
Evaluating Autonomous Controllers:
An Initial Assessment

Pablo Muñoz1, Amedeo Cesta2, Andrea Orlandini2, and
Maŕıa Dolores R-Moreno1

1 Universidad de Alcalá, Alcalá de Henares, SPAIN,
{pmunoz,mdolores}@aut.uah.es

2 ISTC-CNR – Italian National Research Council , Rome, ITALY
{amedeo.cesta,andrea.orlandini}@istc.cnr.it

Abstract. This work describes the progress of a research line started
two years ago that aims at creating a framework to assess the perfor-
mance of planning-based autonomy software for robotics. In particular it
focuses on an open problem in the literature: the definition of a method-
ology for fairly comparing different approaches to deliberation, while
synthesizing a tool to automate large test campaigns for different auton-
omy architectures under the same robotic platform. We have produced a
framework, called OGATE, that supports the integration, testing and op-
erationalization of autonomous robotic controllers. It allows to run series
of plan execution experiments while collecting and analyzing relevant pa-
rameters of the system under a unified and controlled environment. The
software platform supports also for the definition of different metrics for
evaluating different aspects of a plan-based controller. This paper, first
presents the framework capabilities and the methodology to support ex-
periments, then, briefly describes an autonomous controller that follows
a timeline-based deliberation, and finally presents some results obtained
exploiting OGATE to perform tests to analyze the performance of the
controller over a targeted robot.

1 Introduction

Modern robotics platforms are becoming increasingly sophisticated and capa-
ble. The deployment of Artificial Intelligence (AI) planning technologies for
robotic autonomy is considered an important technological advancement to en-
dow robots with enhanced abilities once addressing real world scenarios. In this
regard, the interleaving of automated planning and execution is a crucial ref-
erence problem for Planning and Robotics research communities. Focusing on
the literature in autonomous controllers, we can observe several approaches em-
ploying different technologies for planning and execution – see [10, 2, 3, 18, 22]
for some examples.

One limitation in current research that is shared by different research initia-
tives is the rather specific validation methodologies, experimental settings and
assessment analysis usually performed in a manner that is hardly exportable and



scarcely reproducible on different platforms. This lack of methodology leads to
perceive the different evaluations more like a “proof of concept” [8] for specific
case studies. Then, an interesting open issue consists in defining an evaluation
methodology for autonomous controllers capable of being exportable and repro-
ducible with different plan-based schemes for autonomous robotics so as to allow
comparisons on the basis of common reference points.

The authors current research initiative is dedicated to the design and de-
velopment of a software framework to support and facilitate the deployment
of control architectures for robotics platforms [17]. In general, the aim is to
address the above mentioned open issue by means of the combination of both
(i) a research effort to discriminate the key factors in planning and execution
in order to evaluate the performance of a generic autonomous controllers and
(ii) an engineering effort to identify requirements to design and implement a
general purpose environment to support testing and validation for plan-based
autonomous robotics platforms. This paper reports on the current progress of
this initiative aiming at providing a well defined methodology and a software
framework to assess the performance evaluation of autonomous controllers. In
particular, we have defined a methodology that is operationalized in a general
and domain independent software framework, called On-Ground Autonomy Test
Environment (OGATE), that allows to define relevant metrics according to spe-
cific evaluation goals, to define a set of application scenarios to be exploited in
order to evaluate autonomous controllers over actual robotic platforms or asso-
ciated simulators under controlled and reproducible experimental conditions.

Related Works. Evaluating and characterizing autonomous controllers have been
investigated in different perspectives. On the one hand, there are theoretical
works that aim to define the relevant parameters to measure for an autonomous
system [1, 12] and those who try to create valid methodologies for the test-
ing process [13, 11]. On the other hand, there are robotics competitions which
allow us to compare different solutions for the same problem with different plat-
forms/controllers [21, 5]. Notwithstanding the relevance of such works, they are
mainly focused on functional capabilities and exploit really specific evaluation
criteria [19, 16], while others rely on expensive or exclusive robotic platforms. In
any case, the complexity of exploiting these systems in automated test campaigns
remains an open issue.

Paper structure. The rest of the paper is structured as follows. First, we present
a set of general metrics applicable to plan-based autonomous controllers and
our proposed methodology to deal with their evaluation. In the next section we
provide a general view of the OGATE tool, that is able to perform automatic
campaigns to evaluate autonomous controllers. A planetary exploration case
study and the robotic platform employed to assess experimental campaigns are
presented. Then, considering an autonomous controller in the specific case study,
we present and discuss the evaluation of the performance of such controller as
a function of the considered metrics within OGATE. Finally, some conclusions
end the paper.



2 Evaluation of autonomous controllers

One of the contribution of the paper is to define a general evaluation methodology
for supporting the assessment process of autonomous controllers when applied
to a robotics platform. In this regard, a sequence of evaluation steps has been
identified and is discussed in the following.

In general terms, given an autonomous controller to be assessed, a set of
evaluation objectives should be isolated and some specific performance metrics
should be identified and defined accordingly. Then, a set of suitable tests should
be defined and performed so as to collect relevant information constituting a
quantitative basis for the evaluation process. Finally, a synthetic view of mea-
surements should be generated, e.g., through PDF reports, to point out the
performance of the controller according to the evaluation objectives and metrics
defined in the first phase. More in detail, the methodology proposed to analyze
and evaluate autonomous controllers can be thought as the composition of three
sequential phases: evaluation design, tests execution and, report and assessment.

Evaluation Design. First, it is required to identify which is the evaluation
objective. In fact, according to the evaluation target different aspects may result
relevant (or not). For instance, measuring the deliberation time or considering
the number of dispatched goals in different scenarios could provide relevant in-
formation about the behavior of the autonomous controller. In this case, very
specific parameters can be considered and analyzed. More in general, a set of
parameters applicable to any deliberative system should be considered in order
to enable also the possibility to compare performance of different control systems
in the same operative scenario.

According to evaluation objectives, a metrics definition task is to define
parameters that should be measured during execution. This is key as the result of
the evaluation strongly depends on the selected metrics. It is important to define
(at least) a small set of metrics that can be applicable to different autonomous
controllers. Later in the paper, we will provide a set of general applicable metrics
which we exploit in our experiments to assess performance evaluation.

Then, the definition of different scenarios and configurations to be
tested should be implemented. The scenarios can be defined as the set of con-
straints and goals that the autonomous controller takes as input. However, to also
deal with uncertainty, scenarios should be defined considering external agents
that can dynamically generate additional goals or possible failures that may
occur during execution. Such scenarios definition requires advanced capabilities
such as replanning and failure recovering schemes. More than one scenario can be
defined in order to investigate the behavior of the autonomous controller under
different conditions. We consider three general cases with which an autonomous
controller shall deal: (i) nominal execution, when everything goes as expected;
(ii) dynamic goal injection, an extension of the nominal execution in which
one or more goals are dynamically included during the system operation; and (iii)
execution failure, when some components of the system induce a not nominal



behavior so as to force the controller adapting its plan to overcome the contin-
gency. Failures in that case can be due to external perturbations, mechanical
failures or degradation of the system over time.

Tests Execution. Performing tests entails the execution of each scenario that is
to be monitored. Typically, uncertain and/or uncontrollable tasks are part of the
problem, so, each scenario should be performed several times, to collect average
behaviors and metric values.

In this regard, a scenario instantiation step is required to generate the set
of models needed to define a suitable set of planning domains and required goals.
Also, autonomous controllers can be deployed with different internal settings
and, thus, scenarios instantiation should consider also to enable the execution
of tests under different conditions.

Then, actual tests execution is needed. This is an important step for in-
stantiating, executing, monitoring and collecting the data after several execu-
tions of an autonomous controller in a given scenario. During the tests execution
modifications of the nominal execution should be considered, by automatically
injecting goals or failures to also test not nominal scenarios.

Report and Assessment. Once all the tests are completed, a report on the
information gathered during the several executions shall be provided. Reports
contains an insight of the controller behaviors, providing values for each metric
as well as generating compact views, e.g., by means of graphical representations
to support the users while analyzing system performances.

In fact, the information provided within reports is to inform users and enable
a performance assessment allowing an objective evaluation of the control
architecture in the different considered scenarios. After execution, a huge amount
of generated data is expected and then a general representation for the data
produced is to be defined.

2.1 Metrics definition and graphical report

Definition and presentation of metrics deserve a more detailed discussion and,
in the following, a detailed formalization is provided. In the above methodology,
a set of metrics M is considered, being a metric denoted as µi ∈M and defined
in a range µlb

i ≥ µi ≥ µub
i with µlb

i and µub
i are (respectively) the lower and

upper bounds for the i metric. Also, for each metric an extra parameter is to
be considered, i.e., the weight, µW

i , that represents the relevance of the metric
within the global evaluation. Considering the size of M (i.e., the number of
defined metrics) as n, the sum of all weights is supposed to be 100:

n∑
i=0

µW
i = 100 (1)

After execution, the average value for each measured metric, µV
i , is considered

in the report and this value is considered to compute a metric score µS
i as follows:



µS
i =

[
100−

(
100

|µub
i − µlb

i |
· µV

i

)]
· ε

C

εT
(2)

considering that the upper bound of the metric is the worst score. If the metric
value is out of the defined range, its score is 0. Last factor, εC/εT , expresses
the impact of execution failures in the metrics scores, being εC the number of
correct executions and εT the total runs.

In order to objectively evaluate and compare autonomous controllers we need
to use a common set of metrics. In this way, for the evaluation presented in
this paper we have gathered the following metrics that can be measured in any
autonomous controller:

Operational time. Is the time spent by each part of the controller to update its
internal state and schedule its goals for execution

Goal processing time. The time required for each part of the controller to analyze
what are its particular objectives.

State processing time. Is the time required by each part of the controller to
analyze the incoming information from other part of the system, such as the
sensors or other layers states required to evaluate its own status.

Deliberation time. Is the time spent by the controller in generating a long-term
plan to achieve its goals.

In the current metrics set presented before we are not taking into consideration
the execution time as part of the evaluation. However, it is possible to define
metrics in which the execution time is relevant (as a factor of the µS

i ).

It is worth underscoring that we are not measuring the time that the functional
layer takes to complete the actions: our methodology is focused on the delib-
eration and executive capabilities of a controller. Also, some highly specialized
works are focused on analyze the functional support –i.e. [8].

Graphical report. As stated before, a suitable way to provide reports is by
means of graphical representations. For example, in Autonomous Levels For
Unmanned Systems (ALFUS) [16] and Performance Measures For Unmanned
Systems (PerMFUS) [12], a three axis representation based on the mission and
environment complexity and human independence is presented.

In a similar way, here, a circular graphic representation, such as the one de-
picted in fig. 1, is proposed to represent the autonomous controller performance.
Such representation presents three different areas. Namely, starting from the
center, the Global Score (GS), the execution times and the metrics scores area.

The Global Score (GS) presented in the center of the figure represents a
synthetic evaluation for the architecture in a scale between 0 and 10, that can
be compared with the Sheridan’s model [20]. In that model, the score increases
with the level of autonomy demonstrated by the controller, being 10 a fully
autonomous system. In our evaluation, a higher score represents a better evalu-
ation as a function of the defined metrics. To compute the GS value, only metrics



Fig. 1. The OGATE graphical report.

scores are considered, being the score directly proportional to the filled area of
the ring, and computed as follows:

GS =

∑n
i=0

(
µS
i · µW

i

)
1000

(3)

Surroundings the GS area, three circular bars are depicted. These bars rep-
resent the average time required by the considered autonomous controller to
complete each scenario. Starting from the center, these bars represent: the ex-
ecution time in (i) nominal execution, (ii) in dynamic goal injection and (iii)
execution failures.

Finally, the external ring in the chart is decomposed into four quadrants.
The smallest circumference of the ring represents the smallest score for a metric
(µS

i = 0, when the metric score is equal or bigger to its upper bound), while the
outside circumference is the best value (µS

i = 100, or a metric value closer to the
lower bound). In each quadrant there are one or more metric scores represented
as a filled circular sector. So, depicting a metric requires metric weight (µW

i

provided by the user) and metric score (µS
i obtained from the execution using

eq. 2). As a result, the higher is the weight of the metric and its score, the higher
is the filled area of the ring. Then, a evaluation with a GS of 10 is this one in
which the metrics score fills all the ring.

This methodology constitutes a generic and reproducible process to evaluate
autonomous controllers while considering varying execution scenarios. In this
regard, the definition of metrics, i.e., weights, bounds and experimental cases,
is the basic step on which rely to reproduce the evaluation results. Also, with
the proposed minimal metrics set and graphical representation, we can analyze
and compare different aspects of controllers performance in an straightforward
manner.



3 The OGATE framework

Autonomous controllers are often tested using hand tailored testbenchs. Such ef-
forts require a great work that is specifically done for the controller and platform
under study and, thus, hardly exportable and reproducible.

OGATE constitutes an engineering effort that, taking advantage of the re-
search effort described above, aims to facilitate the definition, execution and
reporting of large testbenchs that can be shared and reproduced between dif-
ferent researchers. In this regard, OGATE is a testing environment that can
be exploited in order to implement a suitable sequence of evaluation steps for
supporting the objective assessment of autonomous controllers.

To achieve these objectives OGATE provides services for instantiating, ex-
ecuting and monitoring the required components of an autonomous controller,
while generating reports after tests execution with the collected information un-
der a unified and controlled environment. Furthermore, OGATE also constitutes
an interactive tool to help designers and operators of autonomous controllers
providing an interface for in-execution control and inspection of the controlled
system during execution.

Figure 2 provides a conceptual vision of the OGATE system in which the
three relevant modules that constitutes the framework are depicted. These mod-
ules are directly related to the main services provided: instantiation is responsi-
bility of the Mission Specification module, while execution and monitor are car-
ried out by the Mission Execution. Finally, the Graphical User Interface (GUI)
enables the user to interact with the system in a friendly manner, trying to
encapsulate the complexity of the controlled system.

When we have defined the tests objective, metrics and the controller to eval-
uate, we need to provide OGATE the required information that enables the
system to attach the different configurations of the controller under study, the
scenarios and the relevant parameters to measure. This is done by means of
an eXtensible Markup Language (XML) configuration file that can be created
within the OGATE GUI. The tool is general and does not provide the metrics to
measure, is responsibility of the user to define them. In OGATE the metrics are
represented by its name and the required values to perform the evaluation pre-
sented previously –at least the value range, relevance of the metric in the final
evaluation and position in the graphical report. The configuration of the au-
tonomous controller entails some engineering knowledge of the controller, while
configuring the scenarios –goals and metrics– is more related to operators and
planning experts skills. Also, the platform (real or simulated) exploited for the
tests shall be properly provided.

A particular capability of the OGATE system is the possibility of automat-
ically generate different scenarios and controller configurations by exploiting a
template schema. In the OGATE configuration file it is possible to define dif-
ferent parameters –i.e goals, initial conditions among others– as templates, and,
for each template, provide a set of instances. Before execution, OGATE is able
to combine all instances possibilities to automatically attach the configuration
files to create different scenarios and configurations to be tested.



Fig. 2. OGATE concept.

With the information provided in the XML configuration file, OGATE per-
forms the execution by activating the different components of the autonomous
controller, accordingly to the configurations provided. Then, the tool is in charge
of supervising and monitoring the controller execution by inspecting internal
monitors of the different components and retrieving relevant information about
its performance. When testing challenging scenarios –dynamic goal injection or
execution failures–, OGATE is also responsible of modifying the nominal exe-
cution by interacting with the controlled system sending the required telecom-
mands and/or telemetry messages that lead to include a new goal in the con-
trolled system or to modify the execution outcomes. The telemetry/telecommands
required shall be provided by the user in a format that is understood by the au-
tonomous controller; OGATE acts as a relay by simulating the operator –goal
injection– or the functional support –execution failure.

Finally, the collected information are exploited to generate detailed reports
to support assessments based on the analysis of the considered metrics. In this
way, OGATE –at the end of the execution– provides a graphical report as the
one presented in fig. 1, but also the temporal profiles of the selected metrics
and their representative values –minimum, maximum, average and aggregated
value– in a Comma Separated Values (CSV) file that can be assessed with other
analysis tools. Also, during execution, the OGATE GUI provides to the user the
representative metrics values and temporal profiles in real-time.

In order to control and to retrieve data from the controlled system, some
parts of the autonomous controller shall be accessible during execution. To deal
with this requirement, OGATE implements a set of interfaces to enable external
system interconnection. Those parts which implement interfacing with OGATE
are called OGATE plugin. By means of these interfaces, the status of a plugin
can be monitored and modified by OGATE, while also the relevant metrics can
be gathered and provided to the user during execution. The implementation
of such interfaces in the autonomous controller shall be done to exploit the
OGATE capabilities; anyway, a similar effort shall be done in order to perform
hand tailored tests campaigns. In this sense, the benefits of exploit OGATE are



related to the saved effort related to prepare the tests campaign and the later
data collection and analysis.

Regarding this, to work with OGATE, first it is required to perform an
engineering effort to implement the required interfaces to enable the control
and data inspection of the relevant parts of the autonomous controller and,
then, provide the XML configuration file, including the controller configuration,
scenarios description and metrics to measure. With this information, OGATE
automatically performs tests execution, data gathering and report generation
at the end of the execution. Technically, OGATE is implemented in Java and
the communication with the autonomous controller is done by means a simple
message protocol constructed over TCP/IP.

Finally, OGATE has been designed to directly connect the planning and/or
execution layers of an autonomous controller. So, performing experiments with
either simulated or actual robotic platforms is not relevant

4 A planetary exploration case study

To assess the test campaign presented later in this paper, we have employed
a planetary exploration case study employing the DALA robotic platform. In
particular, DALA is an iRobot ATRV robot that provides a number of sensors
and effectors, allowing to be used for autonomous exploration experiments. It
can use vision based navigation, as well as a Sick laser range finder, being the
vision system formed by two cameras mounted on top of a Pan-Tilt Unit (PTU).
Also, it has a panoramic camera and a communication facility

In this paper to execute tests, the DALA rover has been simulated by means
of a software environment3 based on OPRS [14], that offers the same robotic
functional interface as well as fully replicating the physical rover behaviors (i.e.,
random temporal duration for uncontrollable tasks).

The objective of the robotic platform is to address a planetary exploration
problem. The mission goal is a list of required pictures to be taken in differ-
ent locations with an associated PTU configuration. During the mission, the
Ground Control Station (GCS) may be not visible for some periods. Thus, the
robotic platform can communicate only when the GCS is visible. A graphical
representation of the problem is presented in fig. 3.

The rover must operate following some operative rules to maintain safe and
effective configurations. The conditions that it must hold during the overall
mission are: (C1) while the robot is moving the PTU must be in the safe position;
(C2) pictures can only be taken if the robot is still in one of the requested
locations while the PTU is pointing at the desired direction; (C3) once a picture
has been taken, the rover has to communicate the picture to the GCS; (C4) while
communicating, the rover has to be still; and (C5) while communicating, the
GCS has to be visible.

3 DALA software simulator courtesy of Felix Ingrand and Lavindra De Silva from
LAAS-CNRS.



Fig. 3. Example of the planetary exploration with DALA.

5 The GOAC controller

Thanks to the Robotic Department of the European Space Agency (ESA) we
have been able to use the Goal Oriented Autonomous Controller (GOAC) [6],
an effort from the agency to create a reference platform for robotic software for
different space missions. The GOAC architecture is the integration of several
components: (i) a timeline-based deliberative layer which integrates a planner,
called OMPS [9], built on top of Advanced Planning & Scheduling Initiative
(APSI) – Timelines Representation Framework (TRF) [7] to synthesize flexible
temporal action plans and revise them according to execution needs; (ii) a Teleo-
Reactive Executive (TREX) [22] to synchronize the different components under
the same timeline representation; and (iii) a functional layer which combines
Generator Of Modules (GenoM) [15] with a component based framework for
implementing embedded real-time systems Behaviour Interaction Priority (BIP);
[4].

GOAC aims to constitute a general purpose autonomous controller capable to
be tailored for different missions/platforms. In that sense, a GOAC instance is a
determined and functional configuration to successfully accomplish an objective.
The aspect that determines the capabilities of the architecture is the number and
hierarchy of the TREX reactors. A reactor is an entity that operates over one
or more timelines by (a) deliberating over their required status to achieve the
mission goals and/or (b) modifying the status of the timelines as a result of an
operation or for an environment change.

In this paper, we exploit a rather simple instance with two reactors as shown
in fig. 4: a Deliberative reactor and a Command dispatcher reactor. The first one
is responsible of performing the deliberative task given a domain and a problem
encoded in Domain Definition Language (DDL) and Problem Definition Lan-
guage (PDL) respectively, following a sense-plan-act paradigm. The deliberative
reactor can operate with two different planning policies: a single goal policy, in
which goals are planned as a sequnce (i.e., one after the other), following a sort
of batch schema; or, a all goals policy, in which a unique planning step gener-
ates a solution plan for all the goals. The Command dispatcher is in charge of



Fig. 4. GOAC instance used in this paper.

executing commands and collecting execution feedback, being connected to the
functional layer.

A plan in GOAC has the form presented in fig. 5, in which the involved time-
lines are depicted. The Deliberative reactor generates the different transitions
accordingly to the constraints and temporal relations defined in the domain,
while the Command dispatcher encodes the planned values into actual com-
mands for the rover and uses the feedback provided by the functional layer to
produce observations on the low-level timelines that represent the current status
for the robot systems.

Finally, it is worth observing that in GOAC the planning and execution are
interleaved: while the functional layer is executing a command, the executive
is permanently observing the environment, so, it is capable of detect changes
and respond in a short time by exploiting reactive planning schemes, instead of
perform a replanning process, often more expensive.

6 Experimental results

This section presents the evaluation of the performance for the GOAC au-
tonomous controllers using the planetary exploration case study with the DALA
robotic platform introduced above. The evaluation takes advantage of the OGATE
framework to automatically perform the tests under different circumstances –
nominal execution, dynamic goal injection and execution failure. The experi-
ments have been ran on a PC endowed with an Intel Core i5 CPU (2.4GHz) and
4GB RAM.

More specifically, to perform the tests execution, a suitable GOAC plugin
for OGATE has been implemented in order to send to OGATE all the rele-
vant information from the internal components. Also, the different configuration
parameters for the GOAC system have been adapted to exploit the OGATE
template system. In this way, different templates have been defined to identify
the deliberative planning policy, mission goals, temporal uncertainty in action
durations and the number of communication opportunities. More in particular,
for the different templates we have provided the following set of instances vary-
ing the complexity of the problem and the execution conditions: (i) planning
policy, selecting between the single goal or the all goals; (ii) plan length by



Fig. 5. A plan for the planetary exploration in GOAC.

increasing the number of requested pictures (from 1 to 3); (iii) plan flexibility
or temporal uncertainty, in which for each uncontrollable activity (i.e., robot
and PTU movements as well as camera and communication tasks), a minimal
duration is set, but temporal flexibility on activity termination is considered, i.e.,
the end of each activity presents a tolerance ranging from 0 to 10 seconds; and
(iv) plan choices as function of the number of communication opportunities
spanning from 1 to 4. In general, among all the generated problems instances,
the ones with higher number of required pictures, higher temporal flexibility,
and higher number of visibility windows result as the hardest.

Then, OGATE has been exploited to: (i) generate the considered scenarios,
(ii) carry out all the different controller executions and (iii) collect performance
data from the controller. For each execution setting, 10 runs have been performed
and average values for the defined metrics are reported. After the collection of
performance information in all the considered scenarios, OGATE is able to gen-
erates a report containing a wide set of charts corresponding to different control
configurations, planning problem instances and execution settings. Finally, for
the 10 executions we have considered 4 nominal executions, 3 with goal injection
and 3 for execution failure. For the dynamic injection scenario, a new picture
is requested between the seconds 40 and 60 after the mission begin and, for
the execution failure, a miss-configuration of the PTU occurs during its first
reorientation.

For measuring performance, we exploited the metrics presented earlier in
the paper. The metrics are captured for both reactors in the GOAC controller
and the following ranges (in seconds) have been considered for the one picture
scenario: [0, 4] for the operational time; [0 ,1] for the goal processing time; [0, 7]
for the state processing time; and [0, 4] for the deliberation time. The ranges for
the metrics have been obtained analyzing the results of different executions of
the GOAC architecture in the considered scenarios. Also, as more pictures are
required, these times are bigger, thus we have increased the previous ranges to



Table 1. OGATE score for all instances clustered by the testbench parameters using
two planning policies.

Plan Choices 1 2 3 4 1 2 3 4

Plan Length 1 picture

Plan Flexibility All goals Single goal

0 5.11 5.82 5.70 5.94 5.25 5.25 5.25 5.22
5 5.78 5.80 4.60 5.48 5.24 5.18 5.78 5.72
10 5.74 3.64 3.07 2.77 5.24 5.43 4.96 5.73

Average 4.92 5.36

Plan Length 2 pictures

Plan Flexibility All goals Single goal

0 5.92 5.48 5.86 5.79 5.49 5.39 5.30 5.28
5 5.42 5.73 6.81 5.70 5.91 5.83 5.18 5.83
10 4.80 1.63 4.67 4.07 6.13 4.30 3.09 3.92

Average 4.94 5.14

Plan Length 3 pictures

Plan Flexibility All goals Single goal

0 4.21 0.00 0.00 0.00 6.11 5.14 5.15 5.11
5 5.44 0.00 0.00 0.00 5.99 5.82 5.86 5.80
10 4.65 1.13 0.00 0.00 5.83 3.27 1.47 2.27

Average 1.06 4.80

be fair in the evaluation. Finally, all the metrics have the same weights, being
each quadrant reserved for each metric in the graphical evaluation.

Considering all the possible combinations, we obtain 72 possible instances of
the GOAC controller. For each of them we obtained a graphical report such as
the one presented in fig. 1 – that particular one shows the scenario for one picture
with the single goal policy, 4 communications opportunities and 10 seconds of
temporal flexibility. As we cannot provide a detailed discussion on each possible
scenario, we will focus on the Global Scores computed for each instance, as stated
in table 1.

A first straightforward evidence that can be elicited observing the Global
Score is that the controller performs similarly with 1 and 2 pictures for both
planning policies but has a performance fall for the all goals when executing
scenarios with 3 pictures that does not occur with the single goal.

In all the tested scenarios, the GOAC deliberative component is able to
generate a valid plan, but the controller fails in properly completing its execution
in some of them. In particular, the execution failure scenario is never completed:
when the deliberative component receives the PTU miss-configuration, it does
not correspond to its planned states, producing a failure that leads to a system
halt. Otherwise, the nominal and dynamic goal injection scenarios are usually
completed, except in particular cases of the all goals policy : for 1 picture with
2 and 3 communications opportunities and 10 seconds of temporal flexibility;
for 2 pictures with 2 communications opportunities and 10 seconds of temporal
flexibility; and, for 3 pictures, the all goals has several problems to achieve the



mission goals except for the one communication opportunity scenario, in which
completes the nominal and dynamic goal injection scenarios for all temporal
flexibilities. Instead, the single goal policy only fails to perform the dynamic goal
injection scenario for the hardest cases: 3 pictures with 3 and 4 communications
opportunities and 10 seconds of temporal flexibility. If we analyze the average
values for the different planning policies clustering only the scenarios by the
number of pictures, we can see that there is no relevant difference between both
planning policies for 1 and 2 pictures, but, for 3 pictures, the single goal policy
seems to be more adequate to be deployed. In fact, the single goal policy usually
outscores the all goals policy.

7 Conclusions

This paper has presented some recent results in addressing the open issue of eval-
uating the performance of a planning and execution system. To deal with this
problem the paper first proposes a methodology to properly guide the testing
phase and achieve an objective evaluation. Second, it describes the operational-
ization of such methodology in a software environment, called OGATE, that is
able to perform large test campaigns for different challenging scenarios without
user interaction.

The described approach has been used to test the GOAC autonomous con-
trollers. The paper has presented a minimum set of metrics over which the con-
troller performance has been profiled. It is worth underscoring that performing
such tests without the described tool requires a large amount of time and a non
trivial work to set up different configurations and retrieve information related
to the considered metrics. The experiments have been able to characterize the
different planning policies of the GOAC deliberative component and the perfor-
mance of the system as a function of the complexity of the given problem.

Among future works, the definition of a more thorough set of standard metrics
constitutes a key immediate step. Additionally, OGATE will be used to com-
pare different plan-based deliberative platforms on the same benchmark tests (a
natural extension of the current status).

Acknowledgements

Pablo Muñoz is supported by the European Space Agency (ESA) under the Net-
working and Partnering Initiative (NPI) Cooperative systems for autonomous
exploration missions. CNR authors are partially supported by the Italian Min-
istry for University and Research (MIUR) and CNR under the GECKO Project
(Progetto Bandiera “La Fabbrica del Futuro”). Authors want to thank to the
ESA’s technical officer Mr. Michel Van Winnendael for his continuous support.



References

1. Ad Hoc ALFUS Working Group: Autonomy Levels for Unmanned Systems (AL-
FUS) Framework – Framework Models. Tech. Rep. 1011-II-1.0, National Institute
of Standards and Technology (December 2007)

2. Alami, R., Chatila, R., Fleury, S., Ghallab, M., Ingrand, F.: An architecture for
autonomy. Field Robotics, Special Issue on Integrated Architectures for Robot
Control and Programming 17, 315–337 (1998)

3. Aschwanden, P., Baskaran, V., Bernardini, S., Fry, C., R-Moreno, M.D., Muscet-
tola, N., Plaunt, C., Rijsman, D., Tompkins, P.: Model-unified planning and execu-
tion for distributed autonomous system control. In: Association for the Advance-
ment of Artificial Intelligence (AAAI) 2006 Fall Symposia. Washington DC, USA
(October 2006)

4. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: 4th IEEE Int. Conference on Software Engineering and Formal Methods.
Washington DC, USA (September 2006)

5. Behnke, S.: Robot competitions – ideal benchmarks for robotics research. In: 2006
IEEE/RSJ International Conference on Robots and Systems (IROS) Workshop on
Benchmarks in Robotics Research. Beijing, China (October 2006)

6. Ceballos, A., Bensalem, S., Cesta, A., Silva, L.D., Fratini, S., Ingrand, F., Ocón, J.,
Orlandini, A., Py, F., Rajan, K., Rasconi, R., Winnendael, M.V.: A Goal-Oriented
Autonomous Controller for Space Exploration. In: ASTRA 2011 - 11th Symposium
on Advanced Space Technologies in Robotics and Automation. Noordwijk, the
Netherlands (April 2011)

7. Cesta, A., Cortellessa, G., Fratini, S., Oddi, A.: Developing an end-to-end plan-
ning application from a timeline representation framework. In: IAAI-09. Proc. of
the The Twenty-First Innovative Applications of Artificial Intelligence Conference.
Pasadena, CA, USA (July 2009)

8. Fontana, G., Matteucci, M., Sorrenti, D.G.: RAWSEEDS: Building a benchmarking
toolkit for autonomous robotics. In: Amigoni, F., Schiaffonati, V. (eds.) Methods
and Experimental Techniques in Computer Engineering, pp. 55–68. SpringerBriefs
in Applied Sciences and Technology, Springer International Publishing (2014)

9. Fratini, S., Pecora, F., Cesta, A.: Unifying Planning and Scheduling as Timelines
in a Component-Based Perspective. Archives of Control Sciences 18(2), 231–271
(2008)

10. Gat, E.: Integrating planning and reacting in a heterogeneous asynchronous archi-
tecture for controlling real-world mobile robots. In: the Tenth National Conference
on Artificial Intelligence (AAAI). pp. 809–815. San Jose, CA, USA (July 1992)

11. Gertman, D.I., McFarland, C., Klein, T.A., Gertman, A.E., Bruemmer, D.J.: A
methodology for testing unmanned vehicle behavior and autonomy. In: Perfor-
mance Metrics for Intelligent Systems (PerMIS’07) Workshop. Washington, D.C.
USA (August 2007)

12. Huang, H.M., Messina, E., Jacoff, A., Wade, R., McNair, M.: Performance mea-
sures framework for unmanned systems (PerMFUS): Models for contextual metrics.
In: Performance Metrics for Intelligent Systems (PerMIS’10) Workshop. Baltimor,
MD, USA (September 2010)

13. Hudson, A.R., Reeker, L.H.: Standardizing measurements of autonomy in the Ar-
tificially Intelligent. In: Performance Metrics for Intelligent Systems (PerMIS’07)
Workshop. Washington, D.C. USA (August 2007)



14. Ingrand, F., Chatila, R., Alami, R., Robert, F.: PRS: A high level supervision and
control language for autonomous mobile robots. In: in Proc. of the 1996 IEEE
International Conference on Robotics and Automation (ICRA’96). Minneapolis,
MN, USA (September 1996)

15. Mallet, A., Pasteur, C., Herrb, M., Lemaignan, S., Ingrand, F.: GenoM3: Building
middleware-independent robotic components. In: 2010 IEEE Proc. of the Interna-
tional Conference on Robotics and Automation. Anchorage, Alaska, USA (May
2010)

16. McWilliams, G.T., Brown, M.A., Lamm, R.D., Guerra, C.J., Avery, P.A., Kozak,
K.C., Surampudi, B.: Evaluation of autonomy in recent ground vehicles using the
autonomy levels for unmanned systems (ALFUS) framework. In: Performance Met-
rics for Intelligent Systems (PerMIS’07) Workshop. Washington, D.C. USA (Au-
gust 2007)

17. Muñoz, P., Cesta, A., Orlandini, A., R-Moreno, M.D.: First steps on an on-ground
autonomy test environment. In: 5th IEEE International Conference on Space Mis-
sion Challenges for Information Technology (SMC-IT). IEEE (2014)

18. Nesnas, I., Simmons, R., Gaines, D., Kunz, C., Diaz-Calderon, A., Estlin, T.,
Madison, R., Guineau, J., McHenry, M., Shu, I.H., Apfelbaum, D.: CLARAty:
Challenges and steps toward reusable robotic software. Advanced Robotic Systems
3(1), 23–30 (2006)

19. Orebäck, A., Christensen, H.I.: Evaluation of architectures for mobile robotics.
Journal of Autonomous Robots 14, 33–49 (2003)

20. Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels
of human interaction with automation. Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on 30(3), 286–297 (May 2000)

21. del Pobil, A.P.: Why do we need benchmarks in robotics research? In: 2006
IEEE/RSJ International Conference on Robots and Systems (IROS) Workshop
on Benchmarks in Robotics Research. Beijing, China (October 2006)

22. Py, F., Rajan, K., McGann, C.: A Systematic Agent Framework for Situated Au-
tonomous Systems. In: AAMAS-10. Proc. of the 9th Int. Conf. on Autonomous
Agents and Multiagent Systems (2010)


