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Abstract 

The ability to create forecasts and discover trends is a value to 

almost any industry.  The challenge comes in finding the right data 

and the appropriate tools to analyze and model such data.  This 

paper aims to demonstrate that it may be possible to create 

technology forecasting models through the use of patent groups.  

The focus will be on applying time series modeling techniques to 

a collection of USPTO patents from 1996 to 2013.  The techniques 

used are Holt-Winters Exponential Smoothing and ARIMA.  Cross 

validation methods were used to determine the best fitting models 

and ultimately whether or not patent data could be modeled as a 

time series.  

1. Introduction   

As innovation and technology has grown over the last 

several decades there has arisen a greater need for tracking, 

grouping, and analyzing such progress.  This is satisfied 

through the issuance of patents. Each patent can be thought 

of as an index in technological advancement since they 

introduce a new, innovative idea or theory.  If these pieces 

of knowledge are to be considered benchmarks in the 

constantly changing landscape of technology, then it may be 

possible to examine the trends in quantities of patents.   

The goal of this paper is to show that an opportunity exists 

to create a technology forecasting model based on the 

sequence of patents issued over a given time period.  To 

accomplish this it is necessary to demonstrate that a time 

series model can accurately predict the fluctuations in patent 

volume from month to month.  Due to the overwhelmingly 

large amount of patent data, this research will focus on three 

classes of data processing patents: Generic Control Systems 

or Specific Applications (GCSSA), Artificial Intelligence 

(AI), Database and File Management or Data Structures 

(DFMDS).  Furthermore, this subset of patents will only 

include patents from 1996 to 2013.  Two univariate time 

series forecasting models will be applied to each series of 

                                                 
 

patents, Exponential Smoothing and Autoregressive 

Integrated Moving Averages (ARIMA).  

 Due to a decrease in storage costs and an increase in 

processing power, Big Data has created a situation in which 

a vast amount of information has been made available. As 

we progress into the next several years, there will be a great 

need to understand the massive amounts of structured and 

unstructured data that is a product of the Big Data 

phenomenon.  As it will be demonstrated by this research, 

analysis of patents represents an area of great analytic 

potential.  This paper will show that patent data is certainly 

a prospective source for a Technology Forecasting (TF) 

model. This will differ from other research in TF since other 

techniques do not consider the sequence of patent grants as 

a trend. Instead, they focus only on the cumulative content 

of patents for a set period of time with no respect to changes 

over that time period.   Furthermore, the creation of TF 

models with patent data can go a long way in helping us 

understand the underlying meanings within a given 

technological sector.  The trends and analyses that result 

from such models would benefit other areas of government, 

politics, economics, and social well-being. 

 

2. Related Work 
 

When attempting to forecast univariate time series data, it 

is generally accepted that parsimonious model techniques 

are followed.  A simple approach that has been used in 

many applications is the Holt-Winters Exponential 

Smoothing (HWES) technique.  Exponential smoothing 

techniques are simple tools for smoothing and forecasting 

a time series. Smoothing a time series aims at eliminating 

the irrelevant noise and extracting the general path followed 

by the series (Fried and George 2014). It is based on a 

recursive computing scheme, where the forecasts are 
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updated for each new incoming observation and is 

sometimes considered as a naive prediction method (Gelper 

et al. 2010). 

Exponential smoothing methods were originally used in 

the 1950’s as a collection of ad hoc techniques for 

extrapolating various types of univariate time series (De 

Gooijer and Hyndman 2006). In 1960 C.C. Holt and his 

student Peter Winters introduced a variation to the 

technique which ultimately became known as the Holt-

Winters technique (De Gooijer and Hyndman 

2006)(Goodwin 2010).  Holt’s initial model extended 

simple exponential smoothing to allow forecasting of data 

with a trend.  Winters would later collaborate with his 

mentor to produce a seasonal component (Hyndman and 

Athanasopoulos 2013). 

While Autoregressive (AR) and Moving Average (MA) 

models have been in existence since the early 1900’s, it was 

the work of Box and Jenkins in 1970 that integrated these 

techniques into one approach and ultimately created 

ARIMA (De Gooijer and Hyndman 2006).  The Box-

Jenkins approach allowed for non-stationary time series 

trends to be modeled (Shumway and Stoffer 2006). Non-

stationary data can be made stationary through a process 

known as differencing. In some time series models there is 

a need to adjust for seasonality.  As previously mentioned 

both HWES and ARIMA offer alternative methods to 

adjust models accordingly.  However, that is not the case 

with the data selected for this paper. 

Time series modeling has been applied in several 

different settings and situations.  Research has been carried 

out in economics (Kang 1996)(Dongdong 

2010)(Timmermann and Granger 2004), climate change 

and weather forecasting (Kumar and De Ridder 

2010)(Leixiao et al. 2013), utility forecasting (Conejo et al. 

2005)(Contreras et al. 2003)(De Gooijer and Hyndman 

2006), and many more. 

Even though the only forecasting methods mentioned 

here are univariate, it is worth mentioning that multivariate 

techniques exist as well.  Some of the more popular 

multivariate time series models that exist include 

VARIMA, VARMA, VAR, and BVAR. However, the 

impact that one patent trend may have on another might be 

substantial and should not be overlooked.  When 

considering further research in patent analysis it is possible 

that these modeling techniques could be used. 

 It should be reiterated that the main objective of this paper 

is to demonstrate that groupings of patent data over time 

can be represented as a time series and that a forecasting 

model can be fitted to the trend.  There is a lot of value in 

such technology forecasting, especially as it pertains to 

some level of patent mining.  Technology forecast 

modeling on patent data has been done to show areas of 

technological development opportunities (Jun et al. 

2011)(Tseng et al. 2007).  Daim et al. (2006) suggest that 

the use of multiple methods, including Patent Mining, 

Bibliometrics, and Delphi processes, improves technology 

forecasting.  Shin and Park (2009) have demonstrated that 

technology forecasting methods can be a key factor in 

economic growth.  In their methods they use Brownian 

agents to detect regions of technology growth. 

 

3. Proposed Methodology 
 

In this analysis, each patent group is being considered 

independently of other patents. It was important to use this 

approach so that it could first be shown that a sequence of 

patents over a given time represented a meaningful time 

series and that predictive modeling could be carried out.  

However, in building on this research it will be important to 

understand the relationships between each group and the 

effect each one may have the others. 

 The patent data for this project was obtained from UC 

Berkley Fung Institute 

(https://github.com/funginstitute/downloads). Their patent 

data has been extracted from the USPTO website and 

converted from XML to a SQLite table structure.  The patent 

databases provided include patent data ranging from 1975 to 

2013.  From these tables it was possible to filter out the 

number of patents in a given classification over a period of 

time (1996 to 2013).  While the selection of dates is 

somewhat arbitrary, it does coincide with a rough starting 

date of commercial internet use.  The USPTO classes and 

number of patents used in this research is shown in Table 1. 

 

Name USPTO  

Class 

Number of Patents  

(1996 – 2013) 

GCSSA 700 27,503 

AI 706 8,699 

DFMDS 707 53,415 
Table 1 – Quantities and Classifications of Patents 

 

Each particular class has several subclasses which offer 

greater specificity in the classification of the patent.  It 

should be noted that if each class were to be broken into their 

smaller subclass components, additional trends may appear.  

However, such granularity should not be necessary for this 

study.  Every entry in the database also included the 

application and grant date for each patent.  In this research 

the grant date was used to compile the total number of 

patents per month from January of 1996 to March of 2013.  

However, in generating the forecasting models only the data 

from January 1996 to December 2011 was used.  This 

allowed for a portion of the actual data to be used in 

comparison to the proposed forecast values. 

For each patent group two models will be applied, HWES 

and ARIMA.  Two functions within R Studio were used to 

generate the models for each class of patents: HoltWinters() 

and auto.arima().  Each series was plotted and 15 month 

forecasts for the two models were produced.  The forecast 

values were then compared to the actual values previously 
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withheld and forecast error metrics were calculated. A third 

Simple Exponential Smoothing (SES) forecast will be 

applied and graphed for purposes of providing visual 

comparison.  However, SES models in their most basic form 

tend to over fit the data and may not be the best option. 

Furthermore, as it has been stated, the actual selection of a 

forecasting method is not the objective of this paper. It is the 

hope of this research to identify possible candidates for 

future patent mining/technology forecasting research. 

 In this paper, we make an assumption that the 

classifications proposed by USPTO are correct.  It may be 

argued that other meaningful patents related to a given 

technology are classified elsewhere.  For instance, Wu et al. 

(2010) suggest that most industries rely on the International 

Patent Classification (IPC) process too heavily. This can 

sometimes make searching for specific patents within a 

classification difficult, decrease business decision 

processes, and increase the possibility of patent 

infringement.  It may be possible to cluster patents with 

similar content to create less arbitrary classifications.  From 

these groupings themes could be determined and trend 

analysis analogous to this research could be carried out. One 

proposed approach is to cluster the patents using Genetic 

Algorithms and Support Vector Clustering (Wu et al. 2010). 

 

4. Experimental Results 
 

R Studio was used in this project to compile, plot, and 

forecast each time series trend.  The first step in the process 

was to graph each series.  Figure 1 illustrates the time series 

graphs of all three groupings.  From each of these graphs it 

can be observed that there is an observable trend.  

Additionally it should be noted that by themselves, none of 

the models are stationary, which is a requirement for the 

ARIMA model.  However, R implements ARIMA in such a 

manner that the level of differencing is determined 

automatically. 

 
4.1 Exponential Smoothing 

 

For each dataset both the HoltWinters and auto.arima 

functions were used to fit appropriate models. The 

smoothing parameters and Sum of Squares values for each 

HWES model are shown in Table 2. The alpha values were 

automatically generated by R and indicate how close the 

model will fit the actual data.  The parameter can range in 

values from zero to one.  If the value is close to one then the 

resulting model is influenced more by the later values of the 

data.  However, all of the values in Table 2 indicate that both 

recent and less recent data points were used in creating the 

forecast.  The coefficient value represents the final 

component estimate.   

 

 

 
GCSSA Time Series 

 
AI Time Series 

 
DFMDS Time Series 

Figure 1 – Patent Time Series 

 

Name Smoothing  

Alpha 

Coefficients SSE 

GCSSA 0.277 215.64 135767.9 

AI 0.3 89.52 21146.18 

DFMDS 0.338 472.32 515876.8 
Table 2 – HW Exponential Smoothing Model Values 

 

The trend lines generated from the HWES model appear 

to fit each instance very well.  In fact it may be argued that 

they are over fitting each data series.  However, for the 

purposes of this research such a similarity is acceptable 

since this study is primarily concerned with determining if 

modeling such data is possible to begin with.  Another 

feature to note is that in the forecast of each HW model, the 

trend seems to become flat.  According to Hyndman and 

Athanasopoulos (2013) empirical evidence suggests that 

Exponential Smoothing methods tend to over-forecast.  To 

compensate for this, a technique known as damping is 

applied which creates a flattened forecasting line. Figures 2 

through 7 show forecast for each patent group projected 15 
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months out for a SES and HWES model. The SES plots are 

being included to illustrate the predictive potential that other 

Exponential Smoothing models offer. Although due to the 

error correction options it offers, HWES will continue to be 

the primary model of demonstration for this paper. 

 

 
Figure 2 – SES Model and 15 month forecast for GCSSA 

 

 
Figure 3 – HW Model and 15 month forecast for GCSSA 

 

 
Figure 4 – SES Model and 15 month forecast for AI 

 

 
Figure 5 – HW Model and 15 month forecast for AI 

 

 
Figure 6 – SES Model and 15 month forecast for DFMDS 

 

 
Figure 7 – HW Model and 15 month forecast for DFMDS 

 

4.2 ARIMA 
 

The ARIMA model has three parameters (p, d, q) and is 

often written as arima(p, d, q).  The Autoregressive (AR) 

portion of the model is based on the idea that the current 

value of the series, xt, can be explained as a function of p 

past values, xt−1, xt−2,...,xt−p, where p determines the number 

of steps into the past needed to forecast the current value 

(Shumway and Stoffer 2006).  The parameter of d represents 

the levels of differencing the original time series needs to 

undergo to become stationary. As an alternative to the 

autoregressive representation in which the xt on the left-hand 

side of the equation are assumed to be combined linearly, 

the moving average model of order q, abbreviated as MA(q), 

assumes the white noise wt on the right-hand side of the 

defining equation are combined linearly to form the 

observed data (Shumway and Stoffer 2006). Therefore, in 

the ARIMA model q represents the number of lags in the 

moving average. 

Normally the creation of an ARIMA model requires 

determining the level of differencing necessary to make a 

time series stationary.  Thankfully R has a function 

(auto.arima) that accomplishes this task in one step.  It may 

be worthwhile to note that the middle term of each proposed 

ARIMA model is 1.  This corresponds with the level of 

differencing that is needed to make each time series 

stationary.  The model parameters for each patent group are 

shown in Table 3. As with the HWES and SES examples, 

the forecasts for each patent group were projected out 15 

months and the results are shown in Figure 8.  
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Name ARIMA  

Model 
𝝈𝟐 AIC BIC 

GCSSA (2, 1, 1) 687.5 1798.6 1811.6 

AI (2, 1, 0) 100.2 1431.1 1444.1 

DFMDS (1, 1, 3) 2407 2040.3 2056.5 
Table 3 – ARIMA Model Parameters 

 

 
Figure 8 – ARIMA 15 Month 

 
4.3 Model Comparison 

 

In the early stages of time series modeling the selection of 

models was very subjective. Since then, many techniques 

and methods have been suggested to add mathematical rigor 

to the search process of an ARMA model, including 

Akaike’s information criterion (AIC), Akaike’s final 

prediction error (FPE), and the Bayes information criterion 

(BIC). Often these criteria come down to minimizing (in-

sample) one step-ahead forecast errors, with a penalty term 

for over fitting (De Gooijer and Hyndman 2006).  It should 

be noted that these model comparison techniques are only 

useful for selecting the best model of similar structure. For 

instance if there are three ARIMA models on one dataset to 

choose from, AIC or BIC can be used to select from those 

models.  It is for this reason that measures of forecast 

accuracy like MAE, MAPE, and MASE are used to compare 

models of different structures. 

For each model and 15 month forecast, four error statistics 

were calculated:  Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE), Mean Absolute Percentage Error 

(MAPE), and Mean Absolute Scaled Error (MASE).  The 

results are shown in Table 4.  All of these values used the 15 

months not included in the original model training data as 

testing data.  For each error calculation lower values are 

preferred. According to Hyndman and Koehler (2006), 

values of MASE greater than one indicate that the forecasts 

are worse, on average, than in-sample one-step forecasts 

from naıve (random-walk) methods. Based on this 

measurement, it can be seen that the MASE values indicate 

that all of the models have adequate forecasting capabilities. 

The results from Table 4 suggest that ARIMA acts as a 

better predictor for the GCSSA and DFMDS data while the 

AI patent data seems to be better suited for an Exponential 

Smoothing model. Given the forecasting results, it does not 

seem reasonable to state that a specific time series model is 

best for these three patent groupings.  For additional 

reference the full list of testing and forecasting values are 

listed in the appendices at the end of this paper. 

 
4.4 Discussion 

 

At a first glance it appears that the models generated may be 

over fitting the data.  However, the MASE values calculated 

indicate that each of the models produced performs very 

well in predicting the testing data.  It is possible that both 

are true.  From looking at the trend lines produced, they do 

seem to be very similar to the actual trends.  Moreover, the 

testing data may not have been fully representative of the 

full flow of each trend.  In future research a different 

proportion of training and testing data should be considered. 

Another interesting observation from the experimentation 

is that the Database and Control System patent groups 

favored an ARIMA model, while Artificial Intelligence 

patents fit better with a Holt Winters model.  A possible 

explanation for this is an intuitive look at the initial time 

series for each classification group.  In the AI trend the data 

seems to be fairly stationary until about 2008, when the 

number of patents seemed to spike rapidly.  Thus it appears 

that not much differencing would be needed on this model 

and this may automatically make it a better candidate for a 

HWES model. 

 

 

 

 

 

 

 

 

 



Patent  

Group 
Model RMSE MAE MAPE MASE 

GCSSA 
HWES 42.52 31.23 12.11 0.6436 

ARIMA 40.66 29.66 11.62 0.6142 

AI 
HWES 11.61 8.03 7.84 0.731 

ARIMA 13.08 9.64 9.46 0.7906 

DFMDS 
HWES 85.08 65.57 11.45 0.6754 

ARIMA 80.4 60.98 10.64 0.6351 

Table 4 – Model Forecast Error Statistics 

 

5. Conclusions and Future Work 
 

The first goal of this paper was to demonstrate that current 

groups of patents could be represented as a time series.  

From observing the initial plots it appears that this certainly 

is the case.  An interesting observation that can be made is 

the consistent increase in these technology based patents 

over the past 20 years.  The second objective of this research 

was to confirm that time series models could be applied to 

each patent group.  This too was successful.  Obviously it is 

debatable as to whether the models presented are the most 

optimal for the situations provided.  However, it seems safe 

to state that with additional work patent and technology 

forecasting models could be produced using time series 

modeling techniques. 

Future work would benefit from exploring the validity of 

the groupings of patents.  A possible approach would be to 

use textual mining techniques to first group the patents and 

then conduct an analysis similar to the one carried out in this 

paper.  It may also be worthwhile to explore multivariate 

autoregression techniques such as Vector Autoregression or 

Bayesian Vector Autoregression.  As mentioned earlier in 

the paper, there may be associations between patent 

groupings that might influence the rate of change in another. 

Furthermore, if the patent classifications are not a good 

enough representation of a technological theme, then both a 

re-clustering of patents and a multivariate analysis may be 

necessary. 
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Appendices 

 
A1 – GCSSA Testing/Forecast Data 

Point Actual 

HW  

Forecast 

ARIMA 

Forecast 

Jan 2012 243 215.6 216.6 

Feb 2012 196 215.6 221.9 

Mar 2012 179 215.6 219.9 

Apr 2012 229 215.6 219.4 

May 2012 304 215.6 220.0 

Jun 2012 210 215.6 219.9 

Jul 2012 288 215.6 219.8 

Aug 2012 235 215.6 219.8 

Sep 2012 235 215.6 219.9 

Oct 2012 312 215.6 219.8 

Nov 2012 230 215.6 219.8 

Dec 2012 213 215.6 219.8 

Jan 2013 224 215.6 219.8 

Feb 2013 232 215.6 219.8 

Mar 2013 244 215.6 219.8 

 

A2 – AI Testing/Forecast Data 

Point Actual 

HW 

Forecast 

ARIMA 

Forecast 

Jan 2012 92 89.5 83.2 

Feb 2012 83 89.5 90.4 

Mar 2012 83 89.5 84.7 

Apr 2012 101 89.5 83.6 

May 2012 126 89.5 89.7 

Jun 2012 88 89.5 84.4 

Jul 2012 102 89.5 83.8 

Aug 2012 95 89.5 94.0 

Sep 2012 99 89.5 87.4 

Oct 2012 90 89.5 86.5 

Nov 2012 98 89.5 88.1 

Dec 2012 85 89.5 83.9 

Jan 2013 97 89.5 86.2 

Feb 2013 96 89.5 86.5 

Mar 2013 89 89.5 85.2 

 

A3 – DFMDS Testing/Forecast Data 

Point Actual 

HW 

Forecast 

ARIMA 

Forecast 

Jan 2012 580 472.3 488.9 

Feb 2012 486 472.3 475.9 

Mar 2012 563 472.3 478.8 

Apr 2012 493 472.3 476.8 

May 2012 610 472.3 478.2 

Jun 2012 501 472.3 477.2 

Jul 2012 632 472.3 477.9 

Aug 2012 516 472.3 477.4 

Sep 2012 513 472.3 477.8 

Oct 2012 643 472.3 477.5 

Nov 2012 503 472.3 477.7 

Dec 2012 472 472.3 477.6 

Jan 2013 430 472.3 477.7 

Feb 2013 558 472.3 477.6 

Mar 2013 483 472.3 477.6 
 

 

 

 

 

 
 

 
 

 


