
Impact-minimizing Runtime Switching of Distributed
Stream Processing Algorithms

Cui Qin
Institute of Computer Science

University of Hildesheim
Universitätsplatz 1

D-31141 Hildesheim, Germany
qin@sse.uni-hildesheim.de

Holger Eichelberger
Institute of Computer Science

University of Hildesheim
Universitätsplatz 1

D-31141 Hildesheim, Germany
eichelberger@sse.uni-hildesheim.de

ABSTRACT
Stream processing is a popular paradigm to process huge
amounts of data. During processing, the actual characteris-
tics of the analyzed data streams may vary, e.g., in terms of
volume or velocity. To provide a steady quality of the anal-
ysis results, runtime adaptation of the data processing is de-
sirable. While several techniques for changing data stream
processing at runtime do exist, one specific challenge is to
minimize the impact of runtime adaptation on the data pro-
cessing, in particular for real-time data analytics.
In this paper, we focus on the runtime switching among
alternative distributed algorithms as a means for adapting
complex data stream processing tasks. We present an ap-
proach, which combines stream re-routing with buffering
and stream synchronization to reduce the impact on the
data streams. Finally, we analyze and discuss our approach
in terms of a quantitative evaluation.

Keywords
Data stream processing; runtime adaptation; impact-mini-
mizing adaptation enactment; algorithm switching

1. INTRODUCTION
Big data applications aim at processing huge or complex

data sets, which usually cannot be handled by traditional ap-
proaches. Distributed stream processing [2], i.e., continuous
processing of conceptually endless streams of data items, is a
popular approach to realize Big data applications. Depend-
ing on the actual application area, the stream characteristics
such as volume or volatility can vary over time. For exam-
ple, in the financial domain hectic markets can cause bursty
streams leading to changes of the stream characteristics of
several orders of magnitude. To cope with such situations,
adaptation of the data processing at runtime is desirable.

While approaches such as Borealis [3] or RTSTREAM
[17] provide adaptation capabilities for continuous stream

c©2016, Copyright is with the authors. Published in the Workshop Proceedings
of the EDBT/ICDT 2016 Joint Conference (March 15, 2016, Bordeaux, France)
on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper is permitted
under the terms of the Creative Commons license CC-by-nc-nd 4.0.

BDPR ’15 March 15, 2015, Bordeaux, FR

queries, such as changing the query program, they concen-
trate on a fixed set of database-like stream operators. In con-
trast, recent frameworks such as Apache Storm1 or Spark2

support arbitrary analysis algorithms, but currently do not
provide much support for runtime adaptation. Such arbi-
trary algorithms provide more freedom regarding the data
analysis tasks to be realized and, in particular, can them-
selves be distributed, i.e., realize complex analysis tasks such
as financial correlation computations in a scalable manner.

One specific way of adapting stream processing is to switch
among different algorithms, which provide similar function-
ality but operate at different runtime characteristics [5]. This
enables us to oportunistically utilize the better algorithm,
e.g., at high load a faster, but more expensive algorithm
such as a hardware co-processor, which can be utilized at
low load to other more urgent analyses. However, a naive
approach to switching can cause disturbances in the data
streams and, thus, affect subsequent processing or lead to
accidentally ongoing processing after the switch.

While adaptation for algorithms running on single nodes
can be achieved with existing techniques, the research ques-
tion in this paper is How to realize an impact-minimizing
runtime switching among alternative distributed (real-time)
data stream processing algorithms? At a glance, switching
an algorithm at runtime may appear rather similar to adapt-
ing the query plan in known approaches, but, in contrast, we
aim at arbitrary, distributed, potentially stateful data anal-
ysis algorithms. Our contribution is an approach for run-
time switching among distributed data analysis algorithms,
which aims at minimizing the impact on the data streams
that adaptation can cause, such as missing, repeated, dis-
ordered or (massively) delayed data items. Therefore, our
approach considers the memory state of the involved algo-
rithms and synchronizes the (common) output stream. We
show that our approach can perform a runtime switch in 60-
110 ms depending on the setting and that the output data
stream is not seriously affected. In this paper, we focus on
switching techniques and, therefore, making the actual de-
cision for adapting the data processing is out of the scope
and subject to future work.

The work we presented in this paper has been performed
in the EU-funded project QualiMaster3, which aims at build-
ing a real-time adaptive data processing infrastructure. For
demonstration, the project creates algorithms and applica-

1http://storm.apache.org/
2http://spark.apache.org/
3http://qualimaster.eu



tions for analyzing systemic market risks. In this context,
we apply our approach to enable the setting described above,
i.e., to dynamically switch from a software-based execution
to a hardware co-processor wrapped by a distributed soft-
ware algorithm, e.g., to cope with dynamic load changes.

The remainder of this paper is structured as follows: In
Section 2, we discuss related work. In Section 3, we intro-
duce our approach in terms of two variants, a simple one
as basis for later analysis and an advanced runtime switch-
ing including state maintenance and stream synchronization.
We evaluate both variants empirically in Section 4. Finally,
in Section 5 we conclude and provide outlook on future work.

2. RELATED WORK
In this section we discuss related work in terms of adap-

tive stream processing engines and mechanisms for adapting
the processing. For minimizing the impact, it is important
that the target algorithm takes over the processing as soon
as possible and that the produced output stream does not
have duplicated or missing items (in our context even the se-
quence of output items is not changed). Therefore, we also
discuss work on migrating the memory state of algorithms
at runtime and on synchronizing (output) data streams.

Several adaptive stream processing engines are de-
scribed in literature, for example Borealis [3], RTSTREAM
[17], CAPE [11, 13] or BiStream [10]. Typically, these ap-
proaches focus on continuous queries over data streams ex-
pressed in terms of a query plan consisting of (fixed) database-
like operators such as project or join. In contrast, recent
stream processing frameworks such as Storm or Heron [9]
allow the data analyst to implement own operators (we call
algorithms). However, currently these frameworks mostly
focus on static processing, e.g., called ”topology” in Storm,
and do not provide much support for adaptive processing.

Different mechanisms to adapt stream processing
are proposed in the literature. We now provide an overview
of the most closely related mechanisms. Data admission
(also called load shedding) [3, 17] is frequently applied to
handle overload situations. Scaling along the compute re-
sources is a further mechanism to counter high and varying
load. Among others, Kulkarni et al. [8] adapt thread prior-
ities, Lin et al. [10] adapt the amount of processing servers
or the authors of [11, 14] migrate operators among servers to
balance the load. Further, the structure of the data process-
ing can be adapted without changing its semantics. E.g.,
the authors of [11, 13] dynamically rewrite the query plan
by running the new plan (or changed parts) in parallel until
the new plan can safely take over (called parallel track strat-
egy) [13] or to re-route data streams [4]. Another option is
to make the streams adaptive, e.g., in terms of their transfer
batch size [14, 16] or their implementing parallel connections
[16]. Probably, the closest approach to ours is by Hwang et
al. [6], who switch among active and standby version of
the same operator to recover from processing errors, but
not among alternative algorithms. Although several mecha-
nisms are available to adapt data stream processing at run-
time, the related evaluations mostly do not take the impact
on the data streams into account. Among the work cited
above, the overall effect on throughput and latency is only
evaluated in [10, 16], while Wei at al. [17] also measure
data completeness (10 seconds processing disruption at 25k
input rate) and Hwang et al. [6] achieve a recovery time
of 50-170ms. Although there is similar work, we focus on

switching among distributed user-defined algorithms, while
minimizing the impact on the processed data streams.

When switching among stateful algorithms, it is impor-
tant to enable the target algorithm to take over processing
at a certain point in time. Therefore, the memory state
must either be built up or it must already be up-to-date.
One type of strategies is based on running operators or new
query plans on demand in parallel to build up the required
state, e.g, the parallel track strategy in [13]. Hwang et al.
[6] describe an expensive strategy to perform parallel pro-
cessing on standby operators. Another type is based on
transferring memory among similar stateful stream opera-
tors [13], in particular transferring smaller partitions can be
rather efficient [11, 14]. To avoid state transfer, Wu et al.
[18] rely on a state sharing mechanism while changing the
parallelization of stateful operators. Moreover, Aly et al. [1]
incrementally complete missing states along the query plan.
However, these strategies are typically only effective if there
is a common memory state. In contrast, our work deals with
arbitrary user-defined algorithms, which can even include al-
gorithms for hardware co-processors optimized by different
memory structures. Thus, we currently rely on a parallel
track strategy for warming-up alternative algorithms.

When the actual runtime switch happens, in a short time
frame data items may be duplicated or items may even be
missing without further consideration. This can be miti-
gated by explicitly synchronizing the output stream.
Some synchronization approaches are discussed in literature,
typically relying on some notion of a synchronized (wall)
time. For example, in media stream processing, Rothermel
et al. [12] calculate the target media time for synchronizing
distributed media streams from the synchronized time in the
compute cluster. For continuous query processing, Ji et al.
[7] buffer and sort disordered items according to their times-
tamps to achieve a higher result accuracy. However, in our
context a sequential item identifier is more appropriate as
the alternative algorithms typically process data at different
speed and so timestamps are usually misleading.

In summary, to our very best knowledge there are no ap-
proaches on dynamically switching among arbitrary data
stream processing algorithms, which explicitly aim at mini-
mizing the impact on the involved data streams.

3. DYNAMIC ALGORITHM SWITCHING
In this section, we describe our approach to the runtime

switching among distributed data stream analysis algorithms
at low impact. More specifically, we introduce first some
terms and discuss requirements characterizing the poten-
tial impact on the data streams. Then, we present two ap-
proaches: In Section 3.1, we discuss simple algorithm switch-
ing, which we use as a basis for the evaluation in Section 4.
In Section 3.2 we present an advanced approach considering
memory state and stream synchronization.

Dynamic algorithm switching performs at runtime a switch
among alternative algorithms, e.g., from an algorithm fam-
ily of functional similar algorithms having different runtime
trade-offs [5]. We call the currently running algorithm ac-
tive, the remaining alternative algorithms passive and the
passive algorithm that shall be enabled by the runtime switch-
ing the target algorithm. Our goal is to minimize the impact
on the characteristics of the processed data streams when
switching data stream algorithms at runtime. We opera-
tionalize this goal in terms of four requirements, actually



a refinement of the ”process and respond instantaneously”
requirement from the real-time stream processing require-
ments by Stonebraker et al. [15]:

R1. No missing or duplicated data: Switching an al-
gorithm at runtime must not cause data loss or dupli-
cation of data items.

R2. Transparency: Although stream processing systems
shall be resilient against stream imperfections [15], in
our project adaptation mechanisms shall maintain the
item sequence, i.e., be transparent in this regard. Thus,
as a refinement of R1, an approach must not disturb
the item sequence produced by the active algorithm,
in particular not while switching.

R3. Minimizing the switching time: Switching algo-
rithms at runtime shall happen as fast as possible to re-
duce the time for causing disturbances to the streams.

R4. Minimizing effects on stream characteristics: In
addition to R3, also the effect on further (application-)
relevant stream characteristics such as latency, through-
put or volatility shall be minimized.

In this paper, we focus on throughput as one particular
stream characteristic (R4). Other characteristics as well as
non-functional aspects such as resource consumption are out
of scope of this paper due to space limitations. From a tech-
nical point of view, we require that alternative algorithms
share the same input and output (item) types, respectively.
Further, we assume that the processing environment is ro-
bust, i.e., tuples are processed without failures.

3.1 Simple approach
We introduce now a simple approach for switching among

alternative distributed algorithms, which basically relies on
re-routing the input stream at runtime. We use this ap-
proach as a baseline in our analysis in Section 4.

Figure 1 illustrates the approach in terms of a data flow di-
agram, i.e., nodes represent (distributable) data processors
and edges the data flow. Without loss of generality, we illus-
trate our approaches using just two alternative algorithms.
A setting with multiple alternatives can be constructed sim-
ilarly. In Figure 1, the processors P1,1 to P1,n constitute
Algorithm1 (akin P2,1 to P2,m for Algorithm2), whereby the
data flow within the respective algorithm is not relevant for
our discussion. In addition, two guarding processors con-
trol input (Switching Element) and output (Join Element)
streams. Actually, these guards can be realized as part of
proceeding or succeeding processors to save resources.

Switching 
Element

...

...
Algorithm2

X

Algorithm1

Join 
Element

2

1 switch

2

P1,1 P1,n

P2,1 P2,m

Legend
stream processor algorithm

√

event

Figure 1: The simple switching approach.

Let us assume that Algorithm1 is the currently active al-
gorithm. A signal, i.e., an asynchronous event sent to a
processor, indicates the actual need to switch the active al-
gorithm to another target algorithm 1©. In the simple ap-
proach, the switch signal causes an immediate re-routing of
the data streams 2©, i.e., the stream to Algorithm1 is dis-
abled and the alternative stream to Algorithm2 is enabled
at the same time. No action is needed in Join Element .

Actually, the simple approach does not consider queuing
effects in the active algorithm, which can cause the algo-
rithm to continue processing even after the switch. Thus,
this approach can significantly increase the switching time
and lead to inconsistent results as the processing of both
algorithms can overlap in an uncontrolled fashion. In sum-
mary, the simple approach likely fails regarding R1 - R4.

3.2 Advanced approach
In this section, we discuss an advanced approach, which

aims at minimizing the impact on the underlying data streams
through realizing the requirements R1 - R4. The core idea
of this approach is to combine four techniques into a single
approach, namely:

• Output stream control to disable the output stream
of the actual algorithm upon switch (R3, R4) and to
avoid accidental data overlap (R1).

• Acknowledgements and buffer transfer to track
and stop processing in the actual algorithm during the
switch (R1 - R3). Therefore, we (conceptually) send
an acknowledgment signal for each item processed by
an algorithm to its input buffer, so that incompletely
processed items can be identified and transferred to
the target algorithm. As the transfer time depends on
the amount of buffered items, we aim at an improved
mechanism in future work.

• State maintenance to prepare the state of the target
algorithm so that it can safely take over processing at
a distinct point in time (R3, R4). Currently, we rely
on a variant of the parallel track strategy [13], i.e.,
to run active and target algorithm for a time ∆tm in
parallel to enable the target algorithm to create and
stabilize its state. Actually, ∆tm depends on the in-
volved algorithms and can, e.g., be the time frame of
a sliding window. As mentioned above, relying on a
parallel track strategy is due to our project context,
where we also consider hardware co-processors.

• Output synchronization based on unique item iden-
tifiers to ensure the output item sequence and, thus,
transparency according to R2. This is important, as
the involved algorithms may process data with a dif-
ferent latency.

Combining these four techniques in a distributed process-
ing environment requires the exchange of various types of
signals. Figure 2 a) illustrates the design of the advanced
approach. Basically, the advanced approach is an extension
of the simple approach in Section 3.1, and also includes two
alternative algorithms and two guarding processors. For en-
abling acknowledgment and buffer transfer, we equip both
algorithms with an entrance queue. Conceptually, we rep-
resent this as two individual processors (Intermediary1 and



Intermediary 2

Intermediary 1Switching Element

...

...

Algorithm2

56

X X X

4

Algorithm1

Join 
Element

passivate

passivate

disable

headId lastProcessedIdtransferred

emit7
8

synchronized

a)

ack

ack

switch
1

P1,1 P1,n

P2,1 P2,m

√
√

2

3

3

9

Algorithm 1

t0

Algorithm2

∆tm∆ts∆tt

b)

Figure 2: The design of the advanced switching approach in terms of a) signals and b) timing.

Intermediary2) so that the queues can be maintained inde-
pendently. A specific implementation may also be based on
the queues of P1,1 or P2,1, respectively. The queues in the
intermediary processors remove an item only when it is fully
processed by the last processing node of the respective algo-
rithm. This is indicated by an acknowledgment signal (ack
in Figure 2) sent by P1,n or P2,m, i.e., the last node of the
respective algorithm. Thus, the items in the queues are ei-
ther pending to be processed or emitted to the respective
algorithm but not fully processed yet. Moreover, we uti-
lize a further queue in the Switching Element to control the
overall stream ingestion.

Let again Algorithm1 be the currently active algorithm
and let t0 be the point in time when Switching Element
receives the switch signal 1©. In addition to the overall
design depicted in Figure 2 a), we illustrate the individ-
ual phases of the approach in the timing diagram in Fig-
ure 2 b). The switch signal initiates the runtime algorithm
switching. First we warm-up Algorithm2, i.e., we run Algo-
rithm2 in parallel to build up its state. Therefore, we acti-
vate the stream to Algorithm2 by duplicating the input items
in Switching Element 2©. At the end, Join Element passes
only the items of the active algorithm, i.e., it discards the
output of the passive algorithms, in particular the output
of Algorithm2 in the warm-up phase. Now, both algorithms
process the input stream in parallel for ∆tm.

The actual switch happens at t0+∆tm as indicated in Fig-
ure 2 b) by performing the output synchronization, i.e.,
Intermediary1 negotiates with Intermediary2 the last pro-
cessed item in Algorithm1 as a basis for the queue transfer.
During switching, each item is queued in the intermediary
processors along with a sequential identifier indicating the
arrival order of the items. Let lastProcessedId be the identi-
fier of the last item emitted to Algorithm1. However, ongo-
ing data processing during the synchronization may invali-
date lastProcessedId . Therefore, we first passivate 3© both
algorithms during the synchronization and disable 4© also
the output of results in P1,n to avoid that acknowledgment
signals disturb the synchronization. P1,n confirms the pas-
sivation (not shown on Figure 2) so that Intermediary1 can
now send lastProcessedId to Intermediary2 5©. We denote
the time needed for synchronization as ∆ts.

Let headId be the identifier of the head of the queue in
Intermediary2. As the involved algorithms may operate at
a different speed, we must consider three cases for the syn-
chronization (illustrated as queues for the intermediary pro-
cessors in Figure 3):

a) If headId = lastProcessedId , both algorithms are running
at the same speed. No items must be transferred and Al-
gorithm2 can immediately take over the processing from
Algorithm1 as shown in Figure 3 a).

b) If headId < lastProcessedId then Algorithm1 is faster than
Algorithm2. In this case, no items must be transferred,
but the items [headId , lastProcessedId ] must be skipped
as they would cause duplicated results. For example, in
Figure 3 b) items [499, 500] have been processed and
must to be skipped.

c) If headId > lastProcessedId , items (lastProcessedId , hea-
dId) must be transferred to Intermediary2. Therefore,
Intermediary2 sends the headId to Intermediary1 6© and
initiates the queue transfer, i.e., Intermediary1 sends un-
processed items via network to Intermediary2. Let ∆tt
be the transfer time. At tt = t0+∆tm+∆ts+∆tt, Inter-
mediary2 is notified about the end of the queue transfer
7© to prepare for regular items from Switching Element .
In the example in Figure 3 c), the lower queue is pro-
cessed faster than the upper queue. So the items (500,
503) must be transferred to avoid a gap.

Due to the ack signals from P2,m, Intermediary2 can track
whether all data items for warm-up have been processed.
As soon as synchronized items are passed to Algorithm2,
Intermediary2 sends an emit signal 8© to P2,m enabling the

500501502

503504505

lastProcessedId

headId
c)

500501502

499500501

lastProcessedId

headIdb)

500501502

500501502

lastProcessedId

headIda)

Figure 3: Three cases of output synchronization.



output of processed data to Join Element . To minimize the
switching time, Algorithm2 processes synchronized items in
parallel to the queue transfer, i.e., it starts processing real
data already during queue transfer. Finally, P2,m confirms
the activation of the output stream (not shown in Figure
2). In turn, Intermediary2 notifies Switching Element about
the end of the synchronization 9© as well as that Algorithm2

took over the processing and Algorithm1 is discarded.
As discussed, the advanced approach uses a combination

of signals, queue transfer, state warm-up and output syn-
chronization to reduce the impact of switching among dis-
tributed algorithms at runtime. In this approach, the critical
period is ∆ts when synchronization happens and no pro-
cessing takes place. During queue transfer, Algorithm2 can
already take over processing. Due to the warm-up phase,
the overall switching time is at least of ∆tm+∆ts, but the
queue transfer may cause a peak load of items to be pro-
cessed. However, during the warm-up phase, we utilize the
processing resources for two algorithms in parallel. As men-
tioned already above, optimizing the resource consumption
is out of the scope of this paper.

Realizing such a complex signal-based approach requires
adequate support for the data analyst, e.g., a framework or
code generation as we do in the QualiMaster project.

4. EVALUATION
We present now an evaluation of the approaches discussed

in Section 3. The goal of the evaluation is to analyze and
validate the actual impact of the proposed approaches with
respect to requirements R1 - R4. Therefore, we evaluate
in this section both, the simple approach as a baseline as
well as the advanced approach. In particular, we focus on
the impact on the data streams, i.e., the time for perform-
ing an algorithm switch (R3) and, as mentioned above, the
throughput as a measure of (R4). In addition, we analyze
the realization of R1 and R2. In this section, we discuss first
the environment, the implementation of the approaches and
the settings we used for conducting the evaluation. Then,
in Section 4.1 we evaluate the simple approach and the ad-
vanced approach in Section 4.2.

Environment. We conduct our experiments on a Storm
(version 0.9.5) cluster composed of one Nimbus machine for
managing topologies, 6 worker machines for distributed pro-
cessing and three Zookeeper instances (version 3.4.6) for
managing the workers. Each machine is equipped with an
Intel(R) Core(TM)2, 1.86GHz CPU and runs Ubuntu 12.04.4
LTS as well as Java JDK version 1.7.0 71. All machines in
the cluster are connected over a dedicated network switch via
Gigabit-Ethernet at a transfer rate of around 100MByte/s.
In addition, we synchronize the system clocks of all machines
using the Network Time Protocol (NTP) in order to enable
comparisons of the timestamp-based logs written during the
experiments. Due to time synchronization, the actual time
difference among the machines is less than 3 ms.

Implementation. We implemented both approaches dis-
cussed in Section 3 as of Storm topologies consisting of pro-
cessors called Bolts and data sources called Spouts. The
Storm mechanisms for guaranteeing the processing of each
item already provide us with an implementation of the ac-
knowledgment signals. We realized the other signals in terms
of Zookeeper change notifications, i.e., when data is writ-
ten by the sender into a dedicated Zookeeper node, the re-
ceiver is notified by the Zookeepers about the change and

can react on the signal data. All processors discussed in
Section 3 except for the intermediary ones are implemented
as Bolts. As Bolts work item-wise and Spouts operate asyn-
chronously and their internal queues are not accessible, we
realize the intermediary processors in the advanced approach
as Spouts with explicit queues. In more detail, we use a
dedicated input queue receiving input items and an output
queue temporarily storing sent and pending items, remov-
ing them upon acknowledgement signals. The connection
between the Switching Element and the intermediate pro-
cessors are realized as network connections. For the experi-
ments, a single Spout realizes the stream ingestion and pro-
duces sequential integer items at a configurable rate. For
achieving repeatable experiments, we use simple distributed
algorithms, which consist of a processor that just passes the
received input data. To simulate performance differences,
the algorithms can be configured with a certain latency (de-
lay) per item. For obtaining experimental data, a processor
records the individual arrival time per item in a processor-
specific log file. Running such a topology without delays in
the algorithms and no switching shows that logging does not
significantly influence the nominal throughput.

Setup. In our experiments, we use a constant ingestion
frequency of 1000 items per second. Algorithm1 is the active
algorithm at the beginning of each experiment. For both
approaches, we perform two experiments, one with delay-
free (near-ideal real-time) algorithms and one to analyze the
behavior at a certain load. More specifically, in the load
situations Algorithm1 acts as a slow algorithm with a delay
of 30ms per item. Based on the window time of a specific
scenario in our project context, we use 30s as warm-up time
in this evaluation. The experiments are implemented as Java
programs managing the topologies and issuing the switch
signal so that the experiments become repeatable.

We discuss now the results of evaluating the simple and
the advanced approach. For each experiment, we repeatedly
run the respective experiment implementation at least five
times in order to detect deviations. While we identified and
fixed deviations in pre-experiments, there were no signifi-
cant deviations in the final experiments, so that we report
results of typical executions in this paper. Although the log
files written during the experiments are recoded in terms of
milliseconds and the analyses were done based on these logs,
we illustrate below the results by overview figures in terms
of seconds time unit.

4.1 Simple approach
In this section, we discuss the evaluation of the simple

approach presented in Section 3.1. As the best case, both
algorithm runs without delay, i.e., they do not queue data.
In this case, our experiments show no negative impact on the
throughput. However, the more interesting case includes an
algorithm that processes at a certain latency so that queuing
effects can occur.

Figure 4 illustrates the throughput, i.e., the number of
data items per second logged in the Join Element . In the
beginning, the data processing is running on the slower Al-
gorithm1. At 1©, we send the switch signal and cause a re-
routing of the data streams from Algorithm1 to Algorithm2.
As depicted in Figure 4, the throughput after the switch
fluctuates for around 15 seconds. To explain this effect, we
analyzed the logs written by our implementation of the pro-
cessors. By comparing the timestamps of the items, we re-



Algorithm1

Algorithm2

active 
algorithm

1

2 3

��

���

����

����

����

����

� � � � � � � � � 	 
 �� �� �� �� �� �� �� �� �	 �
 ��

�

�

�

�

�

�

�

�

	

�




�

�

�

�

�������

Figure 4: Throughput caused by the simple ap-
proach when switching from a slower algorithm.

alized that the increasing throughput at 2© is due to the
queuing of items in the preceding Switching Element caused
by the slow algorithm. Instead of coping with the queued
items immediately, in this experiment, the processing of the
queued items is deferred by 3 seconds. Further, the reduced
throughput at 3© is caused by the queuing of items in the
(internal queues of) Algorithm1 due to its configured latency.
The queuing in Algorithm1 keeps its processors still active
as indicated by the timing bars in Figure 4 although the
data stream is already processed by Algorithm2. Thus, the
simple approach significantly increases the switching time
until all items queued in the Algorithm1 are processed. In
this experiment, this leads to inconsistent results as both
algorithms overlap processing after the switch. The logs of
Algorithm1 and Algorithm2 indicate that 1427 out-of-order
items are caused by the ongoing processing in Algorithm1,
which affects the overall output accuracy. As a result, we
conclude that the simple approach does not fulfill R1 - R4.

4.2 Advanced approach
In this section, we evaluate the advanced approach pre-

sented in Section 3.2 in terms of both, switching among the
same speed algorithms as well as from a slower algorithm.

Figure 5 depicts the throughput while switching among
algorithms operating at no delay. After the actual switch
signal arrives at 1©, both algorithms run in parallel for the
warm-up phase until 2©. As items are processed by both
algorithms at the same speed, no items are transferred (the
first case in Section 3.2) as indicated by the experiment logs.

Algorithm1active 
algorithm

Algorithm2

warmup phase

1

Algorithm2

2

�

���

���

���

���

����

����

� �� �� �� �� �� ��

�

�

�

�

�

�

�

�

	

�




�

�

�

�

�������

Figure 5: Throughput of the advanced when switch-
ing between algorithms at the same speed.

Algorithm1active 
algorithm

Algorithm2 Algorithm2

warmup phase

21

��

���

����

����

����

����

����

����

����

� � �� �� �� �� �� ��

�

�

�

�

�

�

�

�

	

�




�

�

�

�

�������

3

Figure 6: Throughput of the advanced when switch-
ing from a slower algorithm.

At 2©, Algorithm1 is terminated and Algorithm2 takes over
the processing. Based on the experiment logs, we also found
that actually no items are synchronized. Further, on the
output steam neither items are missing nor duplicated (R1).
Moreover, the output item sequence corresponds first to the
sequence produced by Algorithm1 and, after the switch, by
Algorithm2 (R2). The actual impact is a short reduction of
the throughput to 950 items, which is caused by the output
synchronization. In this experiment, we identified the actual
switching time as 60ms from the logs. This is reasonable as
6 signals are exchanged and in our cluster the time between
sending and receiving an event is in average around 10 ms.

Figure 6 illustrates the throughput while switching from a
slower algorithm at 30 ms delay to a faster one. The actual
switch signal arrives at 1© and again both algorithms run in
parallel until 2©, the end of the warm-up phase of 30s. Please
note that during the warm-up phase the output is still pro-
duced by the slower Algorithm1. The output synchroniza-
tion starts at 2©. Switching from a slower algorithm, i.e., the
third synchronization case discussed in Section 3.2, leads to
a queue transfer from Algorithm1 to Algorithm2. In this ex-
periment, 2889 items are transferred and the total transfer
takes ∆tt=820 ms as indicated by the experiment logs. As
discussed in Section 3.2, Algorithm2 starts processing data
in parallel to the queue transfer so that the switching time
is not dominated by ∆tt. However, several transferred items
arrive in short time at Algorithm2 and lead to a throughput
peak 3©. As we analyzed from the logs, in this experiment
the actual switching time takes 106 ms, mostly due to the 9
signals (each taking around 10 ms) sent during the switch.

5. CONCLUSIONS AND FUTURE WORK
Distributed data stream processing is a popular approach

to realize Big Data Applications. While processing data
streams, the actual stream characteristics may change dra-
matically, e.g., when sentiments change in the Social web
or when stock markets become hectic. To cope with such
changes during processing and to provide a steady output
quality, data processing must adapt to the actual context.

In this paper, we discussed the runtime switching among
(distributed) data processing algorithms as one specific form
of realizing adaptive stream processing. We introduced an
advanced switching approach, which takes queuing effects
into account, maintains the output sequence, and, to re-
duce the switching time, utilizes parallel track processing
to warm-up the target algorithm. We implemented both



approaches on Apache Storm, performed experiments and
analyzed the results. As expected, plain stream re-routing
suffers from queuing effects, item duplication and requires
an overall switching time of more than 15 s. In contrast,
on our cluster, the advanced approach reduces the switch-
ing time to 60 ms (algorithms with no latency) or less then
110 ms (at 30 ms latency) without disturbing the output se-
quence. While effects regarding timeliness occur due to the
processing of queued items, we showed the effectiveness of
our approach in reducing the impact on the data streams.

Currently, we integrate the advanced approach into the
model-based generation of topologies developed in the Qual-
iMaster project to unburden the data analyst from man-
ually implementing efficient adaptation that require queu-
ing and complex signal interaction. Ultimately, this will
include the generation of transparent integrations of hard-
ware co-processors. Here, initial results in combination with
dynamic switching among algorithms are promising.

In the future, we plan to improve our approach, in par-
ticular to speed up the events, to limit the queue transfer
time and to research state transfer mechanisms that do not
need a parallel warm-up, in particular for switching between
software-based processing and hardware co-processors. Fur-
thermore, we aim at taking further stream characteristics
into account as well as improving the overall resource usage,
e.g., by allocating resources only for active algorithms and,
if needed, during the warm-up phase. Moreover, we will con-
sider the impact of switching on the result quality through
quality measures and consider how processing failues can be
handled to guarantee robustness.

6. ACKNOWLEDGMENTS
This work was partially supported by the European Com-

mission in the 7th framework programme through the Qual-
iMaster project (grant 619525).

7. REFERENCES
[1] A. M. Aly, W. G. Aref, M. Ouzzani, and H. M.

Mahmoud. JISC: Adaptive Stream Processing Using
Just-In-Time State Completion. In International
Conference on Extending Database Technology,
(EDBT’ 14), pages 73–84, 2014.

[2] H. C. M. Andrade, B. Gedik, and D. S. Turaga.
Fundamentals of Stream Processing: Application
Design, Systems, and Analytics. Cambridge University
Press, 2014.

[3] C. Balkesen, N. Tatbul, and T. M. Özsu. Adaptive
Input Admission and Management for Parallel Stream
Processing. In International Conference on Distributed
Event-based Systems (DEBS ’13), pages 15–26, 2013.

[4] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A.
Shah. TelegraphCQ: Continuous Dataflow Processing.
In International Conference on Management of Data
(SIGMOD ’03), pages 668–668, 2003.

[5] H. Eichelberger, C. Qin, K. Schmid, and C. Niederée.
Adaptive Application Performance Management for
Big Data Stream Processing. In Symposium on
Software Performance (SSP ’15), 2015.

[6] J.-H. Hwang, M. Balazinska, A. Rasin, U. Çetintemel,
M. Stonebraker, and S. Zdonik. High-availability

algorithms for distributed stream processing. In
International Conference on Data Engineering (ICDE
’05), pages 779–790, 2005.

[7] Y. Ji, H. Zhou, Z. Jerzak, A. Nica, G. Hackenbroich,
and C. Fetzer. Quality-Driven Continuous Query
Execution over Out-of-Order Data Streams. In
International Conference on Management of Data
(SIGMOD ’15), pages 889–894, 2015.

[8] D. Kulkarni, C. V. Ravishankar, and M. Cherniack.
Real-time, Load-adaptive Processing of Continuous
Queries over Data Streams. In International
Conference on Distributed Event-based Systems
(DEBS ’08), pages 277–288, 2008.

[9] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli,
C. Kellogg, S. Mittal, J. M. Patel, K. Ramasamy, and
S. Taneja. Twitter Heron: Stream Processing at Scale.
In International Conference on Management of Data
(SIGMOD ’15), pages 239–250, 2015.

[10] Q. Lin, B. C. Ooi, Z. Wang, and C. Yu. Scalable
Distributed Stream Join Processing. In International
Conference on Management of Data (SIGMOD ’15),
pages 811–825, 2015.

[11] B. Liu, Y. Zhu, M. Jbantova, B. Momberger, and E. A.
Rundensteiner. A Dynamically Adaptive Distributed
System for Processing Complex Continuous Queries.
In International Conference on Very Large Data Bases
(VLDB ’05), pages 1338–1341, 2005.

[12] K. Rothermel and T. Helbig. An adaptive protocol for
synchronizing media streams. Multimedia Systems,
5(5):324–336, 1997.

[13] E. A. Rundensteiner, L. Ding, Y. Zhu, T. Sutherland,
and B. Pielech. CAPE: A Constraint-Aware Adaptive
Stream Processing Engine. In N. A. Chaudhry,
K. Shaw, and M. Abdelguerfi, editors, Stream Data
Management, pages 83–111. Springer, 2005.

[14] M. Shah, J. M. Hellerstein, S. Chandrasekaran, M. J.
Franklin, et al. Flux: An adaptive partitioning
operator for continuous query systems. In
International Conference on Data Engineering (ICDE
’03), pages 25–36, 2003.

[15] M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8
requirements of real-time stream processing. SIGMOD
Rec., 34(4):42–47, 2005.

[16] R. Tudoran, O. Nano, I. Santos, A. Costan, H. Soncu,
L. Bougé, and G. Antoniu. JetStream: Enabling High
Performance Event Streaming Across Cloud
Data-centers. In International Conference on
Distributed Event-Based Systems (DEBS ’14), pages
23–34, 2014.

[17] Y. Wei, S. H. Son, and J. A. Stankovic. RTSTREAM:
real-time query processing for data streams. In
International Symposium on Object and
Component-Oriented Real-Time Distributed
Computing (ISORC ’06), pages 141–150, April 2006.

[18] S. Wu, V. Kumar, K.-L. Wu, and B. C. Ooi.
Parallelizing Stateful Operators in a Distributed
Stream Processing System: How, Should You and
How Much? In International Conference on
Distributed Event-Based Systems (DEBS ’12), pages
278–289, 2012.


