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Abstract— This paper presents Corredor, a human-centric-
sensing system that encourage people’s physical activity. The
main objective of Corredor is to help people, that suffer obesity,
during their workout as part of their treatment. Corredor uses
phone’s embedded sensors along with machine learning algo-
rithms to recognize human activities such as running, walking
and standing. Corrredor runs enterally in the user’s phone and
does not require any external server processing. In addition,
Corredor displays on the screen the followed route by the user,
indicating the segments where the user was running, walking or
standing. The system computes a set of 64 features from real-
time accelerometer data using a 5 seconds sliding window with
50% of overlapping. The computed features are used to train a
C4.5 decision tree which in turns is used to recognize workout
activities. After system evaluation, our results show that Corredor
achieves up to 93.7% overall accuracy. Finally, the application
saves the historical data and is able to show them using Google
Maps.

I. INTRODUCTION

Advancements in pervasive computing are rapidly changing
preventative healthcare. Under the status quo, the average
healthy individual visits the doctor rarely, perhaps just once a
year. The doctor assesses the patient and then may prescribe
medications and recommend behavior changes (reduce fat
consumption, exercise more, etc.). One year later, the patient
returns and this process is repeated. In the emerging new
model of health care, the patient carries sensors that monitor
health in real-time, as the patient goes about normal daily life
[7], [8], [10], [15], [18], [20]. A smart phone and cloud-based
services assess monitored data at a much higher frequency (on
the order of minutes or seconds, if needed). Here patients play
a more significant role in the management of their health. The
idea is to build Personal health systems which are designed
for use by the patient rather than the doctor, and ubiquitous,
meaning anywhere-anytime interaction with ones health via
mobile devices.

Physical activity is considered a preventive mechanism to
avoid and control problems such as obesity and psychological
stress. Both are well know issues in public health. Obesity is a
leading cause of death worldwide, with increasing prevalence
in adults and children. Obesity-related conditions include heart
disease, stroke, type 2 diabetes and certain types of cancer.
Medical costs associated with obesity were estimated at $147
billion; the medical costs for people who are obese were
$1,429 higher than those of normal weight [11]–[14], [21].

Taking these facts into consideration, in this paper, we
present Corredor, human-centric sensing system for activity
tracking and recognition with application in preventive health.
Physical activity is considered a preventive mechanism to
avoid and control problems such as obesity and psychological
stress. Both are well know issues in public health. The main
idea is to employ persuasive and behavioral techniques to keep
the patient engaged and motivated to meet health goals.

Corredor is a mechanism that allows people to track their
workout progress using smart phones which has potential
application in mHealth. Given the fact that people use their
phones on a daily basis and carry them almost every place,
this is an illustrious technology that could potentially help
solve this health epidemic. However, the sensor raw data are
not sufficient in order to identify people’s behavior. One of the
key challenges in creating useful and robust ubiquitous appli-
cations is context detection from noisy and often ambiguous
sensor data [5]. Thus, the proposed mechanism has two stages:
the training, and the testing. The first allows the application
learn the relation between sensor data and person’s activities
since different people run and walk in different way generating
different acceleration signals [16]. The testing stage identifies
person’s activities using a feature extraction algorithm in the
frequency and the time domains.

Our application allows users to track their running, walking,
or standing activities. The system has two modules, the activity
recognition module, and the visualization module. The first
recognizes, and reports to the user the performed activities and
their time duration; while the second module uses the phones
GPS and Wifi sensor to collect outdoor and indoor location
data, and allows users to track the followed route during her
workout showing the segments running, walking and standing.
This feature allows users to plan their route in terms of goals
during their workout.

The rest of the paper presents the related work to this project
followed by the system description, the experimental settings
and results. Finally, the conclusions are presented along with
some considerations for future research in this area.

II. RELATED WORK

The rapid development of mobile devices equipped with
very accurate sensors (e.g., accelerometers, cameras, GPS,
etc.) has facilitated the process of taking data about individuals
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and their surroundings. In addition, there are available external
sensors equipped with communication capabilities which allow
their integration with other mobile devices within Personal
Area Networks (PANs) or Body Area Networks (BANs) [16].
For instance, Scosche Rhythm Bluetooth Armband Pulse Mon-
itor is a device that measure the heartbeat and transmits it to
an Android application; this application monitors the burned
calories while the person’s workout [9].

On the other hand, human activity recognition has became
a useful tool for military, security, and, especially, for medical
applications [17]. In this last subject, for example, people
suffering of diabetes, obesity, or heart disease often require
to be monitored during their treatment.

Although several applications have been proposed for hu-
man activity recognition using smart phone, many of them
require additional devices such as external straps that the
patient must wear in order to sense data. This is the case
of Centinela which requires the BioHarnessTM BT chest
sensor strap manufactured by Zephyr [4]. On the other hand,
there exist several options in the android market that track
a users exercise and running routine. A few of the most well
known products are Nike+ [2], Runkeeper [3], and Ghost Race
Pro [1]. However, within these applications, the user is re-
quired to manually activate and specify the insensitive level of
activity. Our proposal is different because it introduces online
activity recognition. This recognition technology is unique in
the fact that is activates automatically. The commercial devices
available today are required to be manually turned on. Some
advantages of this approach include convince, accuracy and
privacy.

III. SYSTEM DESCRIPTION

We design an android application that allows the users to
track their running, walking, or standing activities. Users can
chose whether to manually input data or to use automatic
recognition module. These tasks can be used all day long
automatically or manually activated, see Figure 1.

Fig. 1. Main Portal

The system is organized in two main modules, the activity
recognition module, and the visualization module. The Corre-
dor’s activity recognition module is in turns subdivided in the

three two modules: collector module and the classification
module. The collector application collect ground true data,
which is used by the tester module to build the classier that will
be used later for activity recognition. The visualization module
uses the phone’s GPS and Wifi sensor to collect outdoor
and indoor location data. This data is stored in the phone’s
database and presented to the user using the Google Maps
API. Figure 2 shows the Corredor’s main modules and and
their interrelationships. The following are the main elements
of the Corredor.

Fig. 2. System architecture

Fig. 3. Collector application

A. Data collection

We created an Android application for data collection, the
application uses the phone’s accelerometer sensor for activity
recognition, and GPS for visualization. We collect the three
values associated with accelerometer data, namely the axes
x,y, and z at a sampling rate of 50Hz. On average, sensor
values were received every 5-10 ms. The data ground true
collection was performed by a single individual for running,
walking, and still. For running and walking, the phone was



held in the hand in various positions to simulate possible real-
life scenarios. For sitting still, the phone was in the pocket
and recorded data during normal desk work. Figure 3

B. Feature extraction

We compute a set of 64 features, 63 in the frequency
domain, and one in the time domain. Every time that we obtain
a new (x, y, z) acceleration sample we compute its magnitude
m using Equation1

m =
√
x2 + y2 + z2 (1)

We buffer up 64 consecutive magnitudes, namely,
{m0, . . . ,m64} and compute the Fast Fourier Transform,(FFT)
of each element in order to form a new frequency vector with
elements {f0, . . . , f63}. Finally, the last feature corresponds
to maxa = max{m0, . . . ,m64}, forming the feature vector
{f0, . . . , f63,maxa}.

The data was divided into five-second time windows. We
implemented the concept of sliding time windows, which over-
lapped by 50% as shown in Figure 4. Sliding time windows
are widely known to reduce classification error during activity
transition.

Fig. 4. Overlapping time window

C. Classification

Using the collection mechanism described ins section III-A
we build a ground true with label features of three activities
as show Figure 5.

Fig. 5. Ground True file

We download the ground true data from the phone and use
Weka to build a used the ground true to generate a J48 prune
decision three as shown in Figure6

The resulting classifier, namely the jar file is include as a
subroutine of the phone application and used along with the
FFT subroutine for classification in the production stage as
showed in Figure 7.

Fig. 6. J48 classifier

Fig. 7. Activity recognition process flow

D. Visualization

We used the GPS for outdoors and WiFi/Antena Triangula-
tion for indoors. We then broadcasted the inference activities
to the MAP application and mapped the GPS signals to the
activities. As result we obtained the following function:

The visualization module retrieve the inferred activities
store in the phone database as well as location coordates a
this time to generate a route map as show in Figure 8.

IV. EVALUATION

The accuracy of the classifier was evaluated using a cus-
tomized form of stratified ten-fold cross validation. Ten-fold
cross validation randomly splits the testing set into ten equally
sized subsets. The folds are stratified, which means each fold
contains a proportional amount of each class. For each fold,
we train on the other nine folds and test on the current fold,
and average together each folds classification accuracy for a



Fig. 8. Corredor’s visualization interface

TABLE I
CONFUSION MATRIX

Class Still Walking Running
Still 248 1 3

Walking 1 232 19
Running 5 22 225

total predicted accuracy. Table I presents the confusion matrix,
here the elements of main diagonal are significatively bigger
than the elements out of diagonal showing a low level of
false positives and true negatives. Table II shows the detail
accuracy per class, and its last line presents the weight average
over the three activist. Finally, Table III presents a shows the
number of correctly and incorrectly classified instances as well
as the mean and absolute classification errors. of the computed
statistical error estimation.

TABLE II
DETAIL ACCURACY BY CLASS

Class Tp Rate FP Rate Precision Recall F-Measure Roc Are
Still 0.984 0.012 0.976 0.984 0.98 0.986

Walking 0.921 0.046 0.91 0.921 0.915 0.95
Running 0.893 0.044 0.911 0.893 0.902 0.935
Weighted 0.933 0.034 0.932 0.933 0.932 0.957

avg

TABLE III
SUMMARY OF STATISTICAL ESTIMATORS

Correctly classified instances 705
Incorrectly classified instances 51

Kappa statistic 0.8988
Mean absolute error 0.051

Root mean squared error 0.2055
Relative absolute error 11.4796%

V. FUTURE WORK

In this work, we explore a preliminary approach to save
energy based on a modification of the popular C4.5 algorithm.
The main idea behind this modification is to take into account
not only information gain as a criteria for branch partition but

also energy consumption. The following section sketch the
main components of our approach.

A. The Power-Aware Decision Tree Algorithm

The Power-Aware Decision Tree algorithm (PAT) considers
the sensors’ power consumption along with feature’s infor-
mation gain in order to increase the accuracy of the activity
recognition process as well as the power efficiency. PAT
is based on the popular C4.5 algorithm developed by Ross
Quinlan, which greedily chooses splits on attributes to build a
decision tree by maximizing information gain [19].

B. PAT training stage

C4.5 uses the concept of information entropy to calculate
the level of uncertainty of an attribute split and compare it
with the information entropy without the split. The Kullback-
Leibler (KL) divergence (also known as information gain) is
the difference between those two information measures, and is
used as the criterion to generate the splits while the decision
tree is being built. The KL divergence is a way of comparing
two probability distributions, and is defined as follows [6].

Definition 1 (Kullback-Leibler Divergence): For two distri-
butions q(x) and p(x):

KLq|p ≡ 〈log q(x)− log p(x)〉q(x) ≥ 0

We introduce a new criterion for split selection that takes
into account not only the KL divergence, but also the knowl-
edge of sensor power efficiencies. The main idea is to create a
tree that favors a combination of the most power efficient and
the most informative attributes. Table IV shows the weights
assigned to each of the sensors that were used, with 1 being
the least power efficient and 10 being the most power efficient.
In actual applications, these weights would correspond to the
relative power efficiencies of the sensors.

We introduce a new criterion for split selection that takes
into account not only the KL divergence, but also the knowl-
edge of sensor power efficiencies. The main idea is to create a
tree that favors a combination of the most power efficient and
the most informative attributes. Table IV shows the weights
assigned to each of the sensors that were used, with 1 being
the least power efficient and 10 being the most power efficient.
In actual applications, these weights would correspond to the
relative power efficiencies of the sensors. It is important to note
that in our experiments we did not assign realistic weights to
the sensors...we assigned these weights so that we could test
the behavior of the algorithm. In actual applications, these
weights would correspond to the relative power efficiencies of
the sensors.

TABLE IV
WEIGHTS. IT MEANS LEAST POWER EFFICIENT AND 10 MEANS MOST

POWER EFFICIENT.

Accelerometer Gyro Gravity Linear Rotation
Acceleration Vector

2 1 10 4 8



Like C4.5, PAT chooses splits by finding the attribute that
will maximize the split criteria. The split criteria is a linear
combination of the Kullback-Leibler divergence and the power
efficiency of the attribute’s associate sensor. We control the
relative weights of the KL divergence and the power efficiency
with a parameter θ. This new split criteria S is defined as
follows:

VI. CONCLUSIONS

This paper presents Corredor, a human-centric sensing
platform for human activity recognition based upon human
acceleration data. An extensive evaluation was performed for
a set of 64 features, a J48 decision tree, eight classification,
and 5 seconds sliding window with a 50% of overlap . Overall,
the mean accuracy achieved was 93.2%. This result supports
the hypothesis that a energy efficient system based on only
acceleration data are enough to reach high labels of activity
recognition accuracy.
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