
Queue-less, Uncentralized Resource Discovery:
Formal Specification and Verification

Camille Coti, Sami Evangelista, and Kais Klai

Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030
F-93430, Villetaneuse, France
{first.last}@univ-paris13.fr

A New Fully Distributed Resource Management System In this paper,
we present a formal approach for the specification and the verification of a fully
distributed resource reservation system. Our system is made of two parts: the
launcher, which is executed by the user who wants to run a job on a set of
computing nodes, and the agent, which is a daemon running on all the resources
that exist in the system.

Clients must have an exclusive access to the resources that are allocated for
them. Under the requirement that clients have reasonable requirements, all the
clients’ requests are answered positively in a finite time and all the jobs are exe-
cuted completely. In order to ensure the correctness of our system regarding such

available

reserve

reserved

launch

running

terminate

finishedend

cancel

request

job finished

answered

launch job

dead

failure detector

restart

Fig. 1. Model for handling re-
source volatility with a failure
detector

properties, we describe it using a Petri net
model, we express formally the desired prop-
erties and we perform their formal verification
successfully.

Our algorithm relies on the service discovery
tools provided by the Zeroconf protocol. Com-
puting nodes declare themselves on the Zero-
conf bus. However, this simple discovery service
is not sufficient to ensure that the computing
resources will not be used by several jobs at the
same time.

Modelling The Petri net model of a machine is
presented on Fig. 1. A machine can be reserved
when it is available. It answers the client and
switches into reserved mode. When the local
process is done, the machine switches to state
finished, signals to the client that its part of the
job is done, and then returns back to state available. There is only one avail-
able place on each resource, and this place contains only one token in the initial
marking. Hence, a machine can answer positively to one client only.

A model where 2 clients issue concurrent resource allocation requests on
the same set of resources is represented on Figure 2. Each client has its own
reservation system. We represented 2 clients, one requesting n resources and the
other m resources.

begin0

start job0

get nodes0

n

begin1

start job1

get nodes1

m

answered0

launch0

launching job0

answered1

launch1

launching job1

reserve0

reserve1

reserve0

reserve1

n

n

m

m

start0 start0

start1 start1. . . .

machine machine

Fig. 2. Reservation system of 2
clients

The cancel transition is very important
here to release some resources in case of a
deadlock caused by a conflict between applica-
tions occurring for instance when all the avail-
able machines are reserved but no application
is able to start. Therefore, after a certain time,
if no additional resources appear on the Zero-
conf bus, the machines reserved for at least one
application will be freed and become available
for the other one.

Analysis We analyzed both generic and spe-
cific properties. As generic properties, we were
interested in deadlock freeness, boundedness
and soundness. The deadlock freeness ensures
that no dead state (a state from which no tran-
sition is fireable), except the final state (all
the jobs are done), is reachable. The boundless
property ensures that the number of reachable
states is finite. This has been ensured by find-
ing out that the state space of the system has been fully and successfully built
in a finite time. Finally the soundness property implies three requirements: (1)
option to complete, (2) proper completion, and (3) no dead transitions.

The table right below gives the execution time (in seconds) of Helena and
statistical data on their state space : the number of reachable states, the number
of terminal reachable states, and the number of arcs in the state space. We
selected a set of 6 configurations according to their state space size. A first
analysis of the state space report revealed that our model is bounded and that
all transitions are executable.

Regarding specific properties, we were interested in checking the following:
(1) It is never possible for a machine to be running two different applications, and
(2) it is always possible to answer possibly any request (as long as the number
of required resources is less than the number of the machines available in the
system).

As a conclusion, the properties expected are all verified provided a few rea-
sonable assumptions are made on the environment. First, if we assume that an

Configurations Analysis results
J M P F Time States Term. Arcs
4 6 4 no 3.92 1,369,236 1 2,849,412
6 4 2 yes 5.90 2,865,804 1,999 5,740,698
5 6 4 no 13.10 8,407,677 1 17,557,805
4 6 4 yes 20.08 12,111,398 559 27,376,192
6 6 4 no 85.25 43,094,470 1 90,124,518
5 6 4 yes 164.36 65,633,194 1,743 151,096,440

infinite number of cancellations can
not infinitely postpone the begin-
ning of a scheduled job then we
can ensure that any submitted job
will be scheduled and executed if
enough machines are available. Sec-
ond, in the presence of machine fail-
ures, a scheduled job can always terminate if we assume that the pool of available
machines allows it.

316 PNSE’15 – Petri Nets and Software Engineering

