
Generative Ontology of Vaiśesika

Rajesh Tavva1 and Navjyoti Singh2

1,2Center for Exact Humanities, International Institute of Information Technology, Hyderabad, Telangana, India
1vrktavva@research.iiit.ac.in and 2navjyoti@iiit.ac.in

Abstract
In this paper we present a foundational as well as generative 
ontology  which  is  graph-based.  We  use  a  form  called 
punctuator which  is  non-propositional  and  also  non-set-
theoretic  to  build  our  system  –  Neo-Vaiśesika  Formal  
Ontology.  The idea  is  to  present  an ontological  language 
which is formal. This language is a set of potentially infinite 
sentences (graphs) whose structure is captured by a finite set 
of (graph) grammar rules.  We also have an interpreter to 
interpret the graphs generated by this grammar and show 
that the interpretation of a node as belonging to a particular 
ontological  category is  based purely on its  structure/form 
and nothing else to provide a robust example of a formal, 
foundational and generative ontology.

Keywords. Formal Ontology, Graph Grammar, Generative 
Ontology, Punctuator, Generative Grammar, Vaiśesika

Introduction 

Most, if not all, of the (computational) ontologies built till 
now [12] are  either  built  manually or  through automatic 
methods  of  category-extraction  from  text.  There  is  no 
notion  of  generation  there  since  there  are  no  repeating 
structures  (each  category is different  and hence  different 
structure). All the foundational ontologies are presented as 
diagrams/graphs with finite number of nodes (which stand 
for categories/sub-categories) and edges (which stand for 
class-subclass  or  some other  relations).  In  this paper we 
present  a  novel  concept  of  Generative  Ontology  which 
presumes Grammar of Reality which, in turn, is based on 
the  idea  of  a  recursive  ontological  form  called  the 
punctuator.  A  punctuator  is  a  form  which  is  present 
between any two entities and enables us to distinguish one 
from the other. It is because of this form that we are able to 
differentiate  various  categories  as  well  as  different 
instances of the same category. Since a punctuator is found 
not  only  between  two  classes,  but  also  between  two 
particulars, or between a class and a particular, the graphs 
which  are  based  on  punctuators  contain  not  only 
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classes/universals,  but  also  particulars.  But  since  the 
punctuator  has  a  recursive  form, complex graphs can be 
generated  from simple graphs,  and each  of  these  graphs 
depicts some or other portion of reality at some or other 
level of granularity. Hence we also have an interpreter to 
interpret the generated graphs as portions of reality.

We take  Vaiśesika  -  one  of  the  Indian  philosophical 
schools  which  focuses  on  foundational  ontology  –  as 
formalized in [4,5,6,7] as our base, and present generative 
as well as interpretative grammars for it in this paper. This 
paper's focus is not on defending Vaiśesika description of 
reality or the rationale behind its categorial system1. This 
paper is already taking them as given and trying to make 
implicit formal notions of Vaiśesika explicit. The idea is to 
show the possibility of an ontological language which can 
be formalized and also generated, and then interpreted.

In section 1 we present Vaiśesika ontology in brief. In 
section 2 we present Neo-Vaiśesika Formal Ontology, the 
system we built by formalizing Vaiśesika ontology. In this 
section, we give formal definitions of Vaiśesika categories 
in terms of three basic punctuators. In section 3 we show 
how Vaiśesika can  be  seen as  a  generative  ontology.  In 
section 3.1, we give the generative grammar of our system 
where we give the production rules to generate graphs, and 
in section 3.2 we give interpretative rules using which we 
can  interpret  these  generated  graphs  to  label  each  node 
with  some  or  other  Vaiśesika  category.  The  generated 
graph  is  considered  to  be  valid  if  there  is  at  least  one 
interpretation,  in  terms  of  Vaiśesika  categories,  of  the 
generated graph. The grammar is considered to be sound if 
it generates only valid Vaiśesika graphs. Though a formal 
proof of the soundness of this grammar is not achieved yet, 
we present in section 4 some results which show that the 
system is  promising.  The main focus  of  the  paper  is  to 
present the idea of a generative ontology and one example 
of such an ontology.

We  tried  to  provide  examples  and  explanation  of 
abstract  concepts  wherever  possible  but  due  to  space 
constraints we are unable to get into detailed explanation 
sometimes.  An  extended  version  of  this  paper  with 
examples,  diagrams  and  detailed  explanation  of  various 

1. One can refer to [4] and [14] for that.
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definitions, axioms etc. presented in this paper is available 
at [9].

1.   Vaiśesika Ontology

Vaiśesika, as mentioned in introduction, is one of the many 
Indian  philosophical  schools,  which  focuses  on 
foundational  ontology.  It  classifies  all  entities  of  reality 
into 6 categories2: (1) Substance (e.g: material entities like 
tables,  chairs  as  well  as  non-material  entities  like  soul, 
space and time) (2) Quality (e.g: color, weight) (3) Action 
(e.g:  rising up, falling down, motion) (4)  Universal  (e.g: 
tableness,  chairness,  redness)  (5)  Ultimate  Differentiator 
(located in each ultimate substance (explained below) and 
differentiates  one  from  the  other)  and  (6)  Inherence 
(explained  below).  Notice  that  there  is  no  category  like 
Relation in  this  system because  any chain constituting a 
relational  context (section  2)  can  be  abstracted  into 
something called a relation. Out of all the categories listed 
above  inherence (Fig. 2.2) is the most significant one for 
us. It gives stability to reality and is the entity constituting 
the second most pervasive relation found in reality, the first 
being self-linking relation (more about it later). We call the 
relational chain constituted of inherence entity as inherence 
relation, and this inherence relation can be found in all the 
following  cases:  (1)  Universals  inhere  in  substances, 
qualities  and  actions  (2)  Qualities  and  actions  inhere  in 
substances  (3)  Substances  (wholes)  inhere  in  other 
substances  (their  parts)  and  (4)  Ultimate  Differentiators 
inhere in ultimate substances. Ultimate substances (US) are 
those substances which have no parts and hence cannot be 
differentiated from each other3. Examples of USs are time, 
space, souls and atoms (these are different from those of 
physics, they are the smallest indivisible units according to 
Vaiśesika). Since USs have no parts, each of them has an 
ultimate  differentiator  (UD)  inhering  in  it  which 
differentiates it from the rest of the entities. The remaining 
substances  which  are  not  USs  are  automatically 
differentiated  from  others  since  they  are 
wholes/mixtures/compounds  made  up  of  various  USs 
which are already differentiated by UDs.  We will  try to 
define all these categories  formally using only the idea of 
inherence.

2.   Neo-Vaiśesika Formal Ontology

Vaiśesika  ontology,  due to  Kanada  [1], Prasastapada  [2] 
and Udayana [3] has been formalized by Navjyoti [4,5,6,7] 
which resulted in  Neo-Vaiśesika Formal Ontology. From 
now we will refer to this formal system as F for short. We 

2. A detailed list  of Vaiśesika categories and subcategories can be 
found in a tabular format in [13]. 

3. This notion of parthood is quite different from other mereological 
notions  like  that  of  [15].  For  detailed  explanation  of  the  notion  of 
parthood in Vaiśesika please refer to [4].

explicate the system below. 
According to F reality is constituted of only entities and 

punctuators. Here entities refer to all kinds of beings like 
objects,  events,  relations  and  so  on.  And  any  two 
beings/entities are considered two, not one, because there 
is  a  separator/boundary/vacuum/non-being  between  them 
which we call  punctuator/point4.  But a punctuator is  not 
only a separator but also a connector/link which links two 
entities.  So  here  non-being  is  not  an  all-encompassing 
vacuum  whose  existence  Parmenides5 was  denying  but 
every non-being is a particular  in the sense that it rides on 
a  particular  pair  of  entities/beings  which  it  separates  as 
well as brings together into contiguity6 in some relational 
context. Our idea of punctuator/point is quite similar to, at 
the  same  time  slightly  different  from,  Leibniz’s  idea  of 
punctum/point  and  Brentano’s  idea  of  punctiform/point. 
Leibniz  [10]  tries  to  explicate  this  notion  by  taking  a 
geometrical  example  like  a  line  segment.  He  makes  a 
distinction between potential  point  (euclidean  point)  and 
actual  point  (non-euclidean  point).  The  line  segment, 
according to Leibniz,  is  not  really made up of euclidean 
points, they are not parts of the segments the  way smaller 
segments are. The euclidean points (lengthless, breadthless 
and  heightless  points)  are  only  potentially  there  on  the 
segment but not actually constituting it. The actual points 
are the boundaries or the endpoints of the segment. These, 
Leibniz also calls as punctums because they punctuate the 
line segment from its neighbourhood (in one-dimensional 
space). A potential (euclidean) point can become an actual 
(non-euclidean) point if one cuts the line segment, say, into 
two halves. The midpoint which was there before cutting 
was only potential, but after cutting it becomes actual. So 
according  to  Leibniz  a  punctum is  like  a  boundary  that 
separates two entities. Brentano [11] also comes up with a 
similar idea and he calls it punctiform or point. He says no 
continuum can be built up by adding one individual point 
to  another.  The  point  exists  as  a  boundary,  as  a  limit. 
Similarly  for  us,  a  point  is  a  boundary  between  two 
entities, but not constituting those entities.

These both – entity and punctuator – are defined in F in 
terms  of  each  other.  But  the  mutual  dependency  of 
definitions ends here. All the other definitions are based on 
these primitives only.

Definition  2.1: An  entity is  that  which  is  never 
punctuated from itself.

Definition 2.2: A punctuator pr(x|y) has the form <x|y,  
R> where  x and y are entities punctuated from each other 
in some relational context R. This R refers to all the chains 
of  entities  (along  with  punctuators  between  them) 
connecting x and y where each chain looks like C = p(x|e1)  
– p(e1|e2)... - p(ei|ei+1) - ...p(en-1|en) – p(en|y) where each ei is 

4. If the separator were also a being, then one would run into infinite 
regress. Hence one needs to accept a non-being like punctuator.

5. http://plato.stanford.edu/entries/parmenides/
6. Two entities in contiguity are related to and yet distinct from each 

other.



also an entity. 
Notice that the punctuator is neither the entities nor the 

relation  between them. It  is  the form/arrangement  of  all 
these things put together. Though an entity is existentially 
independent  of  its  punctuations  with  other  entities,  its 
meaning solely comes from these punctuations. Hence the 
form  of  an  entity  defines  its  meaning.  In  this  sense  F 
satisfies Husserl's  definition of formal ontology:  “eidetic  
science of the object as such.”7 

2.1.  Three Basic Punctuators and Abstract of  
Punctuator
From our knowledge of Vaiśesika we have narrowed down 
to three basic punctuators/forms in  F. It seems that these 
three  basic  forms  are  sufficient  to  derive  any  other 
complex form in the universe. Their definitions and other 
details are given below. 

Definition  2.3  (Self-Linking  Punctuator): A  self-
linking  punctuator is  one  whose  relational  context  is 
empty.  It  is  represented  as  psl(x|y)  and  its  structure  is 
<x|y, <>>.

A self-linking relation is one in which one of the relata 
itself  acts  as  the  relation.  The  relata  don't  need  a  third 
entity to bring them together.  The relation is called self-
linking not because it links with itself but because it links 
by itself to other entities. The punctuator corresponding to 
the  self-linking  relation  is  called  the  self-linking 
punctuator. It can be represented as in Fig. 2.1.

Fig. 2.1. Self-linking punctuator

Here  the  edge  being  undirected  only  means  that  the 
direction is changeable (between the same pair of entities) 
in the case of self-linking punctuator.  But in the case of 
inseparable punctuator that is not the case.

Definition 2.4 (Inseparable Punctuator or Inherence  
punctuator):  An inseparable punctuator is one which has 
an inert entity called I (inherence) which inseparably binds 
two entities x and y . It is represented as pin(x|y) and it has 
the structure <x|y, psl(x|I) − psl(I|y)>. 

This  I is  nothing  but  the  inherence  category  of 
Vaiśesika discussed above. It can be represented as in Fig. 
2.2.  Here  the  chain  connecting  x and  y via  I can  be 
abstracted into a relation called inherence relation, and the 
entity  I can  be said to  be  playing a relational  role only 
when it is part of such a chain. This chain, along with both 
x and y constitutes the inherence punctuator between x and 
y. Hence a relation and punctuator are different. 

Unlike  self-linking  relation  where  one  of  the  relata 
itself is playing the role of the relation here a third entity, a 

7.  Edmund  Husserl,  Ideen  zu  einer  reinen  Phänomenologie  §10, 
Husserliana 3/1: 26–7

relational  entity,  I (inherence)  is  necessary  to  bring  two 
entities  x and  y into  inherence  relation.  It  is  called 
inseparable  because  inherence  relation  itself  cannot  be 
destroyed  without  one  of  its  relata  being  destroyed. 
Various cases where inherence relation is found in reality 
are given in section 1.

Fig. 2.2. Inseparable punctuator

Inherence  relation  repeats  almost  everywhere  in  the 
universe. Hence it is one of our most fundamental relations 
to derive other complex relations. In fact if we take all the 
instances of inherence relation in the universe we will get 
the entire synchronic reality or the snapshot of the reality. 
To get diachronic reality, we need to look at the changes 
which occur in it for which we need to move to the next 
punctuator.

Definition  2.5  (Separable  Punctuator):  A  separable  
punctuator pcd(x|y) with structure <x|y, psl(x|I) − psl(I|X) − 
psl(X|I)  −  psl(I|y)>  where  X is  either  of  the  relational 
entities C called conjunct (or contact) or D called disjunct. 
C (or  D)  binds  x and  y in  such  a  way  that  they  are 
associated (or dissociated).  pcd(x|y) switches between two 
structures that can be represented in short as <x|y, wC> and 
<x|y, wD> since no two entities can be in both conjunct and 
disjunct at the same time. It is shown in Fig. 2.3.

Fig. 2.3. Separable punctuator

The  relation  between  C (or  D)  and  its  relata  is 
inherence.  If  two  entities  x and  y are  in  conjunct  (or 
disjunct) then the conjunct (or disjunct) with y inheres in x 
and vice-versa.  The conjunct  and disjunct  which we are 
referring to here are completely different from the logical 
operations – conjunction and disjunction – which are used 
in propositional  logic.  They only refer  to the relation of 
two entities being in contact (as in when we clap both our 
hands are in contact) or not in contact.

One can notice that  the 2nd and 3rd punctuators  are 
recursive  in  nature  in  the  sense  that  the  separable 
punctuator  is  made  of  two  inherence/inseparable 
punctuators while the inherence/ inseparable punctuator is 
made of two self-linking punctuators put together. In this 



sense,  self-linking punctuator is the most fundamental  of 
these 3 punctuators, but we will use all three of them as 
building blocks of our system since their  patterns repeat 
everywhere and each of them plays a role in deriving more 
complex punctuators.

We need to look at some more definitions and axioms 
before we proceed further.

Definition 2.6 (Abstract of punctuator):  abs(p) maps 
relational context of punctuator to two abstract entities  ae 
and ae which are attributes of the two punctuated entities ei 

and ek respectively.

abs(p(ei |ek )) → ae  F : p∈ sl (ei | ae) & ae  F : p∈ sl (ek | ae) 

To take an example, if color (ei) inheres in table (ek), it 
can also said to be located in table. So color is the locatee 
(ae) whereas table is the locus (ae). So the abstract of the 
inherence punctuator between color and table gives rise to 
two  abstract  entities,  namely  locus  and  locatee  where 
locus, the attribute of table, is related to it by self-linking 
punctuator, and locatee, the attribute of color, is related to 
it by self-linking punctuator. Similarly there can be various 
other  abstracts  of punctuators  like predecessor-successor, 
qualifier-qualificand, expression-expressed etc. which can 
be  abstracted  directly  from  one  of  the  three  basic 
punctuators  or  from  some  complex  punctuator  defined 
using  them.  Collection  of  pairs  of  each  kind  forms  a 
contiguum  like  locational  contiguum,  succession 
contiguum etc.

2.2.  Four Contigua
According  to us  there  are  four important  contigua to be 
studied formally, to cover a major portion of reality, in the 
sequence listed below:

Locational  contiguum: This  is  constituted  of  all  the 
locus-located pairs of abstract entities. Study of this gives 
us entire synchronic reality.

Succession contiguum: This  is  constituted of  all  the 
predecessor-successor  pairs  of  abstract  entities.  Study of 
this,  along  with  locational  contiguum,  gives  us  entire 
diachronic reality. 

Qualification contiguum: This is constituted of all the 
qualifier-qualificand  pairs  of  abstract  entities.  The 
qualifier-qualificand relation is usually found in cognition. 
For instance when we see a white cloth, the structure of our 
cognition is of the form - qualifier (white) and qualificand 
(cloth) - whereas the form of entities in reality as such is 
that  of  locus  (cloth)  and  located  (white).  Study  of  this 
contiguum, along with the previous two, is  the study of 
how  world  is  cognized,  and  the  notions  of  knowledge, 
reasoning, truth etc. come at this stage.

Expression contiguum: This  is  constituted of  all  the 
expression-expressed  pairs  of  abstract  entities.  Study  of 
this contiguum, along with the previous three, is the study 
of the relation between language and reality. All language 

related issues like synonymy, polysemy etc. come at this 
stage.

We think that the four contigua listed above need to be 
studied  formally  in  the  specified  order  since  each 
contiguum is dependent, for its study, on its previous one. 
This  is  a  long-term  project  and  this  paper  can  be 
considered as the first step in that direction. Here we are 
doing a formal study of only the first contiguum and that 
too a portion of it. Formal study of the remaining portion 
of it, as well as formal study of other contigua is part of the 
future work. 

Now we are all set to define the fundamental categories 
of  Vaiśesika formally in our system F.

2.3.  Fundamental Categories of Vaiśesika Defined 
Formally in F 8

We  will  formally  define  the  fundamental  categories  of 
Vaiśesika in F by doing a functional study of the locational 
contiguum of inherence  punctuator  for  which we should 
first define something called the Inherence Bifunction. 

Definition 2.8 (Inherence bifunction):  The  Inherence  
Bifunction, IB(e) = (eL, eL) takes an entity e and returns the 
locational ranges of e.

It  is  called  a  bifunction  because  it  works  on  two 
different things at the same time – locatee range and locus 
range  of  e.  Locatee  range  of  e refers  to  all  the  entities 
which are located in e (by inherence) and locus range of e 
refers  to  all  the  entities  in  which  e is  located  (by 
inherence). 

Now  we  will  define  categories  by  noticing  some 
invariances in the output.

Definition 2.9: If IB(e) = (eL, Ø) then e is an Ultimate 
Substance (US) where Ø stands for the empty set.

So if there is an entity which inheres nowhere but has 
some other entities inhering in it, then it is said to be an 
ultimate substance (US). In other words US is an unlocated 
locus. Some examples are space, time, soul, atoms. (These 
are not yet defined in the system, but they are mentioned 
just to give more clarity on the nature of US).

Definition 2.10: If IB(e) = (Ø,1US) then e is an Ultimate 
Differentiator  (UD)  where  1US stands  for  the  unique 
structure <e|US, psl (e|I) − psl (I|US )>.

A UD is one in which nothing is located, but it itself is 
located  in  one  and  only  one  US.  The  role  of  UD is  to 
differentiate  one  US from  another  since  the  USs  are 
partless  and  cannot  differentiate  themselves  from  each 
other.

Axiom 2.1: Any US cannot  have more than one UD 
located in it because a single UD in a locus is sufficient to 
distinguish its locus from the rest of the entities, and the 
second UD only becomes redundant.

Definition  2.11: If  IB(e)  =  (Ø,  2+)  then  e  is  a 
Universal (U).

8. Detailed explication of these definitions along with diagrams and 
examples can be found in [9].



This says that  a universal  (U) is  something in which 
nothing inheres,  but it  itself inheres in 2 or more (hence 
2+) loci i.e. its instances. A universal can inhere not only 
in US but also in non-US, hence 2+ is not subscripted with 
US.

Axiom 2.2: Given any two universals only one of the 
following two relations is possible between them: (1) Both 
of them are mutually exclusive i.e. both of them have no 
instances  in  common or  (2)  One  of  them subsumes  the 
other  i.e.  all  the  instances  of  one  universal  are  also the 
instances  of  the  second  universal  whereas  the  second 
universal has some more instances which the first doesn't 
have.  This  gives  rise  to  subclass-superclass  structure 
among universals.

Definition 2.12:  If IB(e) = (1+, 1) then  e is a  Quality 
(Q).

This says that a quality is that entity in which one or 
more entities inhere, and it itself inheres in only one entity.

As of  now we are  not  making a distinction between 
Vaiśesika categories – Quality and Action – in our formal 
system F. That distinction is part of our future work, and 
for the time being we will refer to both as Qualities (Q).

Now we'll  further  analyze  US for  which we need  to 
define the following function.

Definition 2.13: The function, Locality of any Ultimate  
Substance is defined as LUS(eu) = (JC, JD) where JC is the 
set  of  structures  conjoint  with  eu and  JD is  the  set  of 
structures disjoint with eu.

Given eu (a US) as input, the above function returns the 
ordered pair – the set of all entities in conjunct with eu, and 
the set of all entities which are in disjunct with eu. We will 
again look for invariances in the output to further analyze 
US category.

Definition 2.14:  If  LUS(eu) = (JC,Ø) or if  LUS(eu) = 
(Ø,JD)  then  eu is called a  Ubiquitous Ultimate Substance  
(UUS).

This says that those ultimate substances which are only 
in conjunct (and not disjunct) relation with other entities or 
only  in  disjunct  (and  not  conjunct)  relation  with  other 
entities are defined as ubiquitous ultimate substances.

Definition 2.15:  Those ultimate substances which are 
not  ubiquitous  ultimate  substances  are  called  Mobile  
Ultimate  Substances  (MUS) i.e.  if  eu is  an  MUS  then 
LUS(eu) = (JC,JD) where neither  JC nor  JD is  Ø i.e. they 
are  in  contact  with  some  while  in  disjunct  with  some 
others.

Axiom 2.3: UUSs are in contact only with MUSs, not 
among themselves9. 

Now we get back to inherence bifunction to define one 
last category of Vaiśesika i.e. Substantial Whole (SW).

Definition  2.16: If  IB(e)  =  (1+,  2+MUS)  then  e is  a 
Substantial Whole (SW).

This  says  that  an  SW is  that  in  which  one  or  more 
entities inhere, and it itself inheres in two or more MUSs. 

9. Refer to [4] for the rationale behind this axiom.

These MUSs are its parts. For instance a table inheres in all 
its parts and hence is present in each of its part. That is the 
reason why the entire table moves even when a part of it is 
moved, or the table as a whole is cognized even when a 
part of it is perceived. And what inheres in a table can be 
its qualities or universals like tableness, substanceness etc.

Axiom 2.4: Given two parts of a whole there has to be 
at least one chain of contacts connecting them directly or 
indirectly. 

Axiom 2.5: Two SWs are in contact with each other if 
one or more parts of one SW are in contact with one or 
more parts of the other SW. 

Axiom  2.6: Two  different  SWs  cannot  have 
overlapping parts i.e. there can be no MUS in which two 
different SWs can inhere.

Axiom 2.7: An SW cannot have qualities inhering in it 
if none of its parts has quality/qualities inhering in it.

For  instance  a  cloth  cannot  be  white  if  none  of  its 
threads has whiteness in it.

Given  the  above  definitions  let's  have  a  look  at  a 
sample valid graph of F, say, that of a substantial whole. It 
is depicted in Fig. 2.4.

Fig. 2.4. Ontology of a Substantial Whole

It's easy to understand this graph if we start with the 
focal point of it which is a substantial whole (SW). This 
SW is inhering in two mobile ultimate substances (MUS) 
(it can inhere in more than two MUSs as well) which are in 
contact  with each other10.  Now there are also two UUSs 
which are in contact with each of the MUSs. Each of the 
ultimate substances – two MUSs and two UUSs – has an 
ultimate  differentiator  (UD)  inhering  in  it.  Each  of  the 
substances – SW, MUS and UUS – has one quality (more 
than  one  is  also  possible)  inhering  in  it,  and  also  one 
universal (more than one is also possible) in it. Each of the 
qualities has one universal (more than one is also possible) 
in it. The universals are shown with dangling edges, it is to 

10. Each bidirectional  edge here is  a  short  form for  the separable 
punctuator, in contact position. The contact entities are currently hidden 
for  aesthetic  purposes.  Similarly  the  unidirectional  edges  stand  for 
inherence punctuators and the inherence entities are hidden as well.



show  that  the  universals  (can)  inhere  in  more  entities 
which are not shown in this graph. Notice that no UD has a 
universal  inhering  in  it  because  it  would  violate  its 
definition (Definition 2.10).

We can take a particular substantial whole, say, a table 
to exemplify the above graph. In this example each of the 
above categories stand for the following: 

• SW – table
• MUSs – atoms of table
• UUSs – space and time
• Universals  inhering  in  table  –  tableness, 

substanceness
• Universals inhering in MUSs – mobile-ultimate-

substanceness, substanceness
• Qualities inhering in table – color, size
• Universals inhering in these qualities – colorness, 

sizeness, qualityness
• Qualities inhering in atoms of table – color, touch
• Universals inhering in these qualities – colorness, 

touchness, qualityness
• Universals  inhering  in  UUSs  –  ubiquitous-

ultimate-substanceness, substanceness
• Qualities  inhering in  ultimate substances  – size, 

number
• Universals inhering in these qualities – sizeness, 

numberness, qualityness
The no. of  entities (Qs,  Us,  MUSs etc.)  presented in 

this example don't match exactly with those presented in 
Fig. 2.4.  The above figure is only a kind of template to 
understand this example.

In  the  next  section  we  present  generative  rules  -  to 
generate  the  structures  as  in  Fig.  2.4  –  as  well  as 
interpretative rules - to label the nodes in these structures 
with the categories of Vaiśesika.

3.   Vaiśesika as a Generative Ontology

A graph grammar is a generalization of string grammars 
and tree grammars. The Left-Hand-Side (LHS) and Right-
Hand-Side  (RHS)  of  a  production/transformation  rule  in 
graph grammar are both graphs instead of strings or trees. 
The rules modify a host graph into a different  graph by 
replacing a subgraph of  it  which is matching with LHS, 
with  an  incoming  graph  -  RHS.  The  below 
production/transformation  rules  will  be  self-explanatory 
except,  may  be,  for  Negative  Application  Condition 
(NAC). It is defined below.

Definition 3.1: Rules can have exceptions - it may not 
be likely to apply a rule in some particular cases.  Those 
cases/conditions  are  called  Negative  Application 
Conditions (NACs). NACs can also be depicted in the form 
of graphs. Hence each rule may (or may not) have one or 
more NACs. So a rule will be applied only when its LHS 
matches with some subgraph of the host graph, and none of 

its NACs matches with any subgraph of the host graph. 
For a detailed introduction to graph grammars please 

refer to [8]. 

3.1.  Generative Rules of Graph Grammar of 
Vaiśesika
Any generative grammar will  have a start  symbol,  some 
alphabet and some production rules involving the symbols 
of  the alphabet.  Similarly our grammar will  also have a 
start graph, an alphabet which consists of a set of node-
labels (ΩV) and a set of edge-labels (ΩE), and production 
rules  to  generate  various graphical  structures  from these 
symbols.

One can treat the generative rules of  Vaiśesika as the 
syntactic portion and its interpretative rules as the semantic 
portion. The generative rules generate the graphs as pure 
symbolic structures without any meaning as such whereas 
the  interpretative  rules  add  meaning  to  these  symbolic 
structures  by  labeling  each  node  with  some category  of 
Vaiśesika.

In our grammar, the node-labels are ΩV = {g, C, D, h, i, 
p, q, r, s, u, v, e} and edge-labels are ΩE = {sl, in, con, dis}. 
Each of the node-labels stands for the following: g – start 
node (this is the only node in the start graph), C  – conjunct 
entity,  D – disjunct  entity, h,  i,  p,  q,  r,  s,  u,  v – are all 
various node labels used in the process of generation. At 
the end of the generation all of them will be replaced by a 
common label, e, to show that the nodes they were labeling 
can be interpreted later based purely on their structures and 
not  on  their  labels.  And  the  edge  labels  stand  for  the 
following: sl – self-linking relation, in – inherence relation, 
con – conjunct relation,  dis – disjunct relation. But in the 
rules  below we have differentiated  edges  based  on their 
arrows instead of their labels for aesthetic purposes. A self-
linking relation has no arrows (though it's asymmetric its 
direction  is  changeable),  an  inherence  relation  has  one 
arrow (it's asymmetric and its direction is fixed), conjunct 
relation has two arrows and a thick line whereas disjunct 
relation  has  two  arrows  and  a  dashed  line  (both  are 
symmetric relations). 

No two entities have more than one edge (of any type) 
between them. That is a default NAC for every rule and 
hence not being specified with each rule. 

Currently  the  rules  are  generated  keeping  Vaiśesika 
categories  and their corresponding  invariant  structures  in 
mind.  Intuitively  they  seem  to  generate  valid  Vaiśesika 
graphs but the proof of soundness is necessary to prove it 
formally. That is not achieved yet and is one of our future 
goals. 

We give  below the  rules  as  well  as  the  rationale  in 
coming up with them. If we consider USs to be the bottom 
of universe (since they inhere nowhere else i.e. not located 
anywhere)  and  universals  and  UDs  to  be  the  top  of 
universe  (since  nothing  inheres  in  them  i.e.  nothing  is 
located  in  them),  then  we  are  trying  to  generate  all  the 



graphs  from bottom to top.  The rules  are  prioritized  by 
dividing them into layers - once you are in n th layer, you 
cannot apply any rules from layer 1 to n-1. But if there are 
multiple rules in a given layer they can be applied in any 
order.

We start  with the  first  layer.  It  has  only one rule  in 
which we replace the start node g with two other nodes – h 
and i.

LHS RHS

Here  h is  intended  to  generate  mobile  ultimate 
substances  whereas  i is  intended  to  generate  ubiquitous 
ultimate substances. Those rules follow in coming layers.

The second layer also has two rules. In the first rule, h 
is replaced by itself and another node p. This is intended to 
generate as many ps as one wants and in the second rule of 
this layer, h is replaced just with p. This is to terminate the 
process of generation of ps.

We define the graphs generated in a particular layer to 
be  the  terminal  graphs  (TGs)  of  that  layer  if  no  more 
graphs can be generated from them using the rules of that 
layer,  otherwise  we  will  call  them  non-terminal  graphs 
(NTGs).

LHS RHS

LHS RHS

These  ps  are  supposed  to  stand  for  mobile  ultimate 
substances. Once the generation process in this 2nd layer 
terminates  i.e.  no  more  h-labeled  nodes  remain,  the 
remaining graphs are  TGs of  layer  2,  and it  is  on these 
graphs that we will apply the rules from layer 3.

In  the  3rd  layer  we  have  two  rules  –  one  to  create 
contacts among  ps and another to create disjuncts among 
them.

LHS RHS

LHS RHS

Here  the  numbers  '1:'  and  '2:'  are  used  to  map  a 
particular node of LHS with a particular node of RHS (and 
NAC,  if  there  is  one).  In  our  system  this  mapping  is 
injective i.e.  no two nodes in LHS can map to the same 
node in RHS or NAC and vice-versa. Once we get all the 
TGs of this layer, we will move to 4th layer.

Now in the 4th layer we will have rules for generating 
wholes, represented by q-labeled nodes. It has 2 rules, we 
will apply both these rules only on the TGs of 3rd layer, 
not others. In the first rule we state that if two ps (MUSs) 
are in contact,  then let  a new entity  q (whole)  inhere in 
both of them.

LHS RHS

This rule has 2 NACs. These NACs state that the ps in 
which  q is  inhering  shouldn't  already  have  a  whole  (q) 
inhering in them. They are depicted below.

NAC1 NAC2

Notice that numbers like '1' and '2' are prefixed only to 
p-labeled-nodes and not q-labeled-nodes. It's because there 
is no such node in LHS to map with the nodes in RHS or in 
NACs. So the rule, along with its NACs, states that a new 
whole (q in RHS) inheres in two MUSs (ps) in contact if 
and only if there is no whole (q in NACs) already inhering 
in one or both of them. These NACs are necessary for us 
because,  in  our  system,  no  two  substantial  wholes  can 
inhere in the same part (Axiom 2.6). So even if one of the 
above NACs is found in that portion of the graph which 
matched with LHS, then this rule will not be applied.

The above rule will produce only wholes inhering in 
two entities. But if we need wholes inhering in more than 2 
entities upto an indefinite number, may be covering all  ps 
(MUSs) in a step-by-step manner we need the following 
rule.



LHS RHS NAC

This rule has one NAC which states that no whole (q) 
should already inhere in 2:p.

Notice here that the  q-node in NAC is not numbered 
whereas the  q-node in RHS of the rule is numbered. The 
RHS is  saying  that  an  inherence  edge  should  be  added 
from the same q as in LHS while NAC is referring to any q 
inhering in p, not necessarily the same one as in LHS.

The next layer i.e. 5th layer has two rules. These can be 
applied on both TGs as well as NTGs of layer 4 since the 
latter  (NTGs  of  layer  4)  are  also  considered  as  valid 
intermediate graphs for the process of generation. The first 
rule states that if two MUSs (ps) are in contact  then the 
wholes (qs) inhering in each of them can also be in contact. 
This is to model the fact that the contact between wholes 
can  be  inferred  from  the  contact  between  their  parts 
(Axiom 2.5).

LHS RHS

The 2nd rule of this layer is to handle disjuncts among 
wholes. This is like the complement of the first rule. This 
says that  two wholes can be in disjunct  if  none of their 
parts are in contact. So this negative condition becomes the 
NAC of this rule.

LHS RHS NAC

Till now we had rules which generate mobile ultimate 
substances,  contacts  or  disjuncts  among  them,  wholes 
inhering  in  mobile  ultimate  substances,  and  contacts  or 
disjuncts  among  them.  In  the  next  couple  of  layers  we 
introduce rules to generate ubiquitous ultimate substances 
and contacts or disjuncts - between them and other entities 
(since  ubiquitous  ultimate  substances  are  in  contact  or 
disjunct only with mobile ultimate substances, not among 

themselves (Axiom 2.3)).
The next layer i.e. 6th layer has two rules. They apply 

only  on  the  TGs  of  5th  layer.  The  i-node  which  we 
generated  in  our  1st  layer  is  now  used  to  generate 
ubiquitous  ultimate  substances  represented  by  r-labeled-
nodes or  r-nodes. The two rules here are exactly same as 
the ones in 2nd layer,  only with labels differing in both 
LHS and RHS.

LHS RHS

LHS RHS

In the 7th layer, we have two rules. They apply on the 
TGs of 6th layer.  The first rule states that an ubiquitous 
ultimate substance can be in contact with a mobile ultimate 
substance, if it is not in disjunct with any. So it has one 
NAC to specify this negative condition. 

LHS RHS NAC

The second rule is very similar to the first one. It says 
an ubiquitous ultimate substance can be in disjunct with a 
mobile ultimate substance, if it is not in contact with any.

LHS RHS NAC

Similarly  there  are  10  more  layers  of  rules  in  this 
generative grammar. The layers from 8 to 16 are briefly 
described here, but presented in detail in [9].

The  8th  layer  is  to  generate  qualities  in  mobile  and 
ubiquitous ultimate substances whereas the 9th layer is to 
generate qualities in wholes. The next few layers (10th to 
15th)  have  rules  devoted  to  the  generation  of  nodes 
standing for universals. The 16th layer is to generate UDs 
in USs – both mobile as well as ubiquitous. 



The 17th and the final layer is the one where all the 
label  names (except that of contact  and disjunct) will be 
replaced with a common label  e. This is a way of erasing 
all  the  label-based  identities  of  various  nodes,  and  also 
creating an occasion to prove later, using the interpretative 
rules, that the different categories of nodes in the graph can 
be identified purely based on their structures/forms and not 
their labels. 

This layer has only one rule and this is applied only on 
the TGs of 16th layer.

LHS RHS

3.2.  Interpretative Rules of Vaiśesika
The difference between generative rules and interpretative 
rules  of  Vaiśesika can  be  thought  of  as  the  difference 
between  syntax  and  semantics  of  reality.  The  graphs 
generated by the former – generative rules - refer to the 
syntactic  portion  of  reality  –  they  are  forms  or 
arrangements of entities in reality. Given the way entities 
are arranged we discern their meaning and categorize or 
classify them accordingly, and that, the semantic portion of 
reality, is given by the latter – interpretative rules.

Interpretative  rules  are  also  graph  grammars  like 
generative  rules,  but  we separated both of them because 
their purposes are different – one parses the graphs which 
the  other  generates.  So  the  interpretative  rules  can  be 
thought of as constituting an interpreter or a parser for the 
language (graphs) of  Vaiśesika which is generated by the 
generative rules in the previous subsection. 

So the input to the interpreter are the TGs generated by 
the last layer (17th layer) of the generative grammar. Any 
of them can become the start graph for the interpretative 
rules  (IRs).  Coming  to  the  alphabet,  the  edge-labels  of 
interpretative  rules  (Ω'E)  are  same  as  that  of  generative 
rules  (ΩE)  i.e.  Ω'E =  ΩE whereas  the  node-labels  of 
interpretative rules include the node-labels of the TGs of 
GRs, as well as Vaiśesika categories i.e. Ω'V = {e, C, D, U, 
UD,  SW,  Q,  MUS,  UUS}.  In  some  rules  nodes  are 
unlabeled. Such anonymous nodes stand for any node with 
any label.  Also the IRs are not prioritized the way GRs 
were.  IRs  can  be  applied  in  any  order  since  they  are 
independent  of  each  other.  The process  completes  when 
there is no scope left for any rule to be applied. These IRs 
can also be considered as a graphical way of defining the 
categories of Vaiśesika. The rules are given below.

The  first  rule  defines  a  Mobile  Ultimate  Substance 
(MUS). An MUS is one which inheres nowhere (NAC) and 
is in contact with at least one entity and is in disjunct with 
at least one entity (Definition 2.15). 

LHS RHS NAC

The 2nd and  3rd  rules  define  a  Ubiquitous  Ultimate 
Substance (UUS). A UUS is one which inheres nowhere 
(NAC1) and is only in contact but not disjunct (NAC2) with 
any  other  entity  (2nd rule)  (or)  only in  disjunct  but  not 
contact (NAC2) with any other entity (3rd rule) (Definition 
2.14). They are shown in the next two tables respectively.

LHS RHS NAC1 NAC2

LHS RHS NAC1 NAC2

Similarly  we  have  interpretative  rules  to  define  the 
remaining  categories  like  UD,  U,  SW and  Q.  They  are 
presented in [9], the extended version of this paper. 

4.   Results

We have constructed a graph grammar software of our own 
to simulate the above generative as well as interpretative 
rules,  and  on  around  10000  terminal  graphs  of  the  last 
layer of generative rules, we ran the interpretative rules and 
found that we could interpret  every node of every graph 
there as one of the Vaiśesika categories.  This gives us a 
confidence that the system is not only intuitively sound but 
also inductively sound, and that the structure of reality, as 
described in Vaiśesika,  can be discovered, generated and 
parsed purely formally. This shows that the categories are 
differentiated purely based on their formal structures and 
nothing  else.  The conclusive  proof  of  soundness  of  the 
system is part of our future work.



5.   Conclusion

The  idea  is  to  present  an  ontology  language  which  is 
graph-based and which can be formal and which shows the 
potential  to  be  scaled  up  in  future  to  cover  many other 
portions of reality like causation, cognition, language etc. 
We think we have accomplished that job in this paper by 
taking  Vaiśesika  ontology  as  an  example,  building 
generative as well as interpretative rules to derive the valid 
sentences (graphs) of Vaiśesika and showed that a rigorous 
formal ontology is possible. Since the focus of this paper is 
on  generative  and  interpretative  grammars  of  Vaiśesika 
and not on the rationale behind its categorial system there 
is  no  scope  for  comparing  this  with  other  existing 
ontologies  since,  in  our  knowledge,  there  is  no  other 
foundational ontology which has grammar(s) like ours. The 
only comparison we can draw with other ontologies is that 
they  are  (semi-)manually  constructed  while  ours  is 
generated. Here only the grammar is manually written but 
the  actual  ontological  graphs  are  computationally 
generated.  In  other  words  potentially  infinite  structures 
can be generated using a finite set of rules in our ontology 
whereas in others they need to actually come up with the 
potentially infinite structures (semi-)manually.

6.   Future Work

As mentioned earlier this paper is only the first step toward 
building  a  formal  ontology  which  envisages  to  cover  a 
major portion of reality – a long-term project  in its own 
right. We have covered only the locational contiguum, that 
too some portion of it, in this paper, and one could see how 
rigorous the study of  even such a small  portion can  be. 
This  is  purely  a  theoretical  work  and  for  any  fruitful 
applications to come out of this kind of work, one needs to 
formalize the remaining contigua, at least till the 4th one 
i.e.  expression  contiguum.  Our  immediate  priority  is  to 
prove the soundness of the system we presented till now in 
a foolproof manner, and then continue to extend the system 
till we formalize expression contiguum.
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