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Universitat Politècnica de Catalunya, Spain.
{jribeiro, jcarmona}@cs.upc.edu

Abstract. Given an event log L, a control-flow discovery algorithm f ,
and a quality metric m, this paper faces the following problem: what are
the parameters in f that mostly influence its application in terms of m
when applied to L? This paper proposes a method to solve this prob-
lem, based on sensitivity analysis, a theory which has been successfully
applied in other areas. Clearly, a satisfactory solution to this problem will
be crucial to bridge the gap between process discovery algorithms and final
users. Additionally, recommendation techniques and meta-techniques like
determining the representational bias of an algorithm may benefit from
solutions to the problem considered in this paper. The method has been
evaluated over a set of logs and the flexible heuristic miner, and the prelim-
inary results witness the applicability of the general framework described
in this paper.

1 Introduction

Control-flow discovery is considered as one of the crucial features of Process Min-
ing [13]. Intuitively, discovering the control-flow of a process requires to analyze
its executions and extract the causality relations between activities which, taken
together, illustrate the structure and ordering of the process under consideration.

There are many factors that may hamper the applicability of a control-flow
discovery algorithm. On the one hand, the log characteristics may induce the use
of particular algorithms, e.g., in the presence of noise in the log it may be advisable
to consider a noise-aware algorithm. On the other hand, the representational bias
of an algorithm may hinder its applicability for elicitating the process underlying
in a log.

Even in the ideal case where the more suitable control-flow discovery algo-
rithm is used for tackling the discovery task, it may be the case that the default
algorithm’s parameters (designed to perform well over different scenarios) are not
appropriate for the log at hand. In that case, the user is left alone in the task of
configuring the best parameter values, a task which requires a knowledge of both
the algorithm and the log at hand.

In this paper we present a method to automatically assess the impact of pa-
rameters of control-flow discovery algorithms. In our approach, we use an efficient
technique from the discipline of sensitivity analysis for exploring the parameter
search space. In the next section, we charaterize this sensitivity analysis technique
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and relate it with other work in the literature for similar purposes done in other
areas.

We consider three direct applications of the method presented in this paper:

(A) As an aid to users of control-flow discovery algorithms: given a log, an algo-
rithm and a particular quality metric the user is interested in, a method like
the one presented in this paper will indicate the parameters to consider. Then
the user will be able to influence (by assigning meaningful values to these
parameters) the discovery experiment.

(B) As an aid for recommending control-flow discovery algorithms: current recom-
mendation systems for control-flow process discovery (e.g., [9]) do not consider
the parameters of the algorithms. Using the methodology of this paper, one
may determine classes of parameters whose impact refer to the same quality
metric, and those can be offered as modes of the same algorithm tailored to
specific metrics. Hence, the recommendation task (i.e., the selection of a dis-
covery algorithm) may then be guided towards a better use of a control-flow
technique.

(C) As a new form of assessing the representational bias of an algorithm: given
a log and an algorithm, it may well be the case that the impact of most of
the algorithm’s parameters is negligible. In that case, then if additionally the
result obtained is not satisfactory, one may conclude that this is not the right
algorithm for the log at hand.

The rest of the paper is organized as follows: Section 2 illustrates the contribu-
tion and provides related work. Section 3 provides the necessary background and
main definitions. Then, Section 4 presents the main methodology of this paper,
while Section 5 provides a general discussion on its complexity. Finally, Section 6
concludes the paper.

2 Related Work and Contribution

The selection of parameters for executing control-flow algorithms is usually a
challenging issue. The uncertainty of the inputs, the lack of information about
parameters, the diversity of outputs (i.e., the different process model types), and
the difficulty of choosing a comprehensive quality measurement for assessing the
output of a control-flow algorithm make the selection of parameters a difficult
task.

The parameter optimization is one of the most effective approaches for param-
eter selection. In this approach, the parameter space is searched in order to find
the best parameters setting with respect to a specific quality measure. Besides the
aforementioned challenges, the main challenge of this approach is to select a ro-
bust strategy to search the parameter space. Grid (or exhaustive) search, random
search [2], gradient descent based search [1] and evolutionary computation [7] are
typical strategies, which have proven to be effective in optimization problems,
but they are usually computationally costly. [16,6,3] are examples of parameter
optimization applications on a control-flow algorithm. Besides the fact that only a
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single control-flow algorithm is considered, all of these approaches rely on quality
measurements that are especially designed to work on a specific type of process
model.

A different approach, which may also be used to facilitate the parameter opti-
mization, is known as sensibility analysis [11] and consists of assessing the influ-
ence of the inputs of a mathematical model (or system) on the model’s output.
This information may help on understanding the relationship between the inputs
and the output of the model, or identifying redundant inputs in specific contexts.
Sensibility methods range from variance-based methods to screening techniques
[11]. One of the advantages of screening is that it requires a relatively low number
of evaluations when compared to other approaches. The Elementary Effect (EE)
method [8,4,5] is a screening technique for sensibility analysis that can be applied
to identify non-influential parameters of computationally costly algorithms. In
this paper, the EE method is applied to assess the impact of the parameters of
control-flow algorithms.

3 Preliminaries

This section contains the main definitions used in this paper.

3.1 Event Log and Process Model

Process data describe the execution of the different process events of a business
process over time. An event log organizes process data as a set of process instances,
where a process instance represents a sequence of events describing the execution
of activities (or tasks).

Definition 1 (Event Log). Let T be a set of events, T ∗ the set of all sequences
(i.e., process instances) that are composed of zero or more events of T , and δ ∈ T ∗
a process instance. An event log L is a set of process instances, i.e., L ∈ P(T ∗).1

A process model is an activity-centric model that describes the business pro-
cess in terms of activities and their dependency relations. Petri nets, Causal nets,
BPMN, and EPCs are examples of notations for modeling these models. For an
overview of process notations see [13]. A process model can be seen as an abstrac-
tion of how work is done in a specific business. A process model can be discovered
from process data by applying some control-flow algorithm.

3.2 Control-Flow Algorithm

A control-flow algorithm is a process discovery technique that can be used for
translating the process behavior described in an event log into a process model.
These algorithms may be driven by different discovery strategies and provide
different functionalities. Also, the execution of a control-flow algorithm may be
constrained (controlled) by some parameters.

1 P(X) denotes the powerset of some set X.
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Definition 2 (Algorithm). Let L be an event log, P a list of parameters, and R
a process model. An (control-flow) algorithm A is defined as a function
fA : (L,P ) → R that represents in R the process behavior described in L,
and it is constrained by P . The execution of fA is designated as a discovery
experiment.

3.3 Quality Measure

A measure can be defined as a measurement that evaluates the quality of the result
of an (control-flow) algorithm. A measure can be categorized as follows [13].

Simplicity measure: quantifies the results of an algorithm (i.e., a process model
mined from a specific event log) in terms of readability and comprehension.
The number of elements in the model is an example of a simplicity measure.

Fitness measure: quantifies how much behavior described in the log complies
with the behavior represented in the process model. The fitness is 100% if the
model can describe every trace in the log.

Precision measure: quantifies how much behavior represented in the process
model is described in the log. The precision is 100% if the log contains every
possible trace represented in the model.

Generalization measure: quantifies the degree of abstraction beyond observed
behavior, i.e., a general model will accept not only traces in the log, but some
others that generalize these.

Definition 3 (Measure). Let R be a process model and L an event log. A mea-
sure M is defined by

– a function gM : (R) → R that quantifies the quality of R, or
– a function gM : (R,L) → R that quantifies the quality of R according to L.

The execution of gM is designated as a conformance experiment.

3.4 Problem Definition

Given an event log L, a control-flow algorithm A constrained by the list of pa-
rameters P = [p1 = v1, ..., pk = vk], and a quality measure M : Assess the impact
of each parameter p ∈ P on the result of the execution of A over L, according to
M .

4 The Elementary Effect Method

The Elementary Effect (EE) method [8,4,5] is a technique for sensibility analysis
that can be applied to identify non-influential parameters of control-flow algo-
rithms, which usually are computationally costly for estimating other sensitivity
analysis measures (e.g., variance-based measures). Rather than quantifying the
exact importance of parameters, the EE method provides insight into the contri-
bution of parameters to the results quality.
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One of the most efficient EE methods is based on Sobol quasi-random num-
bers [12] and a radial OAT strategy [5].2 The main idea is to analyze the parameter
space by performing experiments and assessing the impact of changing parame-
ters with respect to the results quality. A Sobol quasi-random generator is used
to determine a uniformly distributed set of points in the parameter space. Radial
OAT experiments [5] are executed over the generated points to measure the im-
pact of the parameters. This information can be used either (i) to guide on the
parameters setup by prioritizing the parameters to be tuned, or (ii) as a first step
towards parameter optimization.

4.1 Radial OAT Experiments

In this paper, an OAT experiment consists of a benchmark of some control-flow
algorithm where the algorithm’s parameters are assessed one at a time according
to some quality measure. This means that k + 1 discovery and conformance ex-
periments are conducted, the first to set a reference and the last k to compare the
impact of changing one of the k algorithm’s parameters. The parameter settings
for establishing the reference and changing the parameter’s values are defined by
a pair of points from the parameter space. OAT experiments can use different
strategies to explore these points. Figure 1 presents the most common strategies
for performing OAT experiments. In the trajectory design, the parameter change
compares to the point of the previous experiment. In the radial design, the pa-
rameter change compares always to the initial point. From these two, the radial
design has been proven to outperform the trajectory one [10].

Radial OAT experiments can be defined as follows. First, a pair of points
(α, β) is selected in the parameter space. Point α, the base point (point (1, 1, 2)
in Figure 1), is used as the reference parameter setting of the experiment. A
discovery and conformance experiment is executed with this parameters setting
to set the reference quality value. Point β, the auxiliary point (point (2, 2, 0) in
Figure 1), is used to compare the impact of changing the parameters, one at a
time, from α to β. For each parameter pi ∈ P , a discovery and conformance
experiment is executed using the parameter values defined by α for a parameter
pj ∈ P ∧ pj 6= pi and the parameter value defined by β for pi (see the example in
Figure 1b). Insight into the impact of each parameter is provided by aggregating
the results of the radial OAT experiments.

Let A be a control-flow algorithm, M a given measure, and L an event log. The
function fA·M (L,P ) computes the quality of the result of A over L with respect
to M , where P = [p1 = v1, ..., pk = vk] is the list of parameters of A.

fA·M (L,P ) =

 gM (fA(L,P )) if M does not depend on a log

gM (fA(L,P ), L) otherwise
(1)

2 OAT stands for One (factor) At a Time.
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(b) Radial.

Fig. 1: Comparison between radial and trajectory samplings for OAT experiments over
3 parameters, using the points (1, 1, 2) and (2, 2, 0). The underlined values identify the
parameter being assessed

The elementary effect of a parameter pi ∈ P on a radial OAT experiment is
defined by

EEi =
fA·M (L,α)− fA·M (L,α←↩ αi · βi)

αi − βi
, (2)

where α, β are parameter settings of P (the base and auxiliary points), αi and
βi are the ith elements of α and β, and fA·M (L,α ←↩ αi · βi) is the function
fA·M (L,α′) where α′ is α with βi replacing αi. The measure µ? for pi is defined
by

µ?
i =

∑r
j=1 |EEi|
r

, (3)

where r is the number of radial OAT experiments to be executed, typically between
10 and 50 [4]. The total number of discovery and conformance experiments is
r(k + 1), where k is the number of parameters of A.

The impact of a parameter pi ∈ P is given as the relative value of µ?
i compared

to that for the other parameters of P . A parameter pj ∈ P (j 6= i) is considered
to have more impact on the results quality than pi if µ?

j > µ?
i . The parameters

pj and pi are considered to have equal impact on the results quality if µ?
j = µ?

i .
The parameter pi is considered to have no impact on the results quality if µ?

i = 0.
This measure is sufficient to provide a reliable ranking of the parameters [4,5].
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4.2 Sobol Numbers

Sobol quasi-random numbers (or sequences) are low-discrepancy sequences that
can be used to distribute uniformly a set of points over a multidimensional space.
These sequences are defined by n points with m dimensions. Table 1 presents an
example of a Sobol sequence containing ten points with ten dimensions.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10
x1 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

x2 0.7500 0.2500 0.2500 0.2500 0.7500 0.7500 0.2500 0.7500 0.7500 0.7500

x3 0.2500 0.7500 0.7500 0.7500 0.2500 0.2500 0.7500 0.2500 0.2500 0.2500

x4 0.3750 0.3750 0.6250 0.8750 0.3750 0.1250 0.3750 0.8750 0.8750 0.6250

x5 0.8750 0.8750 0.1250 0.3750 0.8750 0.6250 0.8750 0.3750 0.3750 0.1250

x6 0.6250 0.1250 0.8750 0.6250 0.6250 0.8750 0.1250 0.1250 0.1250 0.3750

x7 0.1250 0.6250 0.3750 0.1250 0.1250 0.3750 0.6250 0.6250 0.6250 0.8750

x8 0.1875 0.3125 0.9375 0.4375 0.5625 0.3125 0.4375 0.9375 0.9375 0.3125

x9 0.6875 0.8125 0.4375 0.9375 0.0625 0.8125 0.9375 0.4375 0.4375 0.8125

x10 0.9375 0.0625 0.6875 0.1875 0.3125 0.5625 0.1875 0.1875 0.1875 0.5625

Table 1: The first ten points of a ten-dimensional Sobol quasi-random sequence.

Each element of a point of a Sobol sequence consists of a numerical value
between zero and one (e.g., the element representing the second dimension (d2) of
point x5 is 0.8750). A collection of these values (the entire point or part of it) may
be used to identify a specific point in a parameter space. An element of a point of
a Sobol sequence can be converted into a parameter value by some normalization
process. For instance, a possible normalization process for an element e ∈ [0, 1]
to one of the n distinct values of some discrete parameter p can be defined by
be× nc, which identifies the index of the parameter value in p corresponding to e.
Notice that the parameter space must be uniformly mapped by the normalization
process (e.g., each value of a Boolean parameter must be represented by 50% of
all possible elements).

Using the approach proposed in [5], a matrix of quasi-random Sobol numbers
of dimensions (r + 4,2k) can be used to analyze the elementary effects of the k
parameters of a control-flow algorithm by executing r radial OAT experiments.
The first k dimensions of the matrix’s points define the base points, while the
last k dimensions define the auxiliary points. Given that the first points of a
Sobol sequence have the tendency to provide similar base and auxiliary points,
it is identified in [5] the need of discarding the first four points of the sequence
for the auxiliary points (i.e., the k rightmost columns should be shifted upward).
Therefore, the base and auxiliary points can be computed from a Sobol sequence
as follows. Let eji be the element corresponding to the jth dimension (dj) of the
ith point (xi) of the sequence. The ith base (αi) and auxiliary (βi) points are
defined as following.

αi = (e1i , e
2
i , ..., e

j
i ) and β

i = (ej+1
i+4 , e

j+2
i+4 , ..., e

2j
i+4). (4)
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4.3 Example: The FHM

The following example is used to illustrate the analysis of the parameter space of
an algorithm in order to assess the impact of the algorithm’s parameters on the
results quality. Let us consider an event log that is characterized by two distinct
traces: ABDEG and ACDFG. The frequency of any of these traces is high enough
to not be considered as noise. The behavior described by these traces does not
contain any kind of loop or parallelism, but it does contain two long-distance
dependencies: B ⇒ E and C ⇒ F . Let us also consider the Flexible Heuristics
Miner (FHM) [17] as the control-flow algorithm to explore the parameter space
in order to assess the impact of the FHM’s parameters on the results quality. The
parameters of the FHM are summarized in Table 2. Notice that every parameter
of the FHM is continuous, with a range between zero and one. The relative-to-best
and the long-distance thresholds are optional. The former is only considered with
the all-tasks-connected heuristic. The latter is only taken into account when the
long-distance dependencies option is activated.

Parameter Domain Optional?

Relative-to-best Threshold [0, 1] Yes
Dependency Threshold [0, 1] No
Length-one-loops Threshold [0, 1] No
Length-two-loops Threshold [0, 1] No
Long-distance Threshold [0, 1] Yes

Table 2: The parameters of the Flexible Heuristics Miner [17].

Figure 2 presents the two possible process models that can be mined with
the FHM on the aforementioned event log, using all combinations of parameter
values. Figure 2a shows the resulting Causal net where long-distance dependencies
are not taken into account. Figure 2b shows the resulting Causal net with the
long-distance dependencies. Notice that, depending on the quality measure, the
quality of these process models may differ (e.g., the precision of the model with
long-distance dependencies is higher than the other one). One may be interested
on the exploration of the FHM’s parameter space to get the process model that
fulfills best some quality requirements.

The analysis of the parameter space of the FHM starts with the generation of
the Sobol numbers. Let us consider that, for this analysis, one wants to execute
r = 30 radial OAT experiments for assessing the elementary effects of the k = 5
FHM’s parameters. So, a matrix of Sobol numbers of dimensions (30 + 4,2 × 5)
has to be generated (cf. Section 4.2). Table 1 shows the first ten points of this
matrix. Table 3 presents the first five base and auxiliary points as well as the
parameter values corresponding to these points. Notice that the parameters are
represented in the points according to the same ordering in Table 2 (i.e., the first
element of a point represents the first parameter and so on). The normalization
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A GD

B
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F

(a) The Causal net without long-distance
dependency relations.

A GD

B

C

E

F

(b) The Causal net with long-distance de-
pendency relations.

Fig. 2: The process models that can be mined with the FHM.

process in this example is defined as follows. For the non-optional parameters (cf.
Table 2), an element e ∈ [0, 1] of a point of a Sobol sequence can be directly used
to represent the value of the parameter. For the optional parameters, an element
e ∈ [0, 1] of a point of a Sobol sequence is normalized to a value e′ ∈ [0, 2], which
maps the parameter space uniformly (i.e., the value of the parameter and whether
or not the parameter is enabled). If e′ ≤ 1 then e′ is assigned as the value of the
parameter; the parameter is disabled otherwise.

Point Base Auxiliary

1 (.5000, .5000, .5000, .5000, .5000) (.6250, .8750, .3750, .3750, .1250)
2 (.7500, .2500, .2500, .2500, .7500) (.8750, .1250, .1250, .1250, .3750)
3 (.2500, .7500, .7500, .7500, .2500) (.3750, .6250, .6250, .6250, .8750)
4 (.3750, .3750, .6250, .8750, .3750) (.3125, .4375, .9375, .9375, .3125)
5 (.8750, .8750, .1250, .3750, .8750) (.8125, .9375, .4375, .4375, .8125)
... ... ...

(a) The first five base and auxiliary points.

Point Base Auxiliary

1 (–, 0.50, 0.50, 0.50, –) (–, 0.88, 0.38, 0.38, 0.25)
2 (–, 0.25, 0.25, 0.25, –) (–, 0.13, 0.13, 0.13, 0.75)
3 (0.50, 0.75, 0.75, 0.75, 0.50) (0.75, 0.63, 0.63, 0.63, –)
4 (0.75, 0.38, 0.63, 0.88, 0.75) (0.63, 0.44, 0.94, 0.94, 0.63)
5 (–, 0.88, 0.13, 0.38, –) (–, 0.94, 0.44, 0.44, –)
... ... ...

(b) The parameter values for the first five base and auxiliary points. The wildcard
value ‘–’ identifies that the parameter is disabled.

Table 3: The first five points of the Sobol numbers.

Table 4 presents the radial sampling for the first radial OAT experiment (first
point in Table 3) as well as the result of the execution of fA·M (L,P ) and the
elementary effect EE for each parameter. For executing fA·M (L,P ), A is the
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FHM, M the Node Arc Degree measure3, and L the aforementioned event log.
The elementary effects are computed as described in Section 4.1.4 Notice that the
elementary effect of a parameter can only be computed when the base and auxil-
iary points provide distinct parameter values (e.g., in Table 4, the first parameter
is not assessed because it is disabled in both base and auxiliary points).

Parameter Values Result Elementary Effect
P fA·M (L,P ) EEi

(–, 0.50, 0.50, 0.50, –) 2.154

(–, 0.50, 0.50, 0.50, –)
(–, 0.88, 0.50, 0.50, –) 2.154 0.0
(–, 0.50, 0.38, 0.50, –) 2.154 0.0
(–, 0.50, 0.50, 0.38, –) 2.154 0.0

(–, 0.50, 0.50, 0.50, 0.25) 2.316 0.162

Table 4: Radial sampling for the first radial OAT experiment. The first line corresponds
to the base point, while the others consist of the base point in which the element re-
garding a specific parameter is replaced by that from the auxiliary point; the underlined
values identify the replaced element and the parameter being assessed.

Table 5 presents the results of the analysis of the FHM’s parameter space.
The results identify the long-distance threshold as the only parameter to take
into account for the parameter exploration. As expected, all other parameters
have no impact on the results quality. This is explained by the fact that the log
does not contain any kind of loop or noise. Notice that the µ? absolute value does
not provide any insight into how much a parameter influences the results quality.
Instead, the µ? measurement provides insight into the impact of a parameter on
the results quality, compared to others.

Parameter µ?

Dependency Threshold 0.0
Relative-to-best Threshold 0.0
Length-one-loops Threshold 0.0
Length-two-loops Threshold 0.0
Long-distance Threshold 0.113

Table 5: The µ? values of the FHM’s parameters.

3 The Node Arc Degree measure consists of the average of incoming and outgoing arcs
of every node of the process model.

4 For computing EEi, αi−βi is considered to be 1 when the parameter is changed from
a disabled to an enabled state, or the other way around (e.g., the last parameter in
Table 4).
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5 Application

The EE method presented in the previous section can be applied to any control-
flow algorithm constrained by many parameters, using some event log and a
measure capable of quantifying the quality of the result of the algorithm. The
presented method can be easily implemented on some framework capable of exe-
cuting discovery and conformance experiments (e.g., ProM [15] or CoBeFra [14]).
Several open-source generators of Sobol numbers are available on the web.

The computational cost of our approach can be defined as follows. Let L be
an event log, A a control-flow algorithm constrained by the list of parameters
P = [p1 = v1, ..., pk = vk], and M a quality measure. The computational cost
of a discovery experiment using A (with some parameter setting) over L is given
by CD. Considering R as the result of a discovery experiment, the computational
cost of a conformance experiment over R and L (or just R) with regard to M is
given by CC . Therefore, the computational cost of a radial OAT experiment is
given by CE = (k + 1)(CD + CC), where k is the number of parameters of A.
The computational cost of the EE method based on r radial OAT experiments is
given by C = r(k + 1)(CD + CC).

5.1 Perfomance Optimization

Considering that both discovery and conformance experiments may be computa-
tionally costly, performance may become a critical issue for the application of this
method. This issue can be partially addressed by identifying a set of potentially
irrelevant parameters, and considering those parameters as a group. Then, by ad-
justing the µ? measurement to work with groups of two or more parameters [4],
the group of parameters can be analyzed together using radial experiments that
iterate over all elements of the same group simultaneously.

Suppose, for instance, that it is known that a given log does not have loops. So,
for the FHM’s parameters, the length-one-loops and length-two-loops thresholds
may be grouped in order to avoid the execution of discovery and conformance
experiments that are not relevant for the analysis. Recalling the example presented
in Section 4.3, the radial experiments will iterate over one group of two parameters
and three indepedent parameters (i.e., the dependency, the relative-to-best, and
the long-distance thresholds). This means that, for the group of parameters, all
elements of the same group are replaced simultaneously by the corresponding
elements from the auxiliary point. Table 6 presents the adjusted radial sampling
presented in Table 4. The first line corresponds to the base point, while the others
consist of the base point in which the element(s) regarding a specific parameter (or
group of parameters) is replaced by that from the auxiliary point; the underlined
values identify the replaced element(s) and the parameter (or group of parameters)
being assessed.
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Parameter Values

(–, 0.50, 0.50, 0.50, –)

(–, 0.50, 0.50, 0.50, –)
(–, 0.88, 0.50, 0.50, –)
(–, 0.50, 0.38, 0.38, –)

(–, 0.50, 0.50, 0.50, 0.25)

Table 6: Radial sampling for the first radial experiment considering a group of param-
eters.

The elementary effect of a group of parameters G ⊆ P on a radial experiment
is defined by

EEG =
fA·M (L,α)− fA·M (L,α←↩ αG · βG)

dist(αG, βG)
, (5)

where α, β are parameter settings of P (the base and auxiliary points), αG and
βG are the elements of G in α and β, and fA·M (L,α ←↩ αG · βG) is the function
fA·M (L,α′) where α′ is α with βG replacing αG. The function dist(A,B) computes
the distance between A and B (e.g., the Euclidean distance). The measure µ? for
G is defined by

µ?
G =

∑r
j=1 |EEG|

r
, (6)

where r is the number of radial experiments to be executed. The total number
of discovery and conformance experiments depends on the number of groups and
independent parameters being assessed.

6 Conclusions and Future Work

To the best of our knowledge, this work is the first in presenting a methodology to
assess the impact of parameters in control-flow discovery algorithms. The method
relies on a modern sensitivity analysis technique that requires considerably less
exploration than traditional ones such as genetic algorithms or variance-based
methods.

In this work, we have applied the methodology on the Flexible Heuristics Miner
algorithm using 13 event logs. The results suggest the effectiveness of the method.
We have noticed that simple conformance measures (and, thus, less computation-
ally costly) are as good as any other complex measure for assessing the parameters
influence. Nevertheless, we acknowledge that more experiments are necessary to
get a better insight.

Future work is mainly oriented towards addressing three aspects, which are
mainly addressed to apply the method of this paper to other control-flow algo-
rithms. First, we are interested in the algorithmic perspective in order to study the
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most efficient form of assessing the impact of a parameter, with the method pre-
sented in this paper as a baseline. Second, we will try to incorporate the method-
ology described in this paper in the RS4PD, a recommender system for process
discovery [9]. Finally, the application of the presented method with other goals,
e.g., estimating the representational bias of control-flow discovery algorithms may
be explored.
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