

SEMANTIC MATCHING OF WEB SERVICE
POLICIES

Kunal Verma1, Rama Akkiraju2, Richard Goodwin2
1LSDIS Lab, Dept of Computer Science, University of Georgia, Athens, GA 30605
2IBM T. J Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532
verma@cs.uga.edu, {akkiraju, rgoodwin}@us.ibm.com

Abstract: In this work, we present a novel approach for matching the non-
functional properties of Web Services represented using WS-policy. To date, most
policy matching has been done using syntactic approaches, where pairs of policies
are compared for structural and syntactic similarity to determine compatibility. In
our approach, we enhance the policies of a Web Service with semantics by creating
the policy assertions based on terms from ontologies. The use of semantic terms
enables richer representations of the intent of a policy and allows matching of
policies with compatible intent, but dissimilar syntax. Also, in cases where policies
are defined at multiple levels/domains (such as security, privacy, trust, transactional
etc.), we handle inter-domain policy interactions by processing the rules represented
in the semantic domain models. This helps identify any inconsistencies in policies
during specification as well matching. This approach of using semantic concepts and
rules during policy matching leads to better Web Service matches that may not have
been possible with syntax based matchers, or prior semantic based methods.

Key words: WS-Policy, Semantic Policy Matching, Ontologies, OWL, SWRL

 Kunal Verma, Rama Akkiraju, Richard Goodwin

1. INTRODUCTION

Web Services Policy Framework (WS-Policy) is a general purpose framework
for describing capabilities and requirements of Web Service entities. While Web
Services Description Language (WSDL) is meant to represent the functional aspects
of a Web Service, WS-Policy is used to represent its non-functional attributes. To
determine if a Web Service is suitable for a particular use, both the functional and
non-functional capabilities and requirements of a Web Service have to be matched
with those of a request. Specifically, in matching the non-functional properties, the
policy requirements of the entity invoking the Web Service must be compatible with
the policies of the entity providing the Web service. In their current specification,
both WSDL and WS-Policy are capable of representing the syntactic aspects of the
functional and non-functional properties respectively but lack semantics. For
example, using WSDL one can describe the interfaces of a service and details on
how to invoke it but not what a service actually does. Similarly, using WS-Policy
one can describe the policies that a service requires or provides but not the context
in which these policies operate. This lack of semantics hampers the effectiveness of
computing the compatibility between the policies.

Realizing this need for semantics, the semantic web community [Berners-Lee et

al., 1999] is proposing to formalize the representation of meaning (semantics) of
content with the help of model theory based RDF [RDF, 1999] and description
logics based OWL [OWL, 2002]. In addition, academic projects like OWL-S
[OWL-S, 2002], METEOR-S [METEOR-S, 2002] and WSMO [WSMO, 2004] have
proposed approaches to semantically represent Web services. Using OWL, OWL-S
provides a vocabulary to represent the semantics of both the functional and non-
functional aspects of Web Services. However, much of semantic matching work, to
date, has been focused on the matching of functional properties of Web Services;
namely inputs, outputs, preconditions and effects [Paolucci et al] [Mc.Ilraith et al].

In this paper, we present a novel approach to represent and match the non-

functional attributes of Web Services. There are two distinct aspects to our
approach. First, we use a combination of OWL and SWRL [SWRL 2004] based
rules to capture domain concepts and rules and present a mechanism to enhance
policies represented using WS-Policy with semantics. Second, we present an
approach to validate such semantically described policies specified across multiple
domains (such as security, privacy, trust, transactional, business) during
specification and then prescribe an algorithm for policy matching.

The rest of the paper is organized as follows. In Section 2, we present a

motivating example to make a case for semantics in representing the non-functional
properties of Web Services. Section 3 presents how policies represented using WS-

SEMANTIC MATCHING OF WEB SERVICE POLICIES

Policy can be matched today using syntactic matching approach. In Section 4, we
describe how WS-Policy can be extended to incorporate semantics. In Section 5 we
present our semantic policy matching algorithm. Section 6 provides a comparison of
this work with other projects in this area. Our conclusions and future work is
outlined in section 7.

2. MAKING A CASE FOR SEMANTICS IN POLICY
MATCHING

The current WS-Policy specification relies on XML based vocabularies like WS-
Security and WS-Trust to make assertions in those domains. In principle, two parties
can make assertions in any number of domains, as long as they have an agreed upon
vocabulary. However, if the matching is unaware of the semantics of the assertions,
it will be somewhat restricted. In order to illustrate our viewpoint, let us consider the
following example. Say that a service provider would like to specify policies at three
domains for a specific service. They are:
• Business domain: BusinessLevel of requestor must be Enterprise
• Security domain: Encryption is required. Can support any of {RSA, SSH and

DEC}
• Security domain: Security token must be Kerberos V 5.1 and keySize >= 512
• Transaction domain: Service execution time is <= 60 msec. Average network

response time <= 30 msec.
Similarly, say that there is a requesters’ service that has certain policies on its

service. They are:
• Business domain: Company requesting the service has a Dun & Bradstreet

rating of A3.
• Security domain: Can supply information encrypted in RSA.
• Security domain: Can supply security token Kerberos 5.0 with keySize = 1024
• Transaction domain: Expected response time is <= 100 msec.

In the above assertions, if we were to use syntactic matching, the matcher would
have no additional knowledge about the domain and it would only perform string
matching on the attributes of the assertions. This would lead to false negatives, even
though the assertions are equivalent. For example, in the above example a syntactic
matcher would not know what relation, if any, the enterprise level status of a
company holds to a Dun & Bradstreet rating of a company. Also, the syntax matcher
would not know how to match the expected response time of the request service
with the information on execution time and network response time given by the
service providers’ service. Say that now we create a domain ontology to capture the
following semantic information:
• If a company has Dun &Bradstreet rating A3 then it is enterprise level
• Kerberos 5.1 can accept Kerberos 4.0 tokens.
• Total Processing time = Service execution time + network response time

 Kunal Verma, Rama Akkiraju, Richard Goodwin

• Response time is Equivalent to Total processing time

When this additional domain information along with semantic reasoning is
applied, the relationships between seemingly unrelated policies become apparent
thereby making it possible to match them correctly. For example, based on a domain
rule which states that ‘TotalProcessingTime = NetworkTime + executionTime’, and
with the inference that a response time is equivalent to total time, the matcher can
now match the transaction domains of the two policies. Similarly, applying the rule
that Dun and Bradstreet (D&B rating) A3 means that the company is enterprise level
business domains can now be matched. Also, the compatibility of security tokens is
an additional piece of information that a syntax based matcher did not have in a
syntax based matcher. This example illustrates how domain knowledge captured as
semantic models can improve the quality of matches.

3. WS-POLICY AND WS-POLICY MATCHING

In this section, we briefly describe the WS-Policy specification and provide an
overview of how policy matching can be done today in the absence of semantics.

3.1 WS-Policy

WS-Policy provides a grammar for representing the non-functional attributes of
entities in a Web services based XML environment [WS-Policy]. A policy is defined
as a collection of alternatives and an alternative is defined as a collection of
assertions. An assertion is used to represent a requirement, capability or a behavior
of a Web service. An assertion can have arbitrary number of child assertions and
attributes. A WS-Policy can be represented in XML using the following tags: The
“Policy” tag is used to start and end a policy. The “ExactlyOne” tag is used to
contain a set of alternatives and the “All” tag contains all the assertions in an
alternative. Each assertion belongs to some vocabulary and can have any number of
attributes or child assertions.

3.2 Policy Matching

Once a client or a service finds another service with the desired functionality, it
must evaluate whether it is compatible by matching the policies. WS-Policy
describes a policy normal form which is a disjunction of alternatives and
conjunction of all assertions in an alternative. In this paper, we always use the
normal form for policy matching.

SEMANTIC MATCHING OF WEB SERVICE POLICIES

A policy P is defined as a finite set of alternatives. It can also be expressed as a
disjunction of all its alternatives

P = { Alt1, Alt2, …. Alt N } = Alt1 | Alt2 | …. Alt N

An alternative Alt is defined as a finite set of assertions. It can also be expressed

as a conjunction of all its assertions.
Alt = {A1, A2 … AN} = A1 ^ A2^ …. AN
Matching two policies is reduced to finding two equivalent alternatives.

((Alti) S.T. Alti P1 and (∃Altj) S.T. Altj ∃ ∈ ∈ P2 and Alti ⇔ Altj)

(P1 ⇔ P2) ……………Rule 1
⇒

Finding equivalent alternatives can be defined in the following manner. Two
alternatives are equivalent, if for each assertion in both alternatives, there exists an
equivalent assertion.

((∀Ai) S.T. AiЄ Alt1 and (Aj) S.T. Aj Є Alt2 and Ai ∃ ⇔ Aj) and ((∀Ai)
S.T. Ai Є Alt2 and (∃Aj) S.T. Aj Є Alt1 and A1 ⇔ A2)) ⇒ (Alt1 ⇔ Alt2)
..Rule 2

In the current policy framework, equivalent assertions can be computed using
syntactical matching of the assertions. In the end, from the application of the above
two rules 1 and 2, a working policy must be created from the equivalent alternatives.
In some cases, the intersection of policies may also be useful to find common
properties and creating a limited working policy. When we apply this approach to
match the pair of policies described in section 2, we note that the business domain
and transaction domain cannot be matched based on syntax alone. In the next section
we show how we extend WS-Policy to capture semantic annotations and how policy
matching can be achieved using this newly available semantic information.

4. EXTENDING WS-POLICY TO INCORPORATE
SEMANTICS

Policies must be augmented with semantic information in order to enable
semantic matching. Below we describe how we use domain ontologies for creating
policy assertions with semantics. As mentioned in section 3, assertions are used to
represent a requirement or a behavior of Web services in any number of domains.
The type of the assertion is specified by using the QName [XML-Namespaces,
1999] specified in a domain specific vocabulary. A sample assertion is shown in
Figure 1.

<wsse:SecurityToken>
<wsse:TokenType>wsse:Kerberosv5TGT
</wsse:TokenType>

 Kunal Verma, Rama Akkiraju, Richard Goodwin

</wsse:SecurityToken>
Figure 1: Sample Assertion

This assertion is a security assertion, which is specified by the “wsse”, which is

the URI part of the name of the root element of the assertion. In the WS-Policy
specification, this URI is mapped to the URI of the OASIS site hosting the XML
schema description of WS-Security. The local part of the name of root element
“SecurityToken” specifies that it is a security token assertion. It has a child assertion
which states that the token type of the security token should be Kerberosv5TGT.

For adding semantics to WS-Policy, we recommend using OWL ontologies

instead of XML schema based vocabularies like WS-Security. Consider an OWL
ontology, which semantically describes all the elements of WS-Security using the
more expressive description logics constructs available in OWL ontologies. The fact
that OWL ontology concepts can be referenced through URIs allows us to use
concepts from the ontologies directly in the policy assertions. In Figure 2, the URI
part of QName “semsecurity:SecurityToken”, is mapped to an URI hosting a
security ontology in OWL, which has semantic descriptions of SecurityToken,
Kerberosv5TGT and TokenType.

In addition to creating assertions from domain ontologies, we propose adding

three optional attributes to each assertion for explicating the semantics of the
assertion. They are:
1. assertionType: This attribute is used to specify whether an assertion is a
requirement or a capability. The current specification states an assertion could be
either a requirement or a capability of a Web service. As a result during
matchmaking, all assertions have to be matched and are considered as both a
capability and requirement. This makes the matching cumbersome. Explicitly
categorizing an assertion as either a requirement or a capability resolves this
ambiguity and makes the matching simpler and cleaner. The assertions in Figure 2
are requirements. The default value of assertionType is requirement.
2. valueType: This attribute is used to specify whether an assertion is a numeric or a
non-numeric assertion. The value owl:object specifies that the assertion is belongs to
an OWL ontology and OWL based operators can be used to reason about it. The
value xsd:type specifies that it a literal, where type can be any data type (xsd:string,
xsd:float, xsd:int, etc.) supported by XML schema. . We use this attribute to decide
whether to use numeric/string based comparisons or description logics based
reasoning for matching the particular assertion. By default, an assertion is xsd:string,
and string matching is used . The assertions in Figure 2 are non numeric.
3. comparisonOperator: This attribute is used to represent the relationship between
the assertion name and value. For example the child assertion in Figure 1 states that
“TokenType = Kerberosv5TGT”. WS-Policy assumes an “equals-to” relationship.
While the “equals-to” is the default value we allow “greater than”, “less than”,

SEMANTIC MATCHING OF WEB SERVICE POLICIES

“greater than or equal to”, “less than or equal to” for number numeric assertions and
“subclassof”, “superclassof”, “instanceof” for non numeric assertions.

 <semsecurity:SecurityToken
 assertionType="sempolicy:Requirement"
 valueType="owl:object"
 comparisonOperator="sempolicy:EQ">
 <semsecurity:TokenType

 assertionType="sempolicy:Requirement"
 valueType="owl:object"
 comparisonOperator="sempolicy:EQ">
 semsecurity:Kerberosv5TGT
 </semsecurity:TokenType >
</semsecurity:SecurityToken >
Figure 2: Assertion using ontologies

5. WEB SERVICE POLICY MATCHING USING
SEMANTICS

In this section, we will describe how semantic matching can help match the
policies of the request and advertisement shown in section 2 with the help of domain
ontologies and rules.

5.1 Policy and Rules Representation

To reason about domain ontologies, we use a semantic network based ontology
management system known as SNoBASE [Lee et al., 2003] that offers DQL-based
[DQL, 2003] Java API for querying ontologies represented in OWL. SNOBASE
uses IBM’s ABLE [Bigus et al 2002] engine for inferencing. We have created an
OWL ontology for WS-Policy. This allows to represent individual policies as OWL
instances. We implemented a module to add SWRL rules to SNoBASE. Consider
the following rules, and their SWRL and ABLE representations.

If there exists a policy P, which has an alternative ALT, which has an Assertion

A, which states that “DunAndBradStreetRating = A3”, then create a new Assertion
A1 which states “BusinessLevel=Enterprise” and belongs to Alternative Alt. This
rule can be represented in SWRL abstract syntax as:
Policy (P) and hasAlternative(P, ALT) and hasAssertion (ALT, A) and
DunAndBradStreetRating(A, “A3”) => Assertion (A1) and BusinessLevel (A1, “Enterprise”)
and hasAssertion (ALT, A1)

The ARL “when-do” for the above SWRL rule is given below:
when: Policy (P) and hasAlternative (P, ALT) and hasAssertion (ALT, A)

 Kunal Verma, Rama Akkiraju, Richard Goodwin

 and DunAndBradStreetRating(A, “A3”)
do: Assertion (A1) and BusinessLevel (A1, “Enterprise”) and
 hasAssertion (ALT, A1)

If there exists a policy P, which has an alternative ALT, which has an Assertion

A1, which states that “ExecutionTime = X” and an Assertion A2, which states that
“NeworkTime = Y”, then create a new Assertion A3 which states that
TotalProcessingTime = X + Y. This rule can be represented in SWRL syntax as:

Policy (P) and hasAlternative (P, ALT) and hasAssertion (ALT, A1) and hasAssertion

(ALT, A2) and ExecutionTime(A1, X) and NetworkTime (A2, Y) => Assertion (A3) and
TotalProcessingTime (A3, X + Y) and hasAssertion (Alt, A3)

 This rule can be written in ARL as:
when: Policy (P) and hasAlternative (P, ALT) and hasAssertion (ALT, A1) and
 hasAssertion (ALT, A2) and ExecutionTime(A1, X) and NetworkTime
 (A2, Y)
do: Assertion (A3) and TotalProcessingTime (A3, X + Y) and hasAssertion
 (Alt, A3)

Rules are used in ABLE using a RETE [Forgy, 1982] network and new facts are
added to the policies if the right conditions exist for firing the particular rules. A key
challenge was to model these rules over OWL facts. However, the ABLE based
implementation of SNOBASE, which also models OWL facts as rules, allowed us to
write these in Able Rules Language. Similar rules can be written to invalidate
alternatives, if the inter-domain assertions do not make sense or contradict each
other. For example, if a security algorithm assertion and compression algorithm
assertion are in the same alternative, and they cannot co-exist, then the alternative
can be invalidated, by having a rule to do so.

5.2 Semantic Policy Matching Algorithm

In this section, we will explain our matching algorithm. As discussed in section
3.2, matching two policies is reduced to finding two equivalent alternatives.
However, based on requirements and capabilities, we present a different definition
for equivalent alternatives. Equivalent alternatives can be defined as alternatives
whose capabilities satisfy each others requirements. In order to write the definition,
we define functions “req” and “cap”, which represents requirement and capability
assertions of an alternative respectively.

((∀Ai) S.T. Ai req (Alt1) and (∃Aj) S.T. Aj ∈ ∈ cap (Alt2) and Ai satisfies Aj
) and ((∀Ai) S.T. Ai ∈ req (Alt2) and (Aj) S.T. Aj ∃ ∈ cap(Alt1) and Ai satisfies
Aj)) (Alt1 Alt2) ⇒ ⇔

SEMANTIC MATCHING OF WEB SERVICE POLICIES

In order to explain the satisfiability of one assertion by another we define the
following functions.

“val” returns the value of an assertion or an attribute
“type” returns the type of an assertion or an attribute
“children” returns all the children of an assertion
“attributes” returns all attributes of an assertion

A capability assertion satisfies a requirement assertion if its value satisfies the

requirement assertion’s value and if all the attributes of the requirement assertions
are satisfied by its attributes. In addition, all the child assertions of the capability
assertion, must satisfy the child assertions of the requirement assertions.

[val (A2) satisfies val (A1) and
(∀ attri) S.T. attri attributes(A1) and (attrj) S.T. attrj ∈ ∃ ∈ attributes (A2) and

type(attri) = type (attrj) and val (attrj) satifisfies val (attri)) and
 ((childi) S.T. childi children(A1) and (∀ ∈ ∃ childj) S.T. childj ∈ children

(A2) and childi satisfies childj)] ⇒ (A2 satisfies A1)

Following operators are used to check value or attribute satisfiability
1. For XML type based assertions: equals, =, <, >, <=, >=
2. For OWL based assertions: sameClassAs, sameInstanceAs, subClassOf,

instanceOf, superClassOf, subsumes

5.3 An Example of Semantic Policy Matching

We use the same example introduced in section 2. Below, we categorize the
policies of the provider into requirements and capabilities.

Provider Requirements:
• Business domain: BusinessLevel of requestor must be Enterprise
• Security domain: Security Token must be Kerberos 5.1 and keySize >= 512
• Security domain: Encryption should be used

Provider Capabilities:
• Transaction domain: NetworkTime <= 30 ms & ExecutionTime <= 60 ms
• Security domain: Can support any of {RSA, SSH and DEC}

Based on the domain knowledge in rules and ontologies, the original policy is
augmented with new facts. The following rule is fired when the above assertions are
added to the policy object

ExecutionTime(P) + networkTime (P) = TotalProcessingTime (P)
Hence, a new assertion is generated
• TotalProcessingTime <= 90 ms

Due to the assertions in the domain ontology
TotalProcessingTime sameAs ResponseTime
Another, new assertion is generated
• ResponseTime <= 90 ms

 Kunal Verma, Rama Akkiraju, Richard Goodwin

Similarly, we categorize the policies of requester in section 2 as follows:

Requestor Requirements:
• Security domain: Can supply security token Kerberos 5.0 with keySize =

1024
• Security domain: Encryption Algorithm must be RSA
• Transaction domain: ResponseTime <= 100 ms

Requestor Capabilities:
• Business domain: DunAndBradStreetSize is A3

The following rule is fired when the above assertions are added to the policy
object.

DunAndBradStreetSize(P, A3) => businessLevel(P) = Enterprise
Hence, a new assertion is generated
• BusinessLevel is Enterprise

Our matchmaking framework can now match the policies of the requestor and
the provider with the help of the new facts that have been added to both the policies.

Checking all requirments of policy 1:
1. BusinessLevel (P1 , Enterprise) is satisfied by assertion BusinessLevel (P1

, Enterprise) as Enterprise = = Enterprise
2. SecurityToken (P1, Kerberos 5.1) is satisfied by assertion SecurityToken

(P2, Kerberos 5.0) as Kerberos 5.0 is substituteable for Kerberos 5.1 and
keysize (1024 >= 512)

3. EncryptionAlgorithm (P1, EncryptionAlgorithm) is satisfied by assertion
EncryptionAlgorithm (P1, RSA) as RSA subClassOf EncryptionAlgorithm

Therefore, all requirements of policy 1 are satisfied by policy 2.
Checking all requirements of policy 2:
1. ProcessingTime (P2 , <=, 100ms) is satisfied by assertion ProcessingTime

(P1 , <=, 90ms) as 90ms <= 100ms
Therefore, all requirements of policy 2 are satisfied by policy 1.
Since all requirements of both policies are satisfied by each other, the matcher

declares these policies as being equivalent.

6. RELATED WORK

Much of the previous work on policy matching has been based on syntactical
models. Wohlstadter et al [Wohlstadter et al., 2004] extend the grammar of WS-
Policy to add qualifying conditions and numerical predicates, but is still based on
syntactical domain models. Having XML based models limits the expressivity of the
assertions and also limits the matching to syntactical matching. Our work addresses
these limitations by using OWL based domain ontologies along with SWRL like
rules. This allows our matcher to use rich domain knowledge for better matching.
[Mukhi and Plebani, 2004] discuss issues in WS-Policy based frameworks. One of

SEMANTIC MATCHING OF WEB SERVICE POLICIES

the problems mentioned in their work is capturing and reasoning on inter domain
dependencies between assertions of different domains. Once again, such
dependencies can be captured using ontologies and rules and used in the
matchmaking.

There has also been some work in policies using Semantic Web technologies.

[Uszok et al., 2004] have developed the KAOS system for representing policies
using OWL. Their approach is similar to ours, but we use SWRL rules, instead of
value-maps used by them. [Kagal et al., 2004a] use a rule based engine for handling
trust and privacy of Web services. In another paper [Kagal et al., 2004b] the authors
have discussed the interaction of OWL ontologies and SWRL rules as an open
problem. The approach discussed in this paper allows us to combine OWL
ontologies and SWRL rules, by representing only those aspects of which are beyond
the expressivity of description logics to OWL. [Li and Horrocks, 2004] provides an
approach for matching non-functional attributes, but their framework is restricted as
they rely solely on subsumption for the matching and their expressivity is limited by
description logics. While our approach also takes care of hierarchical relationships
(the basis for subsumption), it is more flexible we can use either subsumption based
reasoning as well as domain rules for matching. In addition, we support relationships
(inter and intra domain) using rules which cannot be representing using description
logics alone. [Parsia et al., 2005] have developed an OWL ontology for
representing WS-Policy. However, they have not considered adding SWRL rules to
the assertions, which is a key contribution of this approach.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an approach for matching non-functional
requirements of Web services based on creating rich domain models using
ontologies and rules. The research contributions of this paper are providing a
extensible domain crossing approach for semantic policy matchmaking as well as
providing an approach for implementing horn logic based rules to be used in
conjunction with OWL based ontologies. Our implementation acts as a proof of
concept and shows the usefulness of such an approach.

REFERENCES
[Berners-Lee et al., 1999] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web.

Scientific American, May 2001.
[Bigus et al., 2002] J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N. Mills III, and Y. Diao,

ABLE: A toolkit for building multiagent autonomic systems, IBM Systems Journal,
Volume 41, Number 3, 2002
[DQL, 2003] DQL Technical Committee 2003. DAML Query Language (DQL)
http://www.daml.org/dql

http://www.daml.org/dql

 Kunal Verma, Rama Akkiraju, Richard Goodwin

[Forgy, 1982] Charles L. Forgy, Rete: A Fast Algorithm for the Many Pattern/ Many Object

Pattern Match Problem", Artificial Intelligence 19 (1982), 17-37)
[Grosof et al., 2004] B. N. Grosof, I. Horrocks, R. Volz, S. Decker: Description logic

programs: combining logic programs with description logic, The Proceedings of the World
Wide Web Conference (WWW2003), 2003, pp:48-57

[Kagal et al., 2004a] L. Kagal, M. Paoucci, N. Srinivasan, G. Denker, T. Finin, and K. Sycara,
Authorization and Privacy for Semantic Web Services, The Proceedings of the AAAI
Spring Symposium on Semantic Web Services, 2004

[Kagal et al., 2004b] Lalana Kagal, Tim Finin, and Anupam Joshi, Declarative Policies for
Describing Web Service Capabilities and Constraints, Proceedings of W3C Workshop on
Constraints and Capabilities for Web Services

[Lee et at., 2003] Lee J., Goodwin R. T., Akkiraju R., Doshi P., Ye Y. SNoBASE: A
Semantic Network-based Ontology Ontology Management.
http://alphaWorks.ibm.com/tech/snobase. 2003

[Li and Horrocks, 2004] L. Li and I. Horrocks, A software framework for matchmaking based
on semantic web technology, The Proceedings of the World Wide Web Conference
(WWW2003), 2003, pp:331-339

[METEOR-S, 2002] METEOR-S: Semantic Web Services and Processes,
http://lsdis.cs.uga.edu/Projects/METEOR-S/

[Mukhi and Plebani, 2004] N. K. Mukhi and P. Plebani, Supporting Policy-driven behaviors
in Web services:Experiences and Issues, To appear in the proceedings of the International
Conference on Services Oriented Computing (ICSOC), 2004

[OWL, 2002] OWL Technical Committee (T.C). 2002. Web Ontology Language (OWL).
http://www.w3.org/TR/2002/WD-owl-ref-20021112/

[OWL-S, 2002] OWL-S Technical Committee (T.C). 2002. Web Ontology Language for Web
Services. http://www.daml.org/services/owl-s/

[Parsia et al., 2005] B. Parsia, V. Kolovski, and J. Hendler. Expressing WS-Policies in OWL.
Submitted to Policy Management for the Web Workshop, 14th International World Wide
Web Conference, Chiba, Japan, May 2005.

[RDF, 1999] Resource Data Framework, http://www.w3.org/RDF/
[Sivashanmugam et al., 2003] K. Sivashanmugam, K. Verma, A. P. Sheth, J. A. Miller:

Adding Semantics to Web Services Standards, The Proceedings of the First International
Conference on Web Services (ICWS 2003), 2003, pp:395-401

[SWRL, 2004] Semantic Web Rule Language, http://www.daml.org/2003/11/swrl/
[Uszok et al., 2004] A. Uszok, J. M. Bradshaw, R. Jeffers, M. Johnson, A. Tate, J. Dalton, S.

Aitken, Policy and Contract Management for Semantic Web Services, The Proceedings of
the AAAI Spring Symposium on Semantic Web Services, 2004

[Wohlstadter et al., 2004] E. Wohlstadter , S. Tai , T. Mikalsen , I. Rouvello , and P.
Devanbu, GlueQoS: Middleware to Sweeten Quality-of-Service Policy Interactions, The
Proceeding of the 26th International Conference on Software Engineering (ICSE 2004),
pp. 189-199

[WSMO, 2004] Web Service Modeling Ontology, http://www.wsmo.org
[WS-Policy, 2003] The Web Service Policy Framework
http://www-106.ibm.com/developerworks/library/ws-polfram/
[XML-Namespaces, 1999] Namespaces in XML, World Wide Web Consortium 14-January-

1999, http://www.w3.org/TR/REC-xml-names/

http://alphaworks.ibm.com/tech/snobase
http://lsdis.cs.uga.edu/Projects/METEOR-S/
http://www.w3.org/TR/2002/WD-owl-ref-20021112/
http://www.daml.org/services/owl-s/
http://www.w3.org/RDF/
http://www.daml.org/2003/11/swrl/
http://www.daml.ecs.soton.ac.uk/SSS-SWS04/46.pdf
http://ebiquity.umbc.edu/v2.1/_file_directory_/papers/84.pdf
http://www.wsmo.org/
http://www-106.ibm.com/developerworks/library/ws-polfram/
http://www.w3.org/TR/REC-xml-names/

	1. INTRODUCTION
	2. MAKING A CASE FOR SEMANTICS IN POLICY MATCHING
	3. WS-POLICY AND WS-POLICY MATCHING
	3.1 WS-Policy
	3.2 Policy Matching
	4. EXTENDING WS-POLICY TO INCORPORATE SEMANTICS
	5. WEB SERVICE POLICY MATCHING USING SEMANTICS
	5.1 Policy and Rules Representation
	5.2 Semantic Policy Matching Algorithm
	5.3 An Example of Semantic Policy Matching

	6. RELATED WORK
	7. CONCLUSIONS AND FUTURE WORK

