
Operator and Workflow Optimization
for High-Performance Analytics

Hans Vandierendonck, Karen L. Murphy, Mahwish Arif,
Jiawen Sun and Dimitrios S. Nikolopoulos

∗

Queen’s University Belfast
Belfast, United Kingdom

{h.vandierendonck,k.l.murphy,m.arif,jsun03,d.nikolopoulos}@qub.ac.uk

ABSTRACT
We make a case for studying the impact of intra-node par-
allelism on the performance of data analytics. We identify
four performance optimizations that are enabled by an in-
creasing number of processing cores on a chip. We discuss
the performance impact of these opimizations on two analyt-
ics operators and we identify how these optimizations affect
each another.

Keywords
Data analytics; high-performance analytics; intra-node par-
allelism

1. INTRODUCTION
In the era of big data, data analytics represent an increas-

ing fraction of the processing cycles spent in data centres.
While in classical data mangement and analytics, operators
could be described within the bounds of the SQL domain-
specific language, this is no longer the case with data ana-
lytics for big data. In big data, the operators are diverse, as
is the data they are operating on, and can involve any algo-
rithm to transform, classify or structure the data at hand.
As the structure of the data and the associated operators
are ill-defined, so is the scope of data analytics operators.
In order to achieve low processing times, operators require

careful design and must be highly optimized. Where efficient
SQL statements may, to a large extent, be written by domain
experts and automatically optimized, this is definitely not
the case for analytics operators. Moreover, optimization of
the operators is often counter-intuitive as it involves sparse
data sets, which are less deeply covered in text books and as

∗This work is supported by the European Community’s
Seventh Framework Programme (FP7/2007-2013) under
the ASAP project, grant agreement no. 619706, and
by the United Kingdom EPSRC under grant agreement
EP/L027402/1.

c⃝2016, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2016 Joint Conference (March 15, 2016, Bor-
deaux, France) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0
MEDAL ’16 March 15, 2016, Bordeaux, France

such less familiar to developers. Pitfalls exist that tend to
make algorithms on sparse data sets memory-bound where
they could be more efficient and compute-bound. As such,
libraries with high-performance implementations of common
operators are provided [3, 6, 13].

While individual operators are commonly provided by var-
ious libraries, a useful computation typically requires a work-
flow that links together multiple operators. Very often, these
operators communicate through data stored on disk, which
induces redundant operations, such as I/O, involving disk
access, parsing and data conversions. An alternative solu-
tion is to create single binaries that encapsulate a complex
workflow [14]. Such a solution has the potential of signifi-
cantly higher processing rates by avoiding unnessecary I/O.

This paper presents techniques for optimizing operators
and workflows in order to achieve high-performance ana-
lytics. Within this area, we identify and characterize four
widely applicable optimisations. 1. Assuming (highly) par-
allel nodes (Moore’s Law predicts that all future nodes will
be increasingly more parallel), we demonstrate that utiliz-
ing parallelism within operators is extremely important to
improve performance. The motivation behind using par-
allelism are the observations that (i) parallelism allows to
hide I/O latencies, and (ii) many analytics problems are
compute-bound rather than I/O-bound, an observation that
goes against intuition [2, 11].

2. Input and output contribute to a large proportion of
the execution time due to the size of data sets and the poten-
tially low amount of computation performed per byte trans-
ferred. I/O operations benefit, however, also from intra-
node parallelism, allowing on the one hand to read indepen-
dent files concurrently, and on the other hand overlapping
data processing with disk and network access latency.

3. While big data frameworks often steer towards dump-
ing intermediate data sets to disk, the overhead of I/O and
storing intermediate data sets are significant. This overhead
can be avoided by fusing operators in workflows into single
executable images and by feeding the data from one operator
to the next.

4. The choice of internal data structures used in analytics
operators is determining for the performance of the opera-
tor. We demonstrate a 3.4 fold speedup by interchanging
one standardized data structure for another. However, this
result depends also on the degree of intra-node parallelism
utilized. As such the optimization problem is non-trivial.

The goal of this paper is to demonstrate the importance
of these considerations for implementing analytics queries.



Table 1: Data set description.
Input Documents Bytes Distinct words

Mix 23432 62.8 MB 184743
NSF Abstracts 101483 310.9 MB 267914

The remainder of this paper is structured as follows. In
Section 2 we discuss our system assumptions and software
environment. In Section 3 we analyse two typical operators,
one text processing and one numeric operator, and charac-
terize the impact achievable by the identified performance
optimizations. In Section 4 we discuss related work.

2. SETUP
We start our investigation at a small scale, focusing on

the activities on a single node as these allow us to better
understand the performance of operators and workflows.
Performing analytics on a single node is important as a

single-node can be built with a large amount of working
memory (up to 16 TB) and many processing cores (over a
100). Such a system could efficiently process many real-
world data sets. However, we expect that our conclusions
remain valid when applied to scale-out systems, as optimiz-
ing the performance of nodes in isolation is crucial to opti-
mize the system overall.
To test the importance of the identified optimisations, we

implement two analytics operators in the Cilkplus exten-
sion of C++, a programming language designed for high-
performance and parallel computing at MIT, first developed
over two decades ago and continuously refined since then.
Cilkplus, now commercialized by Intel, supports the con-
struction of parallel tasks through language constructs that
express parallelism and vectorization (SIMDization) in an
easily accessible way. In the Cilkplus model, each thread
of computation is bound to a processing core. The princi-
ples utilized should apply to other languages and parallel
constructs, e.g., Java streams.
We study two operators: term frequency–inverse docu-

ment frequency (TF/IDF) and K-means clustering. TF/IDF
extracts words from text documents and rates the impor-
tance of a word on the basis of its frequency of occurence
within a specific document as well as within the whole set
of documents. K-means clustering is an unsupervized clas-
sification technique that allows for the grouping of similar
data items described as numeric vectors.

3. ANALYSIS

3.1 Intra-Node Parallelism
Many problems in data mining are trivially compute-bound,

especially learning algorithms using neural networks, sup-
port vector machines and the like, which utilize computa-
tionally demanding hyperbolic functions and can require
many iterations to train the model. It should go without
saying that algorithms like these can be accelerated using
high degrees of intra-node parallelism.
K-means clustering is perhaps one of the cheapest un-

supervized learning algorithms. As such, we will use K-
means clustering to demonstrate that data analytics opera-
tions benefit from intra-node parallelism. Figure 1 shows the
self-relative speedup of the K-means clustering algorithm on

0	  

1	  

2	  

3	  

4	  

5	  

6	  

7	  

8	  

0	   5	   10	   15	   20	  

Se
lf-‐
Re

la
(v

e	  
Sp
ee
du

p	  

Number	  of	  Threads	  

NSF	  abstracts	  

Mix	  

Figure 1: Self-relative performance scalability of the
K-Means operator.

our two datasets (Table 1). We use the algorithm to assign
documents to one of 8 clusters based on their normalized
TF/IDF scores.

The self-relative speedup shows how much performance
is improved by utilizing multiple CPU cores. The speedup
obtained is sensitive to the data set operated on: The NSF
Abstracts data set has about 100,000 documents and is sped
up nearly 8 times using intra-node parallelism. The Mix
data set has around 23,000 documents, which is sufficient
only for a 2.5 x speedup. This effect is easily explained by
the parallel loops in K-means clustering, which are all loops
iterating over the documents. As the number of documents
grows, so does the parallel scalability.

The execution time of our implementation is furthermore
short in comparison to other implementations. We com-
pared the execution time of our K-means clustering imple-
mentation against WEKA [3] (version 3.6.13). Using the
“SimpleKMeans” algorithm, a single-threaded K-Means al-
gorithm, on the same data sets requires over 2 hours, after
which we aborted the execution. In contrast, executing our
implementation sequentially required 3.3s and 40.9s for the
Mix and NSF Abstracts data sets respectively. Note that
while we did not see the execution of WEKA through to
the end, we have verified that our WEKA installation works
correctly on small data sets.

While our implementation is significantly faster thanWEKA,
this is not automatic. Several key optimisations were re-
quired to achieve the performance of our algorithm: (i) Us-
ing sparse vectors to represent inherently sparse data. (ii) Re-
cycling data structures throughout the K-means iterations
to avoid redundant data copies and memory pressure. E.g.,
we do not create new objects during the iterations of the
K-means algorithm.

The conclusion of this experiment is thus that (i) intra-
node parallelism is an important opportunity to accelerate
data analytics, especially on larger data sets; (ii) the im-
plementation and the choice of data structures has a huge
influence on execution time; (iii) parallelism can be exploited
without casting the algorithms in map/reduce form.

3.2 Parallel Input
A code that is well-optimized and where CPU is a bot-

tleneck can also benefit from parallelizing I/O operations.
Under these circumstances, CPU utilization is high and I/O
resources are underutilized, including local disk and network
resources. Intra-node parallelism can thus increase the uti-
lization of disk and network resources.

In this section we study the problem of calculating the



0	  

1	  

2	  

3	  

4	  

5	  

6	  

7	  

8	  

0	   5	   10	   15	   20	  

Se
lf-‐
Re

la
(v

e	  
Sp
ee
du

p	  

Number	  of	  Threads	  

NSF	  abstracts	  

Mix	  

Figure 2: Self-relative parallel scalability of the
TF/IDF operator.

0	  
20	  
40	  
60	  
80	  

100	  
120	  

di
sc
re
te
	  

m
er
ge
d	  

di
sc
re
te
	  

m
er
ge
d	  

di
sc
re
te
	  

m
er
ge
d	  

di
sc
re
te
	  

m
er
ge
d	  

di
sc
re
te
	  

m
er
ge
d	  

1	   4	   8	   12	   16	  

Ex
ec
u&

on
	  T
im

e	  
(s
)	  

Number	  of	  Threads	  

output	  

kmeans	  

transform	  

kmeans-‐input	  

9idf-‐output	  

input+wc	  

Figure 3: Execution time of the TF/IDF–K-Means
workflow when executing the TF/IDF and K-Means
operators as discrete steps communicating through
file I/O, versus a merged operator with storage of
the TF/IDF scores. Uses the NSF Abstracts input.

term frequency–inverse document frequency (TF/IDF) [10]
property of a set of documents. Our implementation col-
lects term frequencies (word counts) for each of the docu-
ments in the set. Moreover, a list of all unique terms across
the documents is constructed. This list is annotated with
the number of documents where the word occurs. In a first
phase, the per-document term frequencies and the overall
term-document count properties are collected using dedi-
cated hash tables, mapping a word to a term frequency or
an overall document count. In a second phase, we calcu-
late for each document the per-term TF/IDF score using
the hash tables described above. For each document, a
sparse TF/IDF vector is constructed, sorted by term IDs
and written to the output file in Attribute-Relation File For-
mat (ARFF) format [3]. The first phase can be executed in
parallel for each of the documents. The main limitation to
obtain speedup here is bandwidth to the storage system.
The second phase is not parallelized as the ARFF format
does not facilitate parallel output.
While the TF/IDF problem is mainly concerned with data

input, tokenization and hash table operations, it benefits
strongly from intra-node parallelism (Figure 2). It speeds
up by nearly 6-fold for the Mix data set and by 7-fold for the
NSF Abstracts data set. Parallelizing output is important
as well. However, file formats are often designed in such a
way that parallel I/O becomes hard.

3.3 Workflow Fusion

0	  

5	  

10	  

15	  

20	  

u-‐
m
ap
	  

m
ap
	  

u-‐
m
ap
	  

m
ap
	  

u-‐
m
ap
	  

m
ap
	  

u-‐
m
ap
	  

m
ap
	  

u-‐
m
ap
	  

m
ap
	  

1	   4	   8	   12	   16	  

Ex
ec
u&

on
	  T
im

e	  
(s
)	  

Number	  of	  Threads	  

output	  

kmeans	  

transform	  

input+wc	  

Figure 4: Execution time of the TF/IDF–K-
Means workflow on the Mix input using a
std::unordered_map (u-map) or a std::map.

As pointed out above, I/O is both costly and hard to par-
allelize. As such, avoiding I/O is always a good optimization.
Figure 3 shows the execution time of the TF/IDF–K-Means
workflow when executing the TF/IDF and K-Means opera-
tors as discrete operators that communicate by storing the
intermediate TF/IDF scores on disk, versus a merged opera-
tor without storage of the intermediates. The results clearly
demonstrate that dumping data to disk has a high latency.
In this experiment, the data is dumped to a local hard disk.
Both the output of the TF/IDF scores and the subsequent
input are executed by a single thread because the file format
utilized (ARFF [3]) does not easily support parallel I/O. In
contrast, transforming the data when it is stored in-memory
is much faster and parallelizes well.

The presence of intra-node parallelism is an important
differentiator as to whether I/O bears much overhead or
not. On a single-threaded execution, I/O increases execu-
tion time by 36.9%. On 16 threads, however, I/O makes the
execution 3.84 times slower because it does not parallelize.

3.4 Data Structures
Algorithms use data structures to store input, output and

internal data sets, The choice of these data structures impact
performance. In the case of TF/IDF, the key data struc-
tures are the dictionaries storing unique words and their
frequencies. Figure 4 shows the execution time of TF/IDF–
K-Means workflow on the Mix data set and a varying num-
ber of threads. Results for the larget NSF Abstracts data
set are more dramatic.

The results demonstrate that the input and word-count
step (“input+wc”in Figure 4) is faster when using the std::map
data structure as opposed to the std::unordered_map data
structure. The first is implemented as a red-black tree, while
the latter is implemented as a hash table. Moreover, the
unordered map is pre-sized to hold 4K items to minimize
resizing overhead.

While reading documents and counting words is faster
with a map, the subsequent data transformation step is
slower using a map, especially on one thread. This follows as
the input and word-count phase is write-intensive, consist-
ing of frequent insertion of values in the dictionary. Inser-
tion in the unordered map (a hash table) is inefficient due to
(i) resize operations, which requires re-hashing all elements,
(ii) memory pressure, as the array underlying the hash table
is by construction both sparse (to approximate O(1) opera-



tions) and very large (due to the data sets used). In contrast,
the transformation step performs only lookups on the hash
table, which are known to be faster on the unordered map
O(1) as opposed to the map O(logn).
However, the transformation step scales much better with

an increasing number of threads when using the map: it
scales to 6.1 x on 16 threads using the map, while it scales
only to 3.4x using the unordered map data structure. This is
in part due to the memory consumption. In particular, using
the Mix data set, main memory consumption is 420MB with
the map, while it rises to 12.8GB using the unordered map.
Likewise, the output phase performs lookups only on the

dictionaries and thus favours the unordered map. Moreover,
the output phase is hard to parallelize.
We conclude that selection of the internal data structures

has a significant impact on execution time. Moreover, dif-
ferent steps of a workflow may execute faster using different
data structures. As such, the choice of internal data struc-
ture must be taken judiciously, depending on the overall time
taken by each step of the workflow and also on the extent
to which each phase can be parallelized.

4. RELATED WORK
The performance of data analytics frameworks is an im-

portant concern. Pavlo et al compare map/reduce systems
against distributed DBMSes and find interesting trade-offs
in performance between these approaches [8]. They find that
map/reduce is easier to setup but in the end the DBMS was
more performant.
Ousterhout et al analyse real-life peta-scale workloads.

They find that CPU is more often a bottleneck than I/O
and that network performance has little impact on job com-
pletion time [7]. Moreover, they find that straggler nodes
can be identified and that in most cases the cause for strag-
gling can be identified.
Han et al perform a similar analysis for graph analytics

frameworks [4]. They identified several opportunities for
improvement in these systems. In a similar study, Satish et
al [11] find that hand-optimized codes can outperform program-
mer-friendly frameworks by up to 560-fold.
Several authors have investigated analytics frameworks for

shared-memory systems (single nodes), covering map/reduce
workloads [9, 1] and graph analytics [12]. Kyrola et al op-
timize graph analytics assuming that the graph fits on disk
but not in main memory [5] Zhang et al optimize graph
analytics for non-uniform memory architectures [15].

5. CONCLUSION
As data analytics are applied to increasingly larger data

sets, it is increasingly important to study and optimize the
execution time of analytics operators. In this paper, we have
studied in particular the impact of parallelism on the perfor-
mance of data analytics, and in particular intra-node paral-
lelism, which presents an important opportunity as Moore’s
Law remains valid.
Through studying one text processing and one numeric

operator, we identified four optimizations related to intra-
node parallelism that we expect are widely applicable across
data analytics: intra-node parallel computation, parallel I/O,
workflow optimization and selection of internal or intermedi-
ate data structures. We demonstrate that analytics queries
have strong potential for performance optimization through

intra-node parallelism. Moreover, several optimizations, such
as avoiding I/O through workflow fusion and choice of data
structure, are influenced by the presence and degree of intra-
node parallelism. This paper thus points out a new direction
for realizing high-performance analytics and identifies open
challenges.

6. REFERENCES
[1] R. Chen and H. Chen. Tiled-mapreduce: Efficient and

flexible mapreduce processing on multicore with tiling.
ACM Trans. Archit. Code Optim., 10(1):3:1–3:30,
Apr. 2013.

[2] A. Crotty, A. Galakatos, K. Dursun, T. Kraska,
U. Çetintemel, and S. B. Zdonik. Tupleware: Big data,
big analytics, small clusters. In Conf. on Innovative
Data Systems Research (CIDR), page 7, Jan. 2015.

[3] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: An update. SIGKDD Explor. Newsl.,
11(1):10–18, Nov. 2009.

[4] M. Han, K. Daudjee, K. Ammar, M. T. Özsu,
X. Wang, and T. Jin. An experimental comparison of
pregel-like graph processing systems. Proc. VLDB
Endow., 7(12):1047–1058, Aug. 2014.

[5] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi:
Large-scale graph computation on just a pc. In OSDI
pages 31–46, 2012.

[6] Apache mahout: Scalable machine learning and data
mining. http://mahout.apache.org.

[7] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker,
and B.-G. Chun. Making sense of performance in data
analytics frameworks. In NSDI’15, pages 293–307,
2015.

[8] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.
DeWitt, S. Madden, and M. Stonebraker. A
comparison of approaches to large-scale data analysis.
In SIGMOD Intl. Conf. on Management of Data,
pages 165–178, 2009.

[9] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,
and C. Kozyrakis. Evaluating mapreduce for
multi-core and multiprocessor systems. In HPCA,
pages 13–24, 2007.

[10] G. Salton and M. J. McGill, editors. Introduction to
Modern Information Retrieval. Mcgraw-Hill, 1983.

[11] N. Satish et al. Navigating the maze of graph analytics
frameworks using massive graph datasets. In SIGMOD
Intl. Conf. on Management of Data, pages 979–990,
2014.

[12] J. Shun and G. E. Blelloch. Ligra: A lightweight graph
processing framework for shared memory. In ACM
PPoPP, pages 135–146, 2013.

[13] Apache spark mllib.
http://spark.apache.org/mllib/.

[14] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In NSDI, 2–2, 2012.

[15] K. Zhang, R. Chen, and H. Chen. NUMA-Aware
graph-structured analytics. In PPoPP pages 183–193,
2015.

http://mahout.apache.org
http://spark.apache.org/mllib/

	Introduction
	Setup
	Analysis
	Intra-Node Parallelism
	Parallel Input
	Workflow Fusion
	Data Structures

	Related Work
	Conclusion
	References

