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Abstract. Using SAT solvers as inference engines in answer set programming
systems showed to be a promising approach in building efficient systems. Nowa-
days SAT based answer set programming systems successfully work with nondis-
junctive programs. This paper proposes a way to use SAT solvers for finding an-
swer sets for disjunctive logic programs. We implement two different ways of
SAT solver invocation used in nondisjunctive answer set programming. The al-
gorithms are based on the definition of completion for disjunctive programs and
the extension of loop formula to the disjunctive case. We propose the necessary
modifications to the algorithms known for nondisjunctive programs in order to
adapt them to the disjunctive case and demonstrate their implementation based
on systemCMODELS.

1 Introduction

Disjunctive logic programming under the stable model semantics [GL91] is a new
methodology calledanswer set programming (ASP) for solving combinatorial search
problems. It is a form of declarative programming related to logic programming lan-
guages, such as Prolog. In answer set programming, solutions to a problem are rep-
resented by answer sets, and not by answer substitutions produced in response to a
query as in conventional logic programming. Instead of Prolog systems, this program-
ming method uses answer set solvers, such asSMODELS [SS05], CMODELS [Le05],
ASSAT [LZ02], DLV [LPE+05], andGNT [Jea05]. These efficient systems made it pos-
sible for ASP to be successfully applied in such areas as planning, bounded model
checking, historical linguistics and product configuration.

SystemsDLV and GNT are more general as they work with the class of disjunc-
tive logic programs, while other systems cover only nondisjunctive case. Both systems
CMODELS andASSAT use SAT solvers as search engines. They are based on the rela-
tionship between the completion semantics [Cla78] and answer set semantics for logic
programs. It is well known that all answer sets of a program are also models of its
completion while the converse is not always true. For the big class of programs, called
tight, for which the converse holds SAT solvers can serve a role of answer set enu-
merators. Lin and Zhao [LZ02] found a way to use SAT solvers for computing answer
sets for also nontight nondisjunctive programs. Systems implementing the approach,
ASSAT andCMODELS, showed that SAT based answer set programming is promising
by providing the successful experimental analysis with respect to the other state-of-the-
art ASP systems [LZ02,LM04,GLM04]. At the same timeCMODELS proved to be an
efficient system in such real-world applications as the wire-routing problem [EW04],
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and the problem of reconstructing probable phylogenies in the area of historical linguis-
tics [BEMR05].

This paper proposes the way to use SAT solvers also for finding answer sets for dis-
junctive logic programs. The work is based on the definition of completion for disjunc-
tive programs [LL03] and the extension of loop formula definition [LZ02] to the case
of disjunctive programs [LL03]. We propose necessary modifications to the SAT based
ASSAT algorithm [LZ02] as well as to the generate and test algorithm from [GLM04] in
order to adapt them to the case of disjunctive programs. We implement the algorithms
in systemCMODELS and demonstrate experimental results.

Existing systemsDLV [LPE+05,KLP03] andGNT [Jea05] implement generate and
test approach for finding answer sets for disjunctive programs.DLV implements a unique
search algorithm for generating candidate models and uses SAT solver for testing them.
GNT utilises answer set system for nondisjunctive programsSMODELS for both pro-
cedures: generating and testing. The difference in our work is that we propose use of
SAT solver as an engine for these tasks: first generating candidate solutions, and second
testing them. In our approach for the class of tight disjunctive programs testing part of
the procedure is not necessary.

The paper is organised as follows. First we introduce terminology and theory needed
to extend SAT based algorithms for nondisjunctive programs to the disjunctive case.
We demonstrate the algorithms themselves, provide the details of program’s syntax
admitted by the implementation and show the preliminary experimental results. The
last section contains proofs of the theoretical results.

2 Theoretical Preliminaries

Disjunctive program (DP) is a set of rules with expressions that have the form

A← B,F (1)

whereA is the head of the rule and is a disjunction of atoms or symbol⊥, B is a
conjunction of atoms, andF is a formula of the following form

not A1, . . . , not Am, not not Am+1, . . . , not not An

We call such rulesdisjunctive rules.
If a head of a rule does not contain a disjunction, we call such rulenondisjunctive.

If formula F of rule (1) contains an expression of the formnot not Ai then the rule is
callednested, otherwise the rule isnon-nested. If all rules of a DP are nondisjunctive
we call such program nondisjunctive as well.

Let Π be a DP whose rules have the form

A← Body. (2)

We identify a disjunction of atomsA with a set of atoms occurring inA. A completion
of Π [LL03], Comp(Π), is defined to be a set of propositional formulas that consists
of the implication

Body ⊃ A (3)
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for every rule (2) inΠ, and the implication

a ⊃
∨

A←Body∈Π, a∈A

(Body ∧
∧

p∈A\{a} ¬p) (4)

for each atoma ∈ Π.
The definition of when a set of atoms satisfies a rule (or a head of a rule, or a body of

a rule) is the usual definition of satisfaction in propositional logic, with the comma un-
derstood as conjunction,”not” as negation, andA← Body as the material implication
Body ⊃ A. We say that set of atomsX satisfies programΠ (symbolically,X |= Π)
if X satisfies every rule ofΠ. We call such set of atomsX a model of programΠ.

The reduct of rule (1)
AX ← BX , FX

with respect to set of atomsX is defined as follows:

- AX = A
- BX = B
- FX = (not A1)X , . . . , (not Am)X , (not not Am+1)X , . . . , (not not An)X where

(not Ai)X = ⊥ and(not not Ai)X = > if X |= Ai otherwise(not Ai)X = >
and(not not Ai)X = ⊥.

Thereduct ΠX of programΠ with respect toX is a set of rulesAX ← BX , FX for
all rules (1) inΠ. SetX of atoms is ananswer set [LL03] for a programΠ if X is
minimal among the sets of atoms that satisfy the reductΠX .

Let Π be a DP. Apositive dependency graph of Π is directed graphG such that

- vertices ofG are the atoms occurring inΠ
- for every rule (1) inΠ, G has an edge from each atoma ∈ A to each atom inB .

A disjunctive program istight [LL03] if its positive dependency graph is acyclic.
Theorem for Tight Programs. [LL03] For any tight disjunctive program Π and any
set X of atoms, X is an answer set for Π iff X satisfies comp(Π).

A nonempty set of atomsL is called aloop of Π if for any paira1, a2 of atoms in
L, there exists a path of nonzero length froma1 to a2 in the positive dependency graph
of Π such that all vertices in this path belong toL. Loop formula FL has the form∧

L ⊃
∨

R(L) (5)

whereR(L) is a set of formulas

B ∧ F ∧
∧

p∈A\L
¬p (6)

for all rules (1) inΠ such thatA ∩ L 6= ∅ andB ∩ L = ∅ [LL03]. (By
∧

L we denote
the conjunction of all elements ofL, and

∨
R(L) is understood in an analogous way.)

Theorem 1 (Theorem 1 in [LL03]). For any DPΠ and any setX of atoms,X is an
answer set forΠ iff X is a model ofComp(Π)∪LF (Π) whereLF (Π) stands for the
set of all loop formulas for the program.
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3 Theoretical Basis for Modifications

Based on Theorem for Tight Programs for the large class oftight programs answer sets
for a tight program are the same as the models of its completion, and hence SAT solvers
can play the role of answer set enumerators. Checking the existence of an answer set
for a tight disjunctive program forms an NP-complete decision problem as in the non-
disjunctive case.

For the class of nontight nondisjunctive programs [LZ02] proposed a SAT based
ASSAT algorithm that employed a loop formula concept.

ASSAT procedure [LZ02]:

1 LetT be the Completion ofΠ — Comp(Π)
2 Find a modelM of T . If there is no such model then terminate with failure.
3 If M is an answer set, then exit with it.
4 Find a loopL, such that its loop formulaFL is not satisfied by the current model.
5 LetT beT ∪ FL and go back to step 2.

In [GLM04] the authors proposed the modification toASSAT procedure by allowing
more flexible use of SAT solvers. The authors first considered standard SAT Davis-
Logemann-Loveland (DLL) procedure [DLL62]. Once the completion of the program
is calculated, DLL procedure is applied on it. DLL generates models of completion if
applied with no changes. [GLM04] addedtest part into DLL procedure for verifying
whether a generated model of the completion is an answer set. In case whentest gives
a negative result control is given back to DLL, and it proceeds with the search for the
next model. The main advantage of this approach in comparison withASSAT algorithm
is avoiding the overhead of initialising the search tree of the SAT solver each time when
test is performed with the negative result. We refer to this approach as generate and test
algorithm.

With the definitions of completion and loop formula for disjunctive programs pro-
posed in [LL03] we can adapt both former mentioned algorithms to a broader class of
disjunctive programs.

In order to implement these procedures we first need to answer two questions:

1 How to verify if the modelM is indeed an answer set?
2 How to find a loop formula which does not satisfy modelM whenM is not an

answer set?

The answer to the first question lies in the minimality requirement of the definition
of an answer set, i.e. setX of atoms is an answer set for a programΠ if X is minimal
among sets of atoms that satisfy the reductΠX . Let Π be a DP, andM be a set of
atoms satisfyingΠ. It trivially follows from Lemma 3i [EL03] thatM satisfies the
reductΠM . Consider the formulaF to be of the formΠM ∪M− ∪ ¬M , where (i) by
ΠM we denote the reduct ofΠ underM such that its rulesA← Body are represented
as material implication

∧
Body ⊃ A; (ii) M− denotes the conjunction of negation of

the atoms inΠ that do not belong toM ; and (iii) by¬M we denote the negation of the
conjunction of atoms inM . Based on the definition of an answer set, if formulaF is
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satisfied by some modelM ′ (note thatM ′ ⊂M ), thenM is not an answer set ofΠ. We
may now defineminimality tset procedure on programΠ and model of its completion
M . First, formulaF is computed asΠM ∪M− ∪¬M . Then SAT solver is invoked on
clausified formulaF . Last if F is unsatisfied then the verified modelM is indeed an
answer set ofΠ otherwise some model ofF is returned. The minimality test procedure
is similar to the one introduced in [JNSY00].

In described minimality test procedure, SAT solver is used for the model verification
step. The idea of using SAT solvers for this task is introduced in [KLP03] where the
concept ofunfounded-free models of non-nested disjunctive programs is explored. This
approach allows using some modularity property of the program, that permits splitting
verification step on the whole program into verification on its parts. The algorithm in
Figure 6 [KLP03] also makes use of the fact that minimality check can be performed in
polynomial time for the class ofhead cycle free programs. Important future work is to
explore how this approach can be extended to the case of nested disjunctive programs.

The answer to the second question ”How to find a loop formula which does not
satisfy modelM whenM is not an answer set? ” lies in the following definitions and
Proposition 1.

Definition 1. LetΠ be a DP, andM a model ofΠ. We call some ruleA← Body ∈ Π
supporting atoma under setM if A ∩M = {a}, andM |= Body.

The definition below and proposition are closely related to Definition 3, and Theorem
2 given in [LZ02] for nondisjunctive programs.

Definition 2. LetΠ be a DP,M a model ofComp(Π), andM ′ a model ofΠM , such
that M ′ ⊂ M . We say that a loopL of Π is a maximal loop underM \M ′ if L is a
strongly connected component ofGM\M ′ , whereGM\M ′ is a subgraph of the positive
dependency graph ofΠ induced byM \M ′. A maximal loopL underM \M ′ is called
a terminating one if there does not exist another maximal loopL1 underM \M ′ such
that for somep ∈ L andq ∈ L1, there is a path fromp to q in GM\M ′ .

Proposition 1. LetΠ be a DP,M a model ofComp(Π), andM ′ a model ofΠM , such
thatM ′ ⊂M . There must be a terminating loop ofΠ underM \M ′. Furthermore,M
does not satisfy a loop formula of any of the terminating loops ofΠ underM .

Based on this proposition and already mentioned minimality test procedure we may
outline the answer to the second question posed. LetΠ be a DP andM a model of
completion such that it is not an answer set ofΠ. In order to find a loop formula ofΠ
unsatisfied byM , we first find modelM ′ of formulaΠM ∪M− ∪ ¬M , and second
look for a terminating loop ofΠ. Once such loop is found we compute its formula.

4 Details on the Modified Algorithms and the Implementation

Our implementation is enhanced to identify tightness feature of a disjunctive program.
In case when a program is tight the system performs completion procedure on the pro-
gram at first and uses SAT solver for enumerating its answer sets avoiding use of min-
imality test procedure on the models. This way we allow efficient use of SAT solvers
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in ASP, by analysing program syntactically and identifying in advance disjunctive pro-
gram involving lower computational complexity.

For the case of nontight disjunctive programs we base our modifications toASSAT

algorithm on the minimality test procedure and Proposition 1. Modified algorithm fol-
lows:

DP-assat-Proc

1 LetT be the Completion ofΠ — Comp(Π)
2 Invoke a SAT solverSAT-A to find a modelM of T . If there is no such model then

terminate with failure.
3 Invoke a minimality test procedure on programΠ, and modelM with the SAT

solverSAT-B to find a modelM ′. If there is no such model then exit with an answer
setM . If there is modelM ′ thenM is not an answer set ofΠ.

4 Build the subgraphGM\M ′ of positive dependency graph ofΠ induced byM \M ′.
Look for terminating loopL underM \M ′ in GM\M ′ . 1

5 LetT beT ∪ FL, whereFL is a loop formula ofL and go back to step 2.

The algorithm utilises a SAT solver not only for finding models of completion but
also for verifying whether a found model is an answer set. We expect the verification of
model’s minimality time not to exceed greatly the time of finding the model itself. First
a set of clauses for this step is smaller, and second it is restricted by a model itself, in a
sense that the negations of the atoms that do not belong to the model are added as unit
clauses.

In the worst caseDP-assat-Proc requires computing exponential number of loop
formulas and hence brings the exponential grows to formulaT passed to a SAT solver
in Step 2. In following algorithmDP-generate-test-enhanced-Proc we address this prob-
lem by controlling the grows of formulaT . There we add to the completion only one
clause implied by a computed loop formula, instead of a loop formula itself.

Adapted generate and test algorithm from [GLM04] to the case of nontight disjunc-
tive programs follows:

DP-generate-test-Proc

1 Compute completion ofΠ — Comp(Π)
2 Initiate the SAT solverSAT-A with the completionComp(Π). Invoke DLL to find

a modelM of Comp(Π). If there is no such model then terminate with failure.
3 The same as Step 3 ofDP-assat-proc.
4 Return control to theSAT-A procedure DLL for finding next modelM of the com-

pletion. If there is no such model then terminate with failure. Go back to Step 3.

State-of-the-art SAT solvers are enhanced by the ability of performing not only simple
backtracking within DLL procedure but also backjumping and learning if they are pro-
vided with a certain clause. Backjumping and learning techniques made it possible for

1 Note thatGM\M′ can be simplified by removing edges between the nodes of the graph that
do not correspond to any rules in the reductΠM . The note is due to Liu Lengning and Mirek
Truszczynski’s observation.
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the area of SAT solving to gain a great boost in the performance in the last decade. By
supporting these features of modern SAT solvers we should gain the most pay-back in
applying SAT based search in answer set programming. We analyse the notion of a loop
formula and retrieve a necessary clause from it that allows us to enhance SAT solver
inner computation.

DP-generate-test-enhanced-Proc

1-3 These steps are the same as Steps 1-3 inDP-generate-test-Proc
4 The same as step 4 inDP-assat-proc.
5 Calculate a clauseCl implied byFL such thatM 6|= Cl.
6 Return control to theSAT-A procedure DLL by givingCl as a clause to backjump

and learn. Find next modelM of the completion. If there is no such model then
terminate with failure. Go back to step 3.

Note that although in the worst caseDP-generate-test-enhanced-Proc requires com-
puting exponential number of loop formulas, a SAT solver may still work in polynomial
space if it periodically deletes learned clauses. Within our implementation SAT solver
SIMO performs this operation. Due to the fact that DLL procedure ofSIMO at Step 6
continues to explore the same search tree we are guaranteed not to find the same models
again.

It is worth to mention implementation details of the minimality test procedure, i.e.
step 3 of the above algorithms. Let us first notice that for programΠ and its modelM ,
program’s reductΠM is equivalent toΠ+ ∪ (Π \ Π+)M where byΠ+ we denote a
part of the program whose rules (1) contain emptyF . For programs whoseΠ+ part is
relatively large this observation may help to improve the performance of the minimality
test procedure. SAT solverZCHAFF permits in addition to storing permanent database
of clauses, also adding and deleting clauses on demand. Thus we take clauses corre-
sponding toΠ+ to be a permanent database of clauses for some programΠ and at first
invocation ofZCHAFF initialise it with Π+. Once we need to verify minimality of the
modelM we temporally add clauses(Π \ Π+)M ∪M− ∪ ¬M to ZCHAFF database
and search for models of such formula. Afterwards the temporally added clauses are
deleted. By using these advanced features of SAT solverZCHAFF we sometime may
avoid repeating initialisation of large part of the formula corresponding toΠ+ needed
for models’ minimality verification.

5 Syntax ofCMODELS

So far we presented the algorithms for the case of disjunctive programs that contain
rules of the form (1). Our implementation – systemCMODELS – uses the program
LPARSE--dlp-choice for grounding disjunctive logic programs. The input ofCMODELS

may include rules of three types. It allows(i) non-nested disjunctive rules,(ii) choice
rules that have the form

{A0, ...Ak} ← A1, . . . , Al, not Al+1, . . . , not Am (7)
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% Sample graph encoding, i.e.,
% graph contains 3 nodes, and 3 edges:
% edges between nodes 1 and 2, 2 and 3, 3 and 1.
node(1..3). edge(1,2).edge(2,3).edge(3,1).
% Declaration of three colors
col(red). col(green). col(blue).
% Disjunctive rule: stating that node has some color
colored(X,red) | colored(X,green) | colored(X,blue) :- node(X).
% Neighboring nodes should not have the same color
:- edge(X,Y), colored(X,C), colored(Y,C), col(C).

Fig. 1.Encoding of 3-colorability problem for grounderLPARSE: 3-col.lp

whereAi are atoms, and(iii) weight constraints of the form

A0 ← L[A1 = w1, . . . , Am = wm, not Am+1 = wm+1, . . . , not An = wn] (8)

whereA0 is an atom or the symbol⊥; A1, . . . , An are atoms; andL (lower bound), and
w1...wn(weights) are integers.

The concept of an answer set for programs containing rules (7,8) was introduced
in [NS00]. The original rules which are given to the front endLPARSE --dlp-choice
are more expressive. They allow lower and upper bounds for choice rules and upper
bounds for weight rules. They also allow use of literals in place of atoms. (Aliteral is
a propositional atom possibly preceded by the classical negation symbol¬.) LPARSE

--dlp-choice uses auxiliary variables and translates all the rules to the forms specified
above. Internally inCMODELS, choice rules are translated into nondisjunctive nested
rules, while weight constraints are translated with the help of auxiliary variables [FL05].

Note thatCMODELS is the first answer set programming system that allows use of
disjunctive and choice rules simultaneously.

6 Experimental Analyses

First we provide the details on the performance of systemCMODELS in the case of tight
disjunctive programs [Lie05]. Such programs are of lower computational complexity
than disjunctive programs in general, but nevertheless wide class of programs is tight
and demonstrating these results is in favour of the described SAT based answer set
programming approach.

Figure 1 presents the tight disjunctive program3-col.lp based on the encoding of 3-
colorabilty problem provided at theDLV web site. Program3-col.lp can be written as the
program with choice rule in place of disjunctive rule supported by systemsSMODELS,
SMODELScc [WS04] andCMODELS. This allows us to find answer sets of the program
also by means of nondisjunctive answer set programming.

For experimental analyses we used the encoding of the 3-colorability problem as
in Figure 1 on Simplex graph instances. We compared the performance of systems
CMODELS, DLV , andGNT on disjunctive program and alsoSMODELS, SMODELScc and
CMODELSon choice rule encoding of a problem. The experiments were run on Pentium
4, CPU 3.00GHz and presented in Figure 2.
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sim- lparselparsecmodelscmodelscmodelscmodelssmodelsCCsmodels dlv.5 gnt
plex mchaff mchaff zchaff simo 02.23

disj disj choice disj disj choice choice disj disj
30 0.04 0.05 0.09 0.12 0.05 0.06 0.07 0.31 0.63 1.47
60 0.19 0.24 0.31 0.39 0.25 0.28 0.37 7.85 9.72 26.73
120 0.84 1.08 1.22 1.54 0.97 1.54 1.47 138.48196.36442.31
240 3.38 4.16 5.22 6.24 4.09 13.63 6.30 - - -
360 7.56 10.60 11.44 14.45 9.16 52.36 14.52 - - -
480 13.69 17.25 20.11 25.97 17.16 175.08 27.99 - - -
600 21.58 27.33 35.32 47.02 27.04 369.50 48.03 - - -

Fig. 2. CMODELS, DLV , GNT on disjunctive programs versusCMODELS, SMODELScc andSMOD-
ELS on programs involving choice rules

The number in the first column characterising the instances stands for the number
of levels in the simplex graph, respectively. The other columns represent the running
times of the systems in seconds. ”-” stands for the fact that the system was not able to
conclude on the test problem within 30 minutes cutoff time.

The second column demonstrates that the ground disjunctive program is smaller
than the corresponding ground program with the choice rules, due to more econom-
ical LPARSE encoding.CMODELS on disjunctive programs takes an advantage of a
smaller ground program by producing fewer clauses and performing the search faster.
CMODELS using SAT solverZCHAFF2 outperforms all other answer set programming
systems.SMODELScc performance is comparable with the performance ofCMODELS

usingMCHAFF7 on choice encoding.SMODELScc employs the similar heuristic in its
search procedure as SAT solverMCHAFF. It is also worth to notice thatCMODELSusing
SIMO3 is by the order of magnitude slower thanCMODELS usingZCHAFF even though
the underlying algorithms of both SAT solvers are similar. Capability of using different
search engines may prove to be useful in practical applications.

For experimental analysis of the systems’ performance on the nontight programs
we shall specify the algorithmic differences of SAT solvers invocations. Algorithm
DP-assat-Proc is implemented inCMODELS using SAT solverMCHAFF in Step 2 of
the procedure. On the other hand algorithmDP-generate-test-enhanced-Proc is imple-
mented inCMODELS with SAT solverSIMO or ZCHAFF invoked in place ofSAT-A
in the procedure. In case ofDP-generate-test-enhanced-Proc implementation in Step 6
of the algorithm when control is given back to the SAT solverSIMO or ZCHAFF their
behaviour is slightly different.SIMO continues its work with the same search tree it
obtained in previous computations, whileZCHAFF starts building a new search tree.

The next experiment that we show is the case of nontight disjunctive 2QBF bench-
mark. The problem isΣp

2 -hard. The encoding and the instances of the problem where
obtained at the web-site of Logic and Artificial Intelligence Laboratory of the Univer-
sity of Kentucky4. Figure 3 presents the results. The experiments were run on Pentium

2 http://www.princeton.edu/ ∼chaff/
3 http://www.star.dist.unige.it/ ∼sim/simo/
4 http://www.cs.uky.edu/ai/benchmark-suite/
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instancesatisfia-dlv.5.02.23cmodels cmodels cmodels gnt2
bility mchaff zchaff simo

qbf7 SAT 15.67 0.01 (23)0.01 (16) 0.14 (5) -
qbf8 SAT 92.45 0.01 (23)0.01 (5) 0.09 (4) -
qbf9 SAT 7.50 0.01 (33)0.01 (12) 0.09 (5) 25.77
qbf1 UNSAT 19.81 0.21(10) 0.01 (16) 0.01 (37) 0.001
qbf2 UNSAT 5.43 - 823.98 (19928) 239.68 (26523)1466.30
qbf3 UNSAT 5.27 - 1779.28 (28481)193.69 (21260)-
qbf4 UNSAT 6.83 memory 10.55 (137) 33.64 (663) -

Fig. 3. CMODELS usingMCHAFF, ZCHAFF, SIMO vs. DLV , andGNT on 2QBF benchmark

4, CPU 3.00GHz. The columns 3 through 7 present the running times of the systems
in seconds with 30 minutes cutoff time. Number in parenthesis specifies how often
CMODELS invoked the minimality test procedure during its run. In case of satisfiable
instances of the problem we can clearly see the payoff in using systemCMODELS in
place of other disjunctive ASP solvers. It is faster thanDLV by several orders of magni-
tude. The picture changes when unsatisfiable instances of the problem come into play.
Implementation ofDP-assat-Proc reaches time limit twice and in case of one instance
reaches the memory limit. Implementation ofDP-generate-test-enhanced-Proc shows
better results but as a rule is slower thanDLV running time by two orders of magnitude.
If we pay attention to the number of minimality test procedure invocations, the slow
performance is then not surprising. The number of models of completion is large in
case ofqbf2, qbf3 instances which are unsatisfied and hence all models found by the
SAT solver must be verified and denied by the minimality test procedure.

The last experiment that we demonstrate is the case of nontight disjunctive Strategic
Company benchmark. The problem isΣp

2 -hard. We used the encoding and the instances
of the problem provided by the benchmark system for answer set programming – As-
paragus5. Figure 4 presents the running times of the answer set programming system
obtained from Asparagus that uses machine AMD Athlon 1.4GHz PC with 512MB
RAM and cutoff time 15 minutes while running the experiments. All given instances
are satisfiable. In case of strategic company benchmark there is no clear winner in the
performance, butGNT andDLV are in general faster.

7 Proofs

Lemma 1. LetΠ be a DP,M be the model ofComp(Π). If a ∈M then there must be
a supporting ruleA← Body in Π for a underM .

Proof. From the completion construction there must be a clause

a ⊃
∨

A←Body∈Π, a∈A

(Body ∧
∧

p∈A\{a}

¬p)

5 http://asparagus.cs.uni-potsdam.de/
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inst- dlv.4 gnt2 cmodelscmod-scmod-s inst- dlv.4 gnt2 cmodelscmod-scmod-s
ance 5.23 zchaff mchaff simo ance 5.23 zchaff mchaff simo
160.1 0.64 1.08 0.33 0.40 0.34 125.45 9.03 41.02 - - -
160.3 0.87 1.23 0.34 0.40 0.34 105.38 15.55 79.99 315.41 404.72 580.23
75.37 0.51 6.78 1.20 2.49 1.49 155.0 26.15 16.56 - - -
150.2 6.6641.25 1.52 2.10 5.04 135.11 49.01 8.00 191.89 62.25 577.12
150.26 2.24 5.64 5.99 27.04 14.27 155.3 144.00188.14 43.11 755.12 215.46

Fig. 4. CMODELS using ZCHAFF, MCHAFF, SIMO vs. DLV , GNT on Strategic Company bench-
mark.

in Comp(Π). This clause is satisfied byM and therefore there exists at least one rule
A← Body such thata ∈ A, M |= Body, andA∩M = {a}. Such rule is a supporting
rule fora underM .

Lemma 2. LetΠ be a DP, set of atomsM |= ΠM , set of atomsM ′ |= ΠM , such that
M ′ ⊂M . Any supporting rule of atoma ∈M \M ′ underM contains some atomb in
its body such thatb ∈M \M ′ .

Proof. Suppose there exists supporting ruleA ← B,F of the form (1) of atoma ∈
M \M ′ underM such thatB does not contain any atomb ∈ M \M ′, in other words
B ⊆ M ′. M |= B,F by definition of a supporting rule, hence ruleA ← B,FM ∈
ΠM , whereFM is a conjunction of>’s. We are given thatM ′ |= ΠM , henceM ′ |=
A ← B,FM . SinceB ⊆ M ′, M ′ |= B,FM henceM ′ |= A anda ∈ M ′. Here we
derive to contradiction.

Lemma 3. Let Π be a DP,M be a model ofComp(Π), set of atomsM ′ |= ΠM ,
such thatM ′ ⊂ M . LetGM\M ′ be a subgraph of the positive dependency graph ofΠ
induced byM \M ′. Then for anya ∈M \M ′, there must be maximal loopL ⊆M \M ′
and for someb ∈ L, there is a directed path froma to b in GM\M ′ .

Proof. From Lemma 1 each atoma ∈ M \M ′ has a supporting rule underM . From
Lemma 2 it follows that each supporting rule ofa ∈M \M ′ has an atomb ∈M \M ′

in its body. From the construction ofGM\M ′ for eacha ∈ M \M ′ there must be an
arc(a, b) whereb ∈M \M ′. a is any node andGM\M ′ has finite number of nodes, so
this must lead to a cycle and thus to a strongly connected componentL reachable from
a. By definitionL is a maximal loop underM \M ′, and henceL ⊆M \M ′.

Proposition 1. Let Π be a DP, M a model of Comp(Π), and M ′ a model of ΠM , such
that M ′ ⊂M . There must be a terminating loop of Π under M \M ′. Furthermore, M
does not satisfy the loop formula of any of the terminating loops of Π under M .

Proof. Let GM\M ′ be a subgraph of the positive dependency graph ofΠ induced by
M \M ′. From Lemma 3 it follows that there exists maximal loop inGM\M ′ . Clearly,
if there exists a maximal loop in a graph then there exists a terminating loop. AssumeL
is a terminating loop ofΠ underM \M ′. Its loop formula is of the form (5). Suppose
that the modelM satisfies the loop formula ofL. There exists at least one rule of the
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form (1) —A← B,F , whereA ∩ L 6= ∅, andB ∩ L = ∅, such that

M |= B,F ∧
∧

p∈A\L

¬p

AssumeA← B,F is such a rule. There are two cases:

1 (M \M ′) ∩ B 6= ∅. Let b be an atom such thatb ∈ (M \M ′) ∩ B. Atom b 6∈ L
due to the conditionB ∩ L = ∅ onA← B,F .
By Lemma 3 there must be maximal loopL1 such that there is a directed path from
b to some atoml ∈ L1. L1 must be different fromL, sinceb 6∈ L. A∩L 6= ∅ is the
condition onA← B,F . Let atoma be an atom such thata ∈ A∩L. FromGM\M ′

construction node corresponding to atoma has an edge to node corresponding to
atomb, and hence has a directed path tol. This contradicts to our assumption that
L is terminating.

2 (M \M ′) ∩ B = ∅. HenceB ⊆ M ′. M |= B,F from the assumption, and hence
A← B,FM ∈ ΠM , whereFM is the conjunction of>. We are given thatM ′ |=
ΠM thereforeM ′ |= A← B,FM . M ′ |= A must hold sinceB ⊆ M ′ . From our
assumptionM |=

∧
p∈A\L

¬p, and givenM ′ ⊂ M we derive thatM ′ |=
∧

p∈A\L
¬p.

From conclusions that (i)M ′ |= A and (ii) M ′ |=
∧

p∈A\L
¬p we deriveM ′ |= a,

such thata ∈ A ∩ L. HenceL ∩M ′ 6= ∅. This contradicts to our assumption that
L ⊆M \M ′.

8 Conclusions

SystemsASSAT and CMODELS are the implementations that demonstrated promising
experimental results of the SAT based approach for the case of nondisjunctive programs.
In this work we described the theoretical background for the extending the implemen-
tation to the case of disjunctive programs as well as provided the implementation itself.
Preliminary experimental results support the evidence that the approach may promote
the use of disjunctive answer set programming in practice. Our implementation at the
same time introduced the new feature among current answer set programming systems
as allowing to use disjunctive and choice rules in the same programs.
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