Dynamic

Component Model for Cyber Physical Systems. In: Proc. ACM SIGSOFT Symp. on

Component Based Softw. Eng., 2012; pp. 135-144.

[He04] Hessel, A.; Larsen, K.; Nielsen, B.; Pettersson, P.; Skou, A.: Time-Optimal Real-Time

Test Case Generation Using UPPAAL. In: Proc. Int. WS Formal Approaches to Software

Testing, 2004; pp. 114-130.

[ITU11] International Telecommunication Union: Recommendation Z.120. Int. Standard, 2011.

[JS00] Jantsch, A.; Sander, I.: On the Roles of Functions and Objects in System Specification.

In: Proc. Int. WS Hardware/Software Codesign, 2000; pp. 8-12.

[Ju08] Juarez Dominguez, A.: Feature Interaction Detection in the Automotive Domain. In:

Proc. Int. Conf. Automated Softw. Eng., 2008; pp. 521-524.

[Ka98] Kang, K.; Kim, S.; Lee, J.; Kim, K.; Shin, E.; Huh, M.: FORM: A Feature-Oriented

Reuse Method with Domain Specific Reference Architectures. In: Annals of Softw. Eng.

5(1), 1998; pp. 143-168.

[KB98] Kimbler, K.; Bouma, L.: Feature Interactions in Telecommunication and Software Sys-

tems V, IOS Press, 1998.

[Le05] Letier, E.; Kramer, J.; Magee, J.; Uchitel, S.: Monitoring and Control in Scenario-Based

Requirements Analysis. In: Proc. ICSE, 2005; pp. 382-391.

[MGP09] Mäder, P.; Gotel, O.; Philippow, I.: Enabling Automated Traceability Maintenance

through the Upkeep of Traceability Relations. In: Proc. Europ. Conf. Model Driven Ar-

chitecture – Foundations and Applications, 2009; pp. 174-189.

[Pr07] Pretschner, A.; Broy, M.; Kruger, I.; Stauner, T.: Software Engineering for Automotive

Systems: A Roadmap. In: Proc. Int. WS Future of Softw. Eng., 2007; pp. 55-71.

[SHR07] Shiri, M.; Hassine, J.; Rilling, J.: Feature Interaction Analysis: A Maintenance Perspec-

tive. In: Proc. Int. Conf. Automated Softw. Eng., 2007; pp. 437-440.

[Sp07] Spanoudakis, G.; Zisman, A.; Pérez-Miñana, E.; Krause, P.: Rule-based generation of

requirements traceability relations. In: J. Syst. Softw. 72(2), 2007; S. 105-127.

[STP11] Sikora, E.; Tenbergen, B.; Pohl, K.: Requirements engineering for embedded systems: an

investigation of industry needs. In: Proc. Int. Working Conf. on Req. Eng.: Foundation

for Softw. Qual., 2011; pp. 151-165.

[UKM01]Uchitel, S.; Kramer, J.; Magee, J.: Detecting Implied Scenarios in Message Sequence

Chart Specifications. In: Proc. ESEC/FSE, 2001; pp. 74-82.

[WW02] Weber, M.; Weisbrod, J.: Requirements Engineering in Automotive Development -

Experiences and Challenges. In: IEEE Software 20(1), 2002, pp. 313-340.

40

