
Collective Learning in Games through Social Networks

Sanne Kosterman and Nina Gierasimczuk
Institute for Logic, Language and Computation

University of Amsterdam, The Netherlands
nina.gierasimczuk@gmail.com

Abstract
This paper argues that combining social networks
communication and games can positively influence
the learning behavior of players. We propose a
computational model that combines features of so-
cial network learning (communication) and game-
based learning (strategy reinforcement). The fo-
cus is on cooperative games, in which a coalition
of players tries to achieve a common goal. We
show that enriching cooperative games with social
networks communication can influence learning to-
wards the social optimum under specific conditions
on the network structure and on the existing exper-
tise in the coalition.

1 Introduction
With the rise of the Internet and digital games, communica-
tion and education have changed rapidly. Two digital tech-
niques introduced towards active and social learning environ-
ments are serious games and online social networks. Both of
them seem to be auspicious methods that stimulate learning,
but are thus far treated as two distinct approaches.

Several attempts have been made to computationally model
the learning behavior of artificial agents, both in games and
in social networks. Information transmission and opinion
formation in social networks has already been extensively
studied (see, e.g., [Bala and Goyal, 1998; DeGroot, 1974;
Easly and Kleinberg, 2010; Jackson, 2008]). In those frame-
works agents can acquire new knowledge and adjust their
opinions by learning from the knowledge and beliefs of
neighbors in a network. The theory of learning in games
has been extensively studied by [Camerer and Ho, 1999],
[Fudenberg and Levine, 1998], and [Laslier et al., 2001],
who all discuss normative paradigms for learning towards
an equilibrium in repeated games. [Bush and Mosteller,
1955] and [Erev and Roth, 1995] provide models for learn-
ing in stochastic games, by making use of reinforcement
learning. This line of research has proved useful not only
for the study of artificial agents, but also for the under-
standing of human learning behavior [Erev and Roth, 2014;
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Niv, 2009]. Yet the above-mentioned learning paradigms
mainly focus on competitive agents, and treat games and net-
works separately.

In this paper, we study the question of how interaction in
a social network between players of a cooperative game can
possibly influence their learning behavior. We thereby as-
sume players to act as one grand coalition, trying to maximize
the group utility, i.e., we take players to be group-rational.
Before performing an action in the game, players can com-
municate with each other in a social network about the es-
timated quality of joint strategies. Although individuals can
only communicate directly with their neighbors, they aim at
cooperation with the entire social network society.

We start this paper with a classical graph-theoretical model
for learning in social networks in Section 2. Thereafter,
in Section 3 we provide a probabilistic aggregation method
to model the amalgamation of individual opinions after net-
work communication. In Section 4 we describe the process
of learning in stochastic games, relying on a reinforcement
method. We combine the three formal frameworks in the
novel learning paradigm proposed in Section 5. In Section
6 we discuss the hidden assumptions of this model and we ar-
gue that it contributes to future computer simulations as well
as psychological experiments on human learning.

2 Social Network Learning
The so-called Lehrer-Wagner model for weighted preference
aggregation [Lehrer and Wagner, 1981] can be utilized for
modeling opinion forming in a weighted social network.
Here, each agent holds an individual belief about multiple al-
ternatives. He can update this belief through communication,
taking into account the opinion of his neighbors and a degree
of trust towards his neighbors’ expertise.1

Formally, let G = (N,S, u) be the game with N =
{1, . . . , n} players, where S = {s(1), . . . , s(k)} is the set
of k joint strategies, and u = (u1, . . . , un) is a tuple of in-
dividual utility functions ui : S → [0, 1] for each i ∈ N .
Before the game starts, each player i holds a probability dis-
tribution over the set of joint strategies, bi : S → [0, 1]. One

1In fact, the present model is an extension of a classical social
network model [DeGroot, 1974] for communication about single
events only.
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could think of these probabilities as subjective degrees of be-
lief 2, with respect to the optimality of some joint strategy.
The higher the probability bi(s) for a certain strategy profile
s ∈ S, the more player i considers it likely that the joint strat-
egy s is a social optimum, meaning that it entails a maximal
sum of individual payoffs.

All private opinions can be reflected in a stochastic n× k-
matrix B, that holds the subjective probability values bij =
bi(s(j)) on its entries. Each i-th row bi q thus represents the
probability distribution of agent i over the set S. We writeB1

to denote the initial belief matrix. Additionally, each agent i
assigns a weight wim ∈ [0, 1] to all other group members
m ∈ N . The weights can be represented by the stochastic
n× n-matrix W . The corresponding social network is thus a
weighted directed graph G = (N,EW ) where N is the set of
nodes (agents), EW is the set of weighted directed edges, and
wim is thus the weight on the directed edge from i to m. We
assume the graph to allow for loops, which represents agents’
self-confidence.

Each agent can now communicate with neighbors in the
network and update his individual belief by taking a weighted
arithmetic mean of the beliefs of all agents he trusts. When
iterating this process, the updated belief of agent i about
strategy s(j) after t rounds of communication is given by
bt+1
ij =

∑
m∈N wimb

t
mj . On a societal level, belief up-

dates after t rounds of network communication are the result
of applying the trust matrix W to the belief matrix Bt, i.e.,
Bt+1 =W ·Bt (or, equivalently, applying the weight matrix
t times to the initial beliefs B1, i.e. Bt+1 = W t · B1). Each
round of belief updating can thus be described by means of
the following algorithm.

Algorithm 1 Network Communication at round t
Input: Weight matrix W ; belief matrix Bt

1: for all i ∈ N , s(j) ∈ S: bt+1
ij :=

∑
m∈N wimb

t
mj

2: Bt+1 :=
(
bt+1
ij

)
n×k =W ·Bt

Output: Belief matrix Bt+1

3 Collective Decision-Making
After network communication and belief updating, the coali-
tion needs to decide which joint strategy to adopt in the game.
We introduce a probabilistic social choice function (PSCF),
that maps individual probability distributions over a set of al-
ternatives to a societal probability distribution. Players in a
cooperative game can make use of such a PSCF to aggregate
all individual preferences, in order to determine which joint
strategy is most optimal according to society. As an illustra-
tion, consider a football team briefing before the match starts,
while the players collectively decide on a team strategy.

A first definition for probabilistic social choice functions
was introduced by [Gibbard, 1977], in which a preference
profile, i.e., a tuple of individual preference orders, is mapped
to a lottery, i.e., a single probability distribution over the set
of alternatives. Gibbard referred to such functions as social

2Not to be confused with the quantitative notion of belief used in
quantitative approaches to Belief Revision Theory.

decision schemes (SDSs). We will introduce a variant of this
notion, that takes as input the stochastic n × k-matrix B, as
introduced in the previous section. We write B(n, k) for the
set of all such stochastic n×k-matrices. The output of a prob-
abilistic social choice function is given by a k-ary row vector
~b that represents a single societal probability distribution over
the set of k alternatives. We write B(k) for the set of such
stochastic k-ary row vectors. Formally, a probabilistic social
choice function is thus a function F : B(n, k)→ B(k).

It is worth noting that the PSCF provides a way of dealing
with the Condorcet paradox (named after Marie Jean Antoine
Nicolas de Caritat, le Marquis de Condorcet, 1743–1794),
since it will always select a winning candidate on the basis
of probabilities. Even if society likes all alternatives equally
good (represented by equal probabilities for all candidates), a
winning alternative will be chosen at random.

We will discuss two probabilistic social choice functions
that differ with respect to the weights that individuals receive.
Intuitively, the higher the weight, the more influence an agent
can exert on the construction of the societal probability distri-
bution. In a weighted PSCF, different individuals can receive
different weights; in an averaged PSCF all individuals receive
equal weights.

3.1 Weighted Preference Aggregation
In [Lehrer and Wagner, 1981] it has been shown that a special
kind of a social welfare function, the so-called “Allocation
Amalgamation Method” (AAM), can be used as a weighted
preference aggregation method to provide a societal order-
ing over a set of k alternatives. The main advantage of such a
weighted method for preference aggregation is that it can take
into account the expertise of specific group members. We will
use this method for constructing a weighted probabilistic so-
cial choice function (wPSCF), that outputs a societal proba-
bility distribution rather than a societal ordering over the set
of alternatives.

The determination of the weights assigned to individuals,
relies on the assumption that all agents agree on how much
weight each group member should receive. In terms of the
weight matrix W , this agreement on weights corresponds to
every row of the matrix being the same. It therefore suf-
fices to represent the weights in a stochastic row vector ~w =
(w1, . . . , wn), in which wi ∈ [0, 1] represents the weight that
agent i receives from society. A weighted probabilistic social
choice function (wPSCF) is then a PSCF F : B(n, k)→ B(k)
given by F (B) = ~wB = ~b = (b1, . . . , bk) so that each
bj =

∑
i∈N wibij . In words, a wPSCF is thus a mapping

from the individual probability values to a weighted arith-
metic mean of these values, for each alternative s(j) ∈ S.

One can easily check that a wPSCF satisfies several ax-
iomatic properties from social choice theory, among which
independence of alternatives (IA), unanimity (U), neutrality
(N), and anonymity (A).

In fact, one can check that wPSCFs even satisfy a stronger
notion of unanimity called Pareto optimality (P), which guar-
antees that strict unanimous agreement among all individuals
about the order of alternatives is reflected in the societal pref-
erence. wPSCFs also satisfy social rationality (SR) which is
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a highly desired property of cooperative games with group-
rational players and a common goal [Arrow, 1951].

3.2 Averaged Preference Aggregation
Before [Lehrer and Wagner, 1981] introduced their weighted
method for allocation amalgamation, [Intriligator, 1973] and
[Nitzan, 1975] proposed a different probabilistic aggregation
procedure which they call “the average rule”. The average
rule can also be seen as a social welfare function that, on
the input of the individual probability distributions, outputs
a societal ordering over the set of alternatives. We will use
this method for constructing an averaged probabilistic social
choice function (aPSCF), that outputs a societal probability
distribution rather than a ordering. Formally, an aPSCF is a
PCSF F : B(n, k)→ B(k) given by F (B) = (b1, . . . , bk) =
~b so that each bj = 1

n

∑
i∈N bij . The process of belief aggre-

gation and collective decision making at some round t, can
thus be given by the following algorithm.

Algorithm 2 Belief Aggregation at round t
Input: Belief matrix Bt

1: for all s(j) ∈ S: btj :=
1
n

∑
i∈N btij

2: ~bt := (bt1, . . . , b
t
k)

Output: Societal belief vector~bt

Since an aPSCF does not rely on weights, it can be used as
preference aggregation methods as long as an agreement on
weights is not reached yet. Note that an aPSCF can actually
be thought of as a special case of a wPSCF where the weight
vector is given by ~w = ( 1n , . . . ,

1
n ). Therefore, an aPSCF sat-

isfies all properties that the more general wPSCFs satisfy. In
fact, the averaged method satisfies non-dictatorship (no sin-
gle individual can always determine the social probabilities)
and consistency (equal societal preferences of two disjoint
groups are maintained when the two are merged).

Finally, let us consider strategy-proofness (SP), which indi-
cates whether individuals can manipulate the outcome of the
aggregation procedure when submitting an untruthful individ-
ual preference. It easy to verify that neither an aPSCF, nor a
wPSCF satisfies SP. As we assume all players in the game to
be group-rational, no player will manipulate the game with
the purpose of increasing his private payoff only, so we do
not worry about dishonest players trying to sabotage the co-
operation. However, since the utility functions of the players
are assumed to be unknown, they are not certain about the
social optimum either. Hence, a manipulation by a very ‘un-
informed’ player can be harmful for the entire coalition.3

4 Gameplay and Reinforcement Learning
Recall that the first belief update was performed after network
communication, before the game starts. A second belief up-
date is performed after playing the game. Whereas the first

3In Section 5, we will therefore introduce some conditions on the
amount of influence of different individuals in the coalition, ensuring
that such players will not have enough power for manipulation.

IA U N A P SR ND C SP
wPSCF X X X X X X - - -
aPSCF X X X X X X X X -

Figure 1: Overview of axiomatic properties

update involves individual learning by way of communica-
tion, the second update involves collective learning by way of
reinforcement. In a classical method for reinforcement learn-
ing [Bush and Mosteller, 1955] the probability for a certain
strategy is updated with a weighted average of the previous
probability and the maximum attainable probability 1. More
specifically, suppose player i chooses the individual strategy
sti at round t and he receives a payoff of ui(st), where st de-
notes the joint strategy played at round t. Then the probability
for playing si again, is increased by adding some fraction of
the distance between the original probability for si and the
maximum probability 1. This fraction is given by the product
of the payoff and some learning parameter λ. The payoffs
as well as the constant fraction λ are scaled to lie in the in-
terval from 0 to 1. The size of λ correlates with the speed
of learning [Skyrms, 2010]. The probabilities for all strate-
gies that are not played in the previous rounds, are decreased
proportionally.

Formally, let mt
i : Si → [0, 1] be the mixed strategy for

player i at round t. Then, after playing sti at round t, player
i can revise his mixed strategy for the next round t + 1 as
follows:

mt+1
i (si) =

{
mt

i(si) + λ · ui(st)(1−mt
i(si)) if si = sti

mt
i(si)− λ · ui(st)(mt

i(si)) if si 6= sti

Note that this reinforcement method is aimed to model how
players can individually learn to improve their private strategy
in repeated games. Let us extend this learning behavior to
a group level, by allowing the coalition for reinforcing the
joint strategies that yield a positive social welfare, i.e., sum
of individual payoffs. In that way, players are collectively
learning towards the social optimum.

More specifically, after belief aggregation by the aPSCF,
the coalition holds a societal probability distribution over the
set of joint strategies, which (for a round t) is presented by
the stochastic vector ~bt. A joint strategy s(j) ∈ S is now
chosen to be played with probability btj . Subsequently, play-
ers get to know the corresponding social welfare and calcu-
late an average fraction U(st) := 1

n

∑
i∈N ui(s

t). Instead
of the individual payoffs, this fraction is used by each player
for reinforcement, towards the joint strategy with a maximal
social welfare. Although players perform this second belief
update individually, as they are all reinforcing the same joint
strategy with the same reinforcement factor, they are collec-
tively learning towards the social optimum. Note that each
player is actually learning which individual role to adopt in
the team, i.e., which actions of his are consistent with the so-
cial optimum. This process of gameplay and reinforcement at
a certain round t can be described by the following algorithm.
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Algorithm 3 Gameplay and Reinforcement at round t

Input: Societal belief vector~bt; Belief matrix Bt

1: st := s(j), s.t. s(j) is drawn from S with probability btj
2: U(st) := 1

n

∑
i∈N ui(s

t)
3: for all i ∈ N , s(j) ∈ S:

bt+1
ij :=

{
btij + λ · U(st)(1− btij) if s(j) = st

btij − λ · U(st)btij if s(j) 6= st

4: Bt+1 := (bt+1
ij )n×k

Output: Probability matrix Bt+1

There are two main reasons for using the Bush-Mosteller re-
inforcement method rather than, for instance, the one based
on Polyá urns [Erev and Roth, 1995]. Firstly, Bush-Mosteller
reinforcement makes use of utility values that are scaled in the
interval from 0 to 1. This guarantees that the utilities are in the
same scale for all players, thus avoiding unequal influences
of different players. Moreover, it ensures that the same unit
is used for payoffs as for individual beliefs about the strategy
profiles. Thus when reinforcing after gameplay, the utility
values are appropriately used as some type of weight in order
to update the beliefs.

Secondly, the Bush-Mosteller model does not take into ac-
count the accumulated rewards of earlier plays, so that the
proportion of reinforcement does not get smaller over time.
For modeling processes of collective learning rather than in-
dividual learning, it may make more sense to violate this prin-
ciple (the so-called Law of Practice). Namely, the learning
process depends on the different communication patterns in
every round, so that it does not slow down.

5 The Game-Network Learning Model
In this section we combine the computational methods dis-
cussed in the previous three sections. The model, which we
will call Game-Network Learning Model, describes an itera-
tive process that follows the procedures of network commu-
nication, belief aggregation, and gameplay and reinforcement
in each round (Figure 2).

Figure 2: Main Loop of Game-Network Learning Model

Formally, the Game-Network Learning model thus consists
of a run of Algorithms 1, 2, and 3. We will write Bt+ instead
of Bt+1 to denote the updated beliefs after network commu-
nication in round t. We emphasize that these are not yet the

final updated beliefs at the end of round t, but merely the in-
termediate beliefs after communication. During each round
t, the beliefs are thus updated twice, following the scheme:

Bt −→ Bt+ −→ Bt+1

Algorithm 1 thus outputs the matrix Bt+ after network com-
munication in round t, which will subsequently be used as
input for Algorithms 2 and 3.

5.1 Network Structure and Learning Outcome
Can adding network communication to a cooperative game
be beneficial for the learning outcome? And if so, under what
circumstances? Let us start with showing that network com-
munication only influences the learning behavior of players
as long as an agreement of beliefs is not reached yet. For-
mally, we say a group N ′ ⊆ N is in agreement at round t if
for all i1, i2 ∈ N ′ it holds that bti1 q= bti2 q, i.e., if agents inN ′
hold the same probability distributions over S. Also, a group
of nodes in a weighted directed graph is said to be closed if
there are no outgoing edges from nodes inside the group to
nodes outside the group. One could imagine that once ev-
eryone in a closed group in the social network has the same
beliefs about the social optimum of the game, then agents of
that group do no longer need to convince each other of their
different opinions.
Proposition 1. Let N ′ ⊆ N be a closed group of agents in
the network. Once N ′ is in agreement at the beginning of
some round t in the Game-Network Learning Model, network
communication in that round leaves the beliefs of all agents
in N ′ unchanged, i.e., bt

+

i q = bti q for all i ∈ N ′.
It follows immediately that for all agents i1, i2 ∈ N ′ we find
bt

+

i1 q= bti1 q= bti2 q= bt
+

i2 qso that they will still be in agreement
after network communication. Since the entire social network
is always closed, once all agents agree, communication is no
longer needed for an individual to learn towards the social
optimum.

In order to show a positive influence of network communi-
cation on the learning process, we measure the quality of our
Game-Network Learning Model by the probability for play-
ing the social optimum at a given round (before agreement).
More specifically, if s(j∗) ∈ S is the social optimum, we
say learning with network communication in round t is better
than learning without network communication if bt

+

j∗ > btj∗ ,
where bt

+

j∗ = 1
n

∑
i∈N bt

+

ij∗ denotes the probability that the
social optimum will be played in round t after network com-
munication and btj∗ = 1

n

∑
i∈N btij∗ denotes the probability

that the social optimum will be played at round t without (or:
before) network communication.

Intuitively, one could imagine that if there exist experts in
the network, who are very close to knowing what the social
optimum is, and these experts receive a sufficient amount of
trust from all other players in the network, they can convince
other players to increase the probability values for the social
optimum. Formally, let s(j∗) be the social optimum and let
btj be the probability that society assigns to some s(j) at the
beginning of round t. We say an agent ie ∈ N in the network
is an expert for round t if btiej∗ > btj∗ . We write Et for the
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set of experts for round t. We call the agents i ∈ N\Et non-
experts. Note that it follows directly that for all experts ie ∈
Et and all non-experts i ∈ N\Et it holds that btiej∗ > btij∗ .

Intuitively, the experts for a certain round are the agents
that have in the beginning of that round (and thus at the end of
the previous round) a higher than average degree of belief for
the social optimum. Note that experts can only exist as long
as a total agreement is not reached. Namely, if an agreement
of beliefs is reached between all agents in the network, every
agent has the same degree of belief that is then trivially equal
to the average degree of belief. The notion of an expert is
therefore a relative rather than an objective one: an agent is
only an expert when he has sufficient expertise relative to the
expertise of others in the society.

Among the set of experts, there always exists a subset of
experts who have the highest degrees of belief for the so-
cial optimum, compared to all other agents in society. These
experts can be considered as maximal experts. Formally, if
s(j∗) is the social optimum, then we define the set of max-
imal experts for round t as Etmax = {im ∈ Et | btimj∗ =

argmaxi∈N btij∗} ⊆ Et. Note that it follows directly from
this definition that for all maximal experts im ∈ Etmax and all
other agents i ∈ N\Etmax it holds that btimj∗ > btij∗ .

Whether or not experts can exert more influence on the
outcome of network communication than others, depends on
their position in the network and the weight that other in-
dividuals assign to the opinions of the experts. To analyze
this issue, we look at one’s centrality [Jackson, 2008]. We
introduce the notion of weight centrality to express the cen-
trality of agents in weighted directed graphs. Formally, let
wi =

∑
m∈N wmi be the total weight that agent i receives

from his neighbors. The weight centrality of some agent
i ∈ N is given by the fraction Cw

i = wi/n. In words, weight
centrality is a fraction of the highest possible weight that an
agent i can receive, which is n (namely in case all agents
would assign i a weight of 1, including agent i himself). The
higher the weight centrality of experts, the more influence
experts have on the outcome, and hence the higher the prob-
ability will be for playing the social optimum after network
communication. The following theorem provides a sufficient
condition for network communication to be better than no
communication.
Theorem 1. Let s(j∗) ∈ S be the social optimum. If
Cw

im
> 1

n ≥ Cw
i for all im ∈ Etmax and i ∈ N\Etmax, then

the probability for playing the social optimum at round t after
network communication is higher than before network com-
munication, i.e., bt

+

j∗ > btj∗ .
The theorem shows that if maximal experts for round t are
trusted more than others, network communication can be ben-
eficial for finding the social optimum. The proof relies on a
decomposition of the individual weights intowim = 1+α for
all maximal experts and into wi = 1 − β for all other agents
(with α, β non-negative fractions). One can then show that
the increase of the societal probability for the social optimum,
due to communication with trusted experts, is greater than the
respective decrease due to communication with less trusted
non-experts. This guarantees that the probability for playing
the social optimum at some round t after network communi-

cation is higher than before network communication.
If communication can be beneficial for a single round, we

should ask if it can also be favorable in every round. We
therefore introduce the notion of stable experts, which are
the agents i ∈ N for which it holds i ∈ Et for every round
t ≥ 1. The following theorem states a sufficient condition for
an initial expert (i.e., expert for round 1) to be a stable expert.
In fact, the theorem states an even stronger result that ensures
initial experts always to be in the set of maximal experts.
Theorem 2. Let s(j∗) ∈ S be the social optimum and let
E1 be the set of initial experts. If E1 is closed and E1 is in
agreement at round 1, then E1 ⊆ Etmax for all t ≥ 1, as long
as a total agreement in the network is not reached.
Hence, if initial experts only assign positive weights to them-
selves or other initial experts with the same degrees of belief,
then they will always be in the set of maximal experts for
each round t ≥ 1. The proof relies on Proposition 1 and the
intuition that agents with maximal degrees of belief for the
social optimum after network communication, are the agents
with maximal degrees of belief for the social optimum after
gameplay and reinforcement learning too.

In fact, the group of maximal experts might become bigger
than the group of initial experts, but ‘new’ maximal experts
can only have a degree of belief for the social optimum that is
at most as high as the respective degree of belief of the initial
experts. Under certain conditions of E1, it even holds that
the group of initial experts is exactly the group of maximal
experts for each round t ≥ 1, i.e., E1 = Etmax.
Proposition 2. Let s(j∗) ∈ S be the social optimum and
let E1 be the set of initial experts for round t = 1. If E1
is maximally closed and E1 is in agreement at round t = 1,
then for all t ≥ 1 it holds that E1 = Etmax, as long as a total
agreement in the network is not reached.
Here we call a group M ⊆ N maximally closed if all agents
outside ofM are connected to at least one other agent outside
of M . Intuitively, if the group of initial experts is maximally
closed, then it means that for all agents i ∈ N\E1 there must
exist another agent j ∈ N\E1 so that wij > 0. This guar-
antees that agents outside of E1 will always have a smaller
degree of belief than agents inside E1 at every round t ≥ 1,
since the updated beliefs are weighted arithmetic means of
beliefs of neighbors.
Corollary 1. Let s(j∗) ∈ S be the social optimum and let E1
be the set of initial experts. If (i) E1 is maximally closed; (ii)
E1 is in agreement at round t = 1; and (iii) Cw

ie
> 1

n ≥ Cw
i

for each ie ∈ E1 and i ∈ N\E1, then bt
+

j∗ > btj∗ at each
round t ≥ 1, as long as at total agreement in the network is
not reached.
In words, under the stated conditions for initial experts, the
probability for playing the social optimum is in each round
higher after network communication than before (or without)
network communication. This corollary thus provides a suf-
ficient condition for learning with network communication to
be better in the long run than learning without network com-
munication. The proof follows immediately from Theorem 1
and Proposition 2. Namely, from the assumptions (i) and (ii)
it follows that the initial group of experts is always the group
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of maximal experts, i.e., E1 = Etmax ⊆ Et for all rounds
t ≥ 1. Now if this group of maximal experts satisfies the
stated condition for weight centrality (iii), it follows from
Theorem 1 that the probability for playing the social optimum
after network communication is higher than without commu-
nication in every round.

6 Conclusions and Outlook
In this paper we have studied the possibility of formal model-
ing the process of learning in game scenarios, among agents
arranged in a social network. We proposed an iterative model
of learning that follows the procedures of network communi-
cation, belief aggregation, and gameplay and reinforcement
learning. We conclude that interaction in specific social net-
works can positively influence the learning behavior of play-
ers in a cooperative game. Learning with network commu-
nication can be better than learning without communication,
when there exist players in the game who know better than
average which joint strategy corresponds to the social opti-
mum. If these players are sufficiently trusted by society, and
players with little knowledge about the social optimum are
considered less authorial, then the knowledgeable players can
convince other players towards the social optimum.

We envision possible extensions of the model in the do-
main of competitive games. For example, one could make
use of cooperative game theory to describe transferable util-
ity (TU) games, in which several coalitions can play against
each other. Our model could be extended to a setting in
which different social networks, representing different coali-
tions, play a competitive game. Additionally, in our model
we assume players not to know their payoff functions, and
not to be aware of the entire network structure. By uti-
lizing epistemic models, one could elaborate on these dif-
ferent notions of (restricted) knowledge by means of Dy-
namic Epistemic Logic. A reasonable amount of work on
logics for social networks already has been carried out by
(among others) [Christoff and Hansen, 2014; Liu et al., 2014;
Seligman et al., 2013], and [Zollman, 2012], although not in
the context of cooperative games.

Each component of our Game-Network Learning model
is inspired by existing computational approaches. Varying
the choices made for modeling each of them, would result in
new learning paradigms. For example, instead of relying on
Lehrer’s and Wagner’s model, one could use Bayesian learn-
ing, see [Bala and Goyal, 1998]. Moreover, instead of as-
suming static networks, one could explore a more dynamic
setting in which agents arrive over time and are allowed to
change their weights of trust. As for the preference aggre-
gation procedure, one could adopt one of the strategy-proof
probabilistic social choice functions proposed by [Barberà et
al., 1998]. For the procedure of gameplay and reinforcement
learning, one could possibly allow for more than one social
optimum, and rely on the selfishness level [Apt and Schäfer,
2014] as reinforcement fraction.

Finally, on the empirical side, we envision computer sim-
ulations in order to check the convergence properties of the
proposed learning model. Also, testing our model by means
of psychological experiments with human participants, would

help shed some light on the use of the proposed learning
paradigm in modeling real human learning in serious games.
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[Apt and Schäfer, 2014] K.R. Apt and G. Schäfer. Selfish-
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