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Abstract. In this paper we compare different machine learning algo-
rithms to predict the outcome of 2 player games in StarCraft, a well-
known Real-Time Strategy (RTS) game. In particular we discuss the
game state representation, the accuracy of the prediction as the game
progresses, the size of the training set and the stability of the predictions.
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1 Introduction

Real-Time Strategy (RTS) games are very popular testbeds for AI researchers
because they provide complex and controlled environments on which to test
different AI techniques. Such games require the players to make decisions on
many levels. At the macro level, the players have to decide how to invest their
resources and how to use their units: they could promote resource gathering, map
exploration and the creation of new bases in the map; or they could focus on
building defensive structures to protect the bases and training offensive units
to attack the opponents; or they could invest in technology development in
order to create more powerful units in the future. At the micro level, players
must decide how to divide the troops in small groups, where to place them in
the map, what skills to use and when, among others. And all these decision
have to be reevaluated every few minutes because RTS games are very dynamic
environments due to the decisions made by the other players.

Most of the literature related to AI and StarCraft focuses on the creation
of bots that use different strategies to solve these problems. There are even in-
ternational competitions in which several bots play against each other testing
different AI techniques [5, 4, 3]. In this paper we use a different approach, our
bot does not play but acts as an external observer of the game. Our goal is to
be able to predict the winner of the game with certain level of trust based on
the events occurring during the game. In order to do it, we have collected data
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from 100 different 2 player games, and we have used them to train and com-
pare different learning algorithms: Linear and Quadratic Discriminant Analysis,
Support Vector Machines, k-Nearest Neighbors.

The rest of this paper is organized as follows. Next section describes Star-
Craft, the RTS game that we use in our experiments. Section 3 explains the
process to extract the data for the analysis and the features chosen to represent
the game state. Section 4 describes the different data mining classifiers that we
use to predict the winner. Next, Section 5 analyzes the predictions produced by
the different classifiers and the accuracy that we are able to reach. The paper
concludes with a discussion of the related work, conclusions and some directions
for future work.

2 StarCraft

StarCraft1 is a popular Real-Time Strategy game in which players have to har-
vest resources, develop technology, build armies combining different types of
units and defeat the opponents. Players can choose among 3 different races,
each one with their own types of units, strengths and weaknesses. The com-
bination of different types of units and the dynamic nature of the game force
players to adapt their strategies constantly, creating a really addictive and com-
plex environment. Because of this, StarCraft has become a popular testbed for
AI researchers that can create their own bot using the BWAPI2 framework.

In this paper we will focus on just one of the three available races: the Terrans
that represent the human race in this particular universe. At the beginning of the
game (see Figure 1), each player controls only one building, the command center,
and a few collecting units. As the game progresses, each player has to collect
resources, build new buildings to develop technology and train stronger troops
in order to build an army and defeat the opponents. Figure 2 shows the same
game after one hour of play, and now both players control several different units.
In fact, the mini-map in the bottom left corner of the screen reveals the location
of both armies (blue and red dots), and the game seems balanced because each
player controls about half of the map3.

3 Data Collection and Feature Selection

In order to collect data to train the different classifiers we need to play several
games. Although StarCraft forces the existence of at least one human4 player in
the game, we have found a way to make the internal AI that comes implemented

1 http://us.blizzard.com/en-us/games/sc/
2 http://bwapi.github.io/
3 In this example we have removed the fog-of-war that usually hides the parts of the

map that are not visible for the current player.
4 Note that human players are actually the ones controlled by bots using BWAPI

while computer players are controlled by the game AI.



Fig. 1: StarCarft: first seconds of the game.

Fig. 2: StarCraft: state of the game after 1 hour playing.
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Fig. 3: Duration of the games in minutes

in StarCraft to play against itself. This way we are able to play as many games
as we need automatically, and we are sure the game is well balanced since both
players are controlled by the same AI.

It is possible to modify the predefined maps included in StarCraft to make
the internal game AI to play against itself using a map editor tool provided with
the game. In our experiments we have modified the 2 players map Baby Steps,
so that StarCraft controls the first 2 players and there is an extra third human
player. There are different AI scripts available depending on the desired level of
aggressiveness, we have used Expansion Terran Campaign Insane. The human
player has no units, will be controlled by our BWAPI bot and has full vision of
the map. Finally, we disable the normal triggers that control the end of the game
so we can restart the game from our bot when one the first 2 players wins. This
last step is important because the normal triggers would end the game as soon
as it starts because the third player has no units. Therefore, our bot cannot
interfere in the development of the game but can extract any information we
require.

We have created a dataset containing traces of 100 games in which each
player won 50% of the times. Figure 3 shows the duration in minutes of the
games. There are a few fast games in which one of the players was able to build
a small army and defeat the other player quickly, but most games last between
45 and 100 minutes. The average duration of the games is 60.83 minutes.

Figure 4 shows the evolution of resources and units of one player computed
as the average values of 100 games. The x-axis represents time as a percentage
of the game duration so we can uniformly represent games with different dura-
tion, and the y-axis the number of resources (left image), buildings and troops
(right image). Regarding resources, we see that during the first quarter of the
game the player focus on gathering resources that will be expended during the
second quarter, probably building an army and developing technology. During
the second half of the game resources do not change so much, probably because
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Fig. 4: Available resources, buildings and troops as the game progresses.

game frame gas1 minerals1 scv1 marine1 [...] gas2 minerals2 scv2 marine2 [...] winner
1 9360 2936 2491 18 23 ... 2984 2259 20 26 ... 1
1 9450 2952 2531 18 20 ... 3000 2315 20 20 ... 1
1 9540 2968 2571 18 14 ... 3024 2371 20 14 ... 1
1 9630 2892 2435 18 12 ... 2940 2219 20 7 ... 1

Table 1: Features selected to represent each game state (traces). We store the
game and current time, the strength of each player (resources, troops and build-
ings) and the winner.

there are not so many resources left in the map and the player has to invest them
more carefully. Regarding troops and buildings, the initial strategy is to build an
army as fast as possible, while the construction of buildings seems more lineal.
During the second half of the game there are more buildings than troops in the
map, but we need to take into account that some of those buildings are defensive
structures like anti-air turrets or bunkers that also play a role in combat. The
final fall in the number of troops and buildings correspond to the last attacks,
in which half of the times the player is defeated.

During the games we collect traces representing the state of the game at a
given time. Each trace is represented using a vector of features labeled with the
winner of the game (see Table 1). We try to capture the strength of each player
using the available resources and the number of units of each particular type
controlled at the current time. The table also shows the game and the current
frame (1 second are 18 game frames) for clarity, but we do not use these values
to predict the winner. We extract one trace every 5 seconds collecting an average
of 730 traces per game.

There are 2 different types of resources (minerals and gas), 15 different types
of troops and 11 different types of buildings only in the Terran race. So we
need a vector of 28 features to represent each player in the current state. We
could have decided to represent the strength of each player using an aggregation
function instead of using this high dimensional representation, but since this is



a strategy game we hope to be able to automatically learn which combination
of units is more effective.

4 Classification algorithms

We will use the following classification algorithms in the experiments:

– Linear Discriminant Analysis (LDA) [10] is classical classification algorithm
that uses a linear combination of features to separate the classes. It assumes
that the observations within each class are drawn from a Gaussian distribu-
tion with a class specific mean vector and a covariance matrix common to
all the classes.

– Quadratic Discriminant Analysis (QDA) [11] is quite similar to LDA but it
does not assume that the covariance matrix of each of the classes is identical,
resulting in a more flexible classifier.

– Support Vector Machines (SVM) [9] have grown in popularity since they were
developed in the 1990s and they are often considered one of the best out-
of-the-box classifiers. SVM can efficiently perform non-linear classification
using different kernels that implicitly map their inputs into high-dimensional
feature spaces. In our experiments we tested 3 different kernels (lineal, poly-
nomial and radial basis) obtaining the best results with the polynomial.

– k-Nearest Neighbour (KNN) [2] is a type of instance-based learning, or lazy
learning, where the function to learn is only approximated locally and all
computation is deferred until classification. The KNN algorithm is among the
simplest of all machine learning algorithms and yet it has shown good results
in several different problems. The classification of a sample is performed
by looking for the k nearest (in Euclidean distance) training samples and
deciding by majority vote.

– Weighted K-Nearest Neighbor (KKNN) [12] is a generalization of KNN that
retrieves the nearest training samples according to Minkowski distance and
then classifies the new sample based on the maximum of summed kernel
densities. Different kernels can be used to weight the neighbors according to
their distances (for example, the rectangular kernel corresponds to standard
un-weighted KNN). We obtained the best results using the optimal kernel
[17] that uses the asymptotically optimal non-negative weights under some
assumptions about the underlying distributions of each class.

All the experiments in this paper have been run using the R statistical soft-
ware system[13] and the algorithms implemented in the packages caret, MASS,
e1071, class and kknn.

5 Experimental results

Table 2 shows the configuration parameters used in each classifier. The values in
the table for each classifier were selected using repeated 10-fold cross validation



Classifier Accuracy Parameters

Base 0.5228
LDA 0.6957
QDA 0.7164
SVM 0.6950 kernel = polynomial, degree = 3, scale = 0.1, C = 1
KNN 0.6906 k = 5

KKNN 0.6908 kernel = optimal, kmax = 9, distance = 2

Table 2: Classification algorithms, configuration parameters and overall accuracy.

over a wide set of different configurations. The overall accuracy value represents
the ratio of traces correctly classified, and it has been computed as the average
accuracy value of 16 executions using 80% of the traces as the training set and
the remaining 20% as the test set.

One open problem in classification is to be able to characterize the domain to
decide in advance which learning algorithm will perform better. We usually do
not know which algorithm to choose until we have run the experiments. In our
experiments all of them seem to perform very similar. The base classifier predicts
the winner according to the number of traces in the dataset won by each player
(i.e. ignores the current state to make the prediction) and it is included in the
table only as a baseline to compare the other classifiers. The best results are for
QDA that reaches a level of accuracy of 71%. 71% might not seem to be very
high but we have to take into account that the games are very balanced because
the same AI controls both players and the distribution of resources in the map
is symmetrical for both players. Besides, in this experiment we are using all the
traces in the dataset, so we are trying to predict the winner even during the first
minutes of each game.

Figure 5 shows some more interesting results, the average accuracy of the
different classifiers as the game progresses. RTS games are very dynamic envi-
ronments and just one bad strategic decision can tip the balance towards one of
the players. How long do we have to wait to make a prediction with some level
of trust? For example, using LDA or QDA we only have to wait until a little
over half of the game to make a prediction with a level of accuracy over 80%. It
is also interesting that during the first half of the game the classifiers based on
lazy algorithms like KNN and KKNN perform better, and other algorithms like
LDA and QDA obtain better results during the second half. All the classifiers
experience a great improvement in terms of accuracy when we get close to the
middle of the game. We think that at this point of the game both players have
already invested most of their resources according to their strategy (promoting
some type of units over others, locating the defensive buildings in the bases...) so
it is easier to predict the outcome of the game. When the games reaches the 90%
of their duration, all classifiers obtain a level of accuracy close to 100% but that
is not surprising because at this point of the game one the players has already
lost an important part of his army.
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Fig. 5: Accuracy of classifiers as the games progress.

Another important aspect when choosing a classifier is the number of samples
you need during the training phase in order to reach a good level of accuracy.
Figure 6 shows the level of accuracy of each classifier as we increase the number
of games used for training. Lazy approaches like KNN and KKNN seem to work
better when we use less than 25 games for training, and LDA is able to model
the domain better when we use more than 30 games.

Finally, we will analyze the stability of the predictions produced by each
classification algorithm. It is important to obtain some prediction that do not
change constantly as the game progresses. Figure 7 shows the number of games
at a given time for witch the prediction did not change for the rest of the game
(in this experiment we make 20 predictions during each game at intervals of 5%
of the duration). So, for example, when we reach the half of the game LDA will
not change its prediction anymore for 10 out of the 20 games we are testing.

In conclusion, is this domain and using our game state representation, LDA
seems to be the best classifier. It obtains a level of accuracy over 80% when only
55% the game has been played, it learns faster than the other algorithms from
30 games in the training set, and it is the most stable classifier for most part of
the game.
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Fig. 6: Accuracy of classifiers depending on the number of games used to train
them.

6 Related work

RTS games have captured the attention of AI researchers as testbeds because
they represent complex adversarial systems that can be divided into many inter-
esting subproblems[6]. Proofs of this are the different international competitions
have taken place during the last years in AIIDE and CIG conferences[5, 4, 3]. We
recommend [15] and [14] for a complete overview of the existing work on this
domain, the specific AI challenges and the solutions that have been explored so
far.

There are several papers regarding the combat aspect of RTS games. [8]
describes a fast Alpha-Beta search method that can defeat commonly used AI
scripts in RTS game small combat scenarios. It also presents evidence that com-
monly used combat scripts are highly exploitable. A later paper [7] proposes new
strategies to deal with large StarCraft combat scenarios.

Several different approaches have been used to model opponents in RTS
games in order to predict the strategy of the opponents and then be able to
respond accordingly: decision trees, KNN, logistic regression [20], case-based
reasoning [1], bayesian models [19] and evolutionary learning [16] among others.
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Fig. 7: Number of games for which each classifier becomes stable at a given time.

In [18] authors present a Bayesian model that can be used to predict the
outcomes of isolated battles, as well as predict what units are needed to defeat
a given army. Their goal is to learn which combination of units (among 4 unit
types) is more effective against others minimizing the dependency on player skill.
Our approach is different in the sense that we try to predict the outcome in whole
games and not just the outcome of battles.

7 Conclusions and Future work

In this paper we have compared different machine learning algorithms in or-
der to predict the outcome of 2 player Terran StarCraft games. In particular
we have compared Linear and Quadratic Discriminant Analysis, Support Vector
Machines and 2 versions of k-Nearest Neighbors. We have discussed the accuracy
of the prediction as the game progresses, the number of games required to train
them and the stability of their predictions over time. Although all the classifica-
tion algorithms perform similarly, we have obtained the best results using Linear
Discriminant Analysis.

There are several possible ways to extend our work. First, all our experiments
take place in the same map and using the same StarCraft internal AI to control



both players. In order to avoid bias and generalize our results we will have to
run more experiments using different maps and different bots. Note that it is not
clear whether the accuracy results will improve or deteriorate. On the one hand,
including new maps and bots will increase the diversity in the samples making
the problem potentially more complex but, on the other hand, in this paper we
have been dealing with an added difficulty that is not present in normal games:
our games were extremely balanced because the same AI was controlling both
players. Each bot is biased towards some way of playing, like humans, and we
are not sure about the effect that may have in our predictions.

Another approach to extend our work is to deal with games with more than
2 players. These scenarios are much more challenging, not only because the pre-
diction of the winner can take values from a wider range of possibilities but
because in these games players can work in group as allies (forces in StraCraft
terminology). On the other hand, we have addressed only one of the three avail-
able races in our experiments and, of course, in the game some units from one
race are more effective against other units of other races.

Finally, in this paper we have chosen to use a high dimensional representation
of the game state that does not take into account the distribution of the units
and buildings in the map, only the number of units. We do not consider either
the evolution of the game to make a prediction, we forecast the outcome of the
game based on a picture of the current game state. It is reasonable to think that
we could improve the accuracy if we consider the progression of the game, i.e.,
how the game got to the current state. We think there is a lot of work to do
selecting features to train the classifiers.
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16. Ponsen, M.J.V., Muñoz-Avila, H., Spronck, P., Aha, D.W.: Automatically Acquir-
ing Domain Knowledge For Adaptive Game AI Using Evolutionary Learning. In:
Proceedings, The Twentieth National Conference on Artificial Intelligence and the
Seventeenth Innovative Applications of Artificial Intelligence Conference, July 9-
13, 2005, Pittsburgh, Pennsylvania, USA. pp. 1535–1540 (2005)

17. Samworth, R.J.: Optimal weighted nearest neighbour classifiers. Ann. Statist.
40(5), 2733–2763 (10 2012)

18. Stanescu, M., Hernandez, S.P., Erickson, G., Greiner, R., Buro, M.: Predicting
Army Combat Outcomes in StarCraft. In: Proceedings of the Ninth AAAI Con-
ference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE-13,
Boston, Massachusetts, USA, October 14-18, 2013 (2013)

19. Synnaeve, G., Bessière, P.: A Bayesian Model for Plan Recognition in RTS Games
Applied to StarCraft. In: Proceedings of the Seventh AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, AIIDE 2011, October 10-14,
2011, Stanford, California, USA (2011)

20. Weber, B.G., Mateas, M.: A Data Mining Approach to Strategy Prediction. In:
Proceedings of the 5th International Conference on Computational Intelligence
and Games. pp. 140–147. CIG’09, IEEE Press, Piscataway, NJ, USA (2009)


