
Explaining Unwanted Behaviours in Context

Wei Chen
University of Edinburgh
wchen2@inf.ed.ac.uk

David Aspinall
University of Edinburgh
David.Aspinall@ed.ac.uk

Andrew D. Gordon
Microsoft Research Cambridge

University of Edinburgh
Andy.Gordon@ed.ac.uk

Charles Sutton
University of Edinburgh
csutton@inf.ed.ac.uk

Igor Muttik
Intel Security

igor.muttik@intel.com

Abstract

Mobile malware has been increasingly identi-
fied based on unwanted behaviours like send-
ing premium SMS messages. However, un-
wanted behaviours for a group of apps can
be normal for another, i.e., they are context-
sensitive. We develop an approach to au-
tomatically explain unwanted behaviours in
context and evaluate the automatic explana-
tions via a user-study with favourable results.
These explanations not only state whether an
app is malware but also elaborate how and in
what kind of context a decision was made.

1 Introduction

Researchers and malware analysts have identified
hundreds and thousands of mobile apps as mal-
ware [EOMC11, ZJ12] and organised them into fami-
lies based on some unwanted behaviours, e.g., steal-
ing personal information, accessing locations, col-
lecting contacts information, sending premium mes-
sages constantly, etc. However, except for some mal-
ware analysis reports of several famous malware fam-
ilies [ZJ12, S+13], e.g., Geinimi, Basebridge, Spitmo,
Zitmo, Ginmaster, Ggtracker, Droidkungfu, etc., peo-
ple don’t know what kind of behaviour makes a mobile
app bad. This suggests a research problem: automati-

Copyright c© by the paper’s authors. Copying permitted for
private and academic purposes. This volume is published and
copyrighted by its editors.

In: D. Aspinall, L. Cavallaro, M. N. Seghir, M. Volkamer
(eds.): Proceedings of the Workshop on Innovations in Mobile
Privacy and Security IMPS at ESSoS’16, London, UK, 06-April-
2016, published at http://ceur-ws.org

cally producing a short paragraph to explain unwanted
behaviours.

A naive method is to: train a linear classifier from
a collection of identified malware instances and benign
apps, choose features with top weights assigned by this
classifier, then process selected features through tem-
plates to output text. This method has been adopted
in research, e.g., the Drebin system [A+14a].

However, by greedily choosing features to output
text, the generated explanations are inaccurate. This
is mainly because unwanted behaviours of mobile apps
are context-sensitive, i.e., an unwanted behaviour in
one group of apps can be normal in another. For exam-
ple, collecting locations is normal for jogging tracker
apps, but unwanted for card game apps.

Instead, our new approach is to organise sample
apps into fine-grained groups by their behavioural sim-
ilarity. We set the context of an app in question to the
group whose members’ behaviours are the most simi-
lar to this app’s behaviours. By exploiting behavioural
difference between malware and benign apps in this
context, we decide whether the target app is malware,
and if so, we produce an explanation. Here are two
example automatic explanations.

a. This app is like a chatting app, but, after a USB
massive storage is connected, it will: retrieve a class in
a runnable package; read information about networks;
connect to Internet.

b. This app is like an anti-virus app, but, it will:
read your phone state after a phone call is made; read
your phone state then connect to Internet; send SMS
messages after a phone call is made.

These explanations not only elaborate which be-
haviour is unwanted but also give the context, e.g.,
chatting and anti-virus, in which a decision was made.
Here, the context name is from the known category
names of apps in the same group by majority voting.

1
38

Our approach combines static analysis, clustering,
supervised-learning, and text mining techniques, and
proceeds as follows.

• Formalisation. We approximate the behaviour
of an Android app by an extended call-graph, i.e.,
a collection of finite control-sequences of events,
actions, and annotated API calls. From this graph
we extract the happen-before feature which de-
notes that something happens before another.

• Learning. We organise sample apps into groups
using clustering methods, and characterise un-
wanted behaviours for each group by exploring
the difference between malware instances and be-
nign apps within the same group.

• Explanation. We decide whether a target app
is malware by choosing a group then checking
against this group whether the app has any un-
wanted behaviour, i.e., a behaviour exhibited by a
malware instance in the group. The correspond-
ing features are fed through hand-built templates
to produce text as explanations.

The main contributions of this paper are to:

- show that the happen-before feature is an appro-
priate abstract of app behaviours with respect to
learning and explaining;

- introduce the context into behaviour explanations
and develop a clustering-based algorithm (Fig-
ure 2) to organise sample apps into groups and
construct unwanted behaviours for each group;

- demonstrate that the automatic explanation in
context produces more convincing and desirable
results than several other candidate methods by
surveying general users.

1.1 Related Work

To automatically detect Android malware, machine
learning methods have been applied to train classi-
fiers [ADY13, GYAR13, GTGZ14, YSMM13]. All of
them were to obtain good fits to the training data by
trying different methods and features. Explanations of
chosen features have received much less consideration.

The tool Drebin [A+14a] is the first attempt to au-
tomatically generate explanations of Android malware.
It generates explanations by choosing features with top
weights from a linear classifier then processes them
through hand-built templates to output text. A broad
range of syntax-based features, e.g., permissions, API
calls, intents, URLs, etc., were collected for training.

A recent prototype DescribeMe [ZDFY15] generates
text from data-flows by feeding features through hand-
built templates. The main drawback is its scalablility:
to produce data-flows is too expensive for most apps.

The idea of context is similar with the cluster used
in the tool CHABADA [GTGZ14]. This tool detects
the outliers (abnormal API usage) within the clusters
of apps by using OC-SVM (one-class SVM). These
clusters were grouped by the descriptions of apps using
LDA (Latent Dirichlet Allocation). However, for most
sample apps which were collected from alternative An-
droid markets, e.g., Wandoujia, Baidu, and Tencent in
China, it is hard to get their descriptions and these de-
scriptions are often written in different languages.

The extended call-graphs are much more accurate
than the manifest information, e.g., permissions and
actions, which were often used as input features for
malware detection or mitigation [BKvOS10, EOM09,
F+11]. Compared with a simple list of API calls ap-
pearing in the code, the extended call-graph can cap-
ture more sophisticated behaviours. This is needed
in practice, because: API calls appearing in the
code contain “noise” caused by the dead code and
libraries [ADY13]; and, some unwanted behaviours
only arise when some API methods are called in cer-
tain orders [C+13, KB15, Y+14]. On the other hand,
call-graphs are less accurate than models which cap-
ture data-flows. But, it is much easier to generate
the extended call-graphs using our tool for apps en
masse than generating data-flows using tools like Flow-
Droid [A+14b] or Amandroid [WROR14]. In partic-
ular, people can annotate appealing API methods to
generate compact graphs more efficiently, rather than
considering all data-dependence between statements.

2 Characterising App Behaviours

We use a simplified synthetic example to illustrate the
characterisation of app behaviours. It is an Android
app which constantly sends out the device ID and the
phone number by SMS messages in the background
when an incoming SMS message is received.

We approximate its behaviour by using the graph
in Figure 1. It tells us: this app has two entries
which are respectively specified by actions MAIN and
SMS RECEIVED; it will collect the device ID and the
phone number in a Broadcast Receiver, then send SMS
messages out in an AsyncTask; the behaviour of send-
ing SMS messages can also be triggered by an interac-
tion from the user, e.g., clicking a button, touching the
screen, long-pressing a picture, etc., which is denoted
by the word “click”.

This graph is a collection of finite control-sequences
of actions, events, and annotated API calls, which is
constructed from the bytecode of an Android app. Ac-

2
39

// • MAIN //

SMS RECEIVED

��

• AsyncTask: sendTextMessage //

click

��
•

AsyncTask: sendTextMessage

��

•
Receiver: getDeviceId

// •

Receiver: getLine1Number

OO

Figure 1: An example extended call-graph.

tions reflect what happens in the environment and
what kind of service an app requests for, e.g., an in-
coming message is received, the device finishes boot-
ing, the app wants to send an email by using the ser-
vice supplied by an email-client, etc. Events denote
the interaction from the user, e.g., clicking a picture,
pressing a button, scrolling down the screen, etc. An-
notated API calls tell us whether the app does any-
thing we are interested in. For instance, getDeviceID,
getLine1Number, and sendTextMessage are annotated
API calls in the above example.

To construct such a graph directly from the byte-
code, we have to model complex real-world features
of the Android framework, including: inter-procedural
calls, callbacks, component life-cycles, permissions, ac-
tions, events, inter-component communications, multi-
ple threads, multiple entries, interfaces, nested classes,
and runtime-registered listeners. We don’t model reg-
isters, fields, assignments, operators, pointer-aliases,
arrays or exceptions. The choice of which aspect to
model is a trade-off between efficiency and precision.

In our implementation, we use an extension
of permission-governed API methods generated by
PScout [AZHL12] as annotations. The Android plat-
form tools aapt and dexdump are respectively used to
extract the manifest information and to decompile the
bytecode into the assembly code, from which we con-
struct the extended call-graph.

Once the extended call-graphs are constructed, we
can extract features for the purpose of learning un-
wanted behaviours. In particular, we extract pairs of
edge labels occurring in sequence, i.e., denoting that
something happens before another, so-called happen-
befores. Generally, one can extract n-tuples. But, in
practice, we found that constructing triples was al-
ready too expensive: the order of magnitude for the
average number of triples in a typical extended call-
graph is 104.

3 Learning Unwanted Behaviours

A behaviour that is unwanted for one kind of app
can be innocuous for another. For example, sending
SMS messages is normal for messaging apps, but un-
wanted for an E-reader app; a user might expect that

a weather forecast app accesses his or her locations,
but might feel uncomfortable if a messaging app does
so. Therefore, to understand and explain unwanted
behaviour, we need a notion of context.

3.1 Constructing Context

Unwanted behaviours in general only account for a
small part of a malicious app’s activities. This is
by design: malicious apps seek to hide their bad
behaviours, and are often constructed by repackag-
ing benign applications [Z+14, Z+13]. This obser-
vation gives us a notion of context: we group to-
gether apps, benign or malicious, whose behaviours
are mostly the same. Then, within the context, we
distinguish unwanted from normal behaviours by ex-
ploring features which are mostly associated with mal-
ware. This produces a fine-grained, behavioural notion
of context, that is more discriminating than categories,
e.g., GAME, TOOLS, and WEATHER, etc., or clus-
ters produced from developer-written textual descrip-
tions [GTGZ14].

We formalise this idea in Figure 2. Sample apps are
organised into groups. Apps in the same group share
common behaviours, in the sense that their feature
vectors are similar. Ideally, repackaged apps will be
in the same group with the original benign apps. In
practice, a group might consist of only benign apps or
only malware. This depends on the feature used for
clustering and its distribution in sample apps.

Two sets of features are constructed for each group:
normal and unwanted. The normal set is the union of
all behaviours of benign apps. The unwanted set con-
sists of abnormal behaviours of malware, that is, the
relative complement of the normal set in the collection
of behaviours of malware instances.

The rule behind this construction is: a benign app
can not have any unwanted behaviour and a malware
instance must have some unwanted behaviour whatever
its other behaviours are. Every sample app in the same
group is required to follow this rule. Otherwise, there
is a conflict in the group. To solve this conflict, we split
the group into two disjoint subgroups. Then, the above
construction will be done respectively on subgroups
until all conflicts are solved.

3
40

Function construct context (group)
Input: a group of malware and benign applications
Output: fine-grained groups with normal and unwanted features.
G ← {group}
P ← {}
has conflict ← True
while has conflict do

has conflict ← False
for group in G do

normal, unwanted ← collect behaviour (group)
if detect conflict (group, normal, unwanted) then

group a, group b ← split group (group)
G = (G− {group}) ∪ {group a, group b}
has conflict ← True

else
G = G− {group}
P = P ∪ {(group, normal, unwanted)})

end if
end for

end while
return P

Function collect behaviour (group)
normal ← {}
unwanted ← {}
for app in group do

if app is benign then
normal = normal ∪ feature(app)
unwanted = unwanted− normal

else
unwanted = (unwanted ∪ feature(app))− normal

end if
end for
return normal, unwanted

Function detect conflict (group, normal, unwanted)
for app in group do

if app is benign and feature(app) 6⊆ normal then
return True

end if
if app is malicious and feature(app) ∩ unwanted = ∅ then

return True
end if

end for
return False

Figure 2: Context and unwanted behaviours.

The process starts in the function construct context
which is invoked on the whole collection of sample
apps. When the algorithm terminates the following
property is satisfied: for each app in a group, if it is
malware then feature(app) ∩ unwanted 6= ∅; if it is
benign then feature(app) ⊆ normal.

The function split group splits a group of apps into
two disjoint subgroups. Many implementations are
possible. We adopt the hierarchical clustering method
to group apps. The cosine dissimilarity between fea-
ture vectors is calculated and the average-linkage is
used to calculate the distances between clusters.

To illustrate the notion of context we constructed
unwanted behaviours of 400 randomly-chosen sample
apps by using the above method. The ten biggest gen-
erated groups are given in Table 1.

3.2 Classification

We want to decide whether an app in question is mal-
ware, by using the constructed context and unwanted
behaviours. The size and the portion of malware vary
largely across groups, as shown in Table 1. This re-

sults in: it is hard to train a classifier for each group us-
ing classical learning methods, e.g., SVM, naive Bayes,
and logistic linear regression. Therefore, we calculate
the distances between the target app and each group.
The closest group is chosen as the context. Then, we
decide whether the target app is malware by applying
the following logic rules:

• Conservatively normal. The target app is
classified as benign if it has no unwanted be-
haviour and all its behaviours are normal, i.e.,
feature(app) ⊆ normal.

• Aggressively malicious. The target app is clas-
sified as malicious if one of its behaviours is un-
wanted, i.e., feature(app) ∩ unwanted 6= ∅.

• Neutrally suspicious. If the target app has no
unwanted behaviour but some of its behaviours
are not normal. We consider its abnormal be-
haviours, i.e., feature(app)−normal, as suspicious
and label it as unknown. That is, according to
current knowledge we can not decide whether it is
malware. The decision have to be postponed until
more sample apps of this group are acquired.

We randomly chose 1, 000 apps with benign and ma-
licious half-and-half as the training set; and an equal
number of apps as the testing set. They contain some
famous benign apps, i.e., Google Talk, Amazon Kin-
dle, Youtube, Facebook, etc., and some instances in fa-
mous malware families, e.g., DroidKungfu, Plankton,
Zitmo, etc. These apps spread in around 30 categories
from ARCADE GAME to WEATHER. Many adver-
tisement libraries were also found in these apps, e.g.,
Admob, Millennial Media, Airpush, etc.

To compare our classification method with general
classifiers, we train a classifier using an implementa-
tion liblinear [F+08] of L1-Regularized Logistic Re-
gression [Tib94] (abbreviated as L1LR). We apply our
method to construct context and collect unwanted
behaviours from happen-befores which are extracted
from the extended call-graphs of apps in the training
set. Further, we apply the logic rules discussed ear-
lier, to decide whether a target app is malware against
unwanted behaviours for a chosen group.

We report the classification performance as follows.

Classifier
Edge Labels in Graphs Happen-Befores

Precision Recall Precision Recall

context 83% 88% 80% 92%

L1LR 83% 89% 85% 88%

It shows that for different features the classification
performance of our method is only slightly worse than
L1LR, with no more than a 5% drop in precision.
This is because some apps are labelled as unknown
in our method. We can achieve better classification

4
41

Group Size %Malware #Normal #Unwanted Top Malware Family Top Category

0 163 93.25 6825 36813 Geinimi Fakerun ENTERTAINMENT PERSONALIZATION

5 24 100.0 0 2611 Basebridge Spitmo COMMUNICATION MUSIC AND AUDIO

21 23 39.13 3306 734 Plankton Droidkungfu WEATHER PHOTOGRAPHY

7 17 41.18 1466 295 unknown WEATHER TRANSPORTATION

19 13 15.38 1396 77 Adrd COMMUNICATION TOOLS

12 10 10.0 2027 39 Adrd MUSIC AND AUDIO NEWS AND MAGAZINES

25 8 0.0 227 441 - WEATHER BOOKS AND REFERENCE

4 7 85.71 497 584 unknown GAME STRATEGY

15 7 85.71 20 2907 unknown TRAVEL AND LOCAL WEATHER

6 5 40.0 764 125 unknown PRODUCTIVITY NEWS AND MAGAZINES

Table 1: Statistics of context and unwanted behaviours for 400 sample apps.

performance by adding syntax-based features, e.g.,
permissions and API calls, as input features. How-
ever, our goal is to develop a classification method
whose output yields better explanations. Considering
happen-befores can capture more sophisticated app
behaviours, we prefer to using unwanted behaviours
selected from happen-befores for the explanation gen-
eration.

4 Generating Explanations

In the classification against the context, the features
in the intersection between unwanted behaviours of a
context and behaviours of a target app are responsible
for a decision, so-called salient features. For a train-
ing app in a decision context, if one of its behaviours
is salient, then this app is a supporting app for this
decision. In this section, we want to exploit salient
features and their supporting apps to generate an ex-
planation for a target app. It explains how and in
what kind of context a decision was made. We want
to use these automatic explanations to convince people
of the system’s automatic decision. Here is an example
automatic explanation.
—————————————————————————————

com.keji.danti590 (v3.0.8)

This application is malware. Its malicious behaviours are:

after a USB mass storage is connected,

it gets the superclass of a class in a runnable package
it retrieves classes in a runnable package
it reads information about networks
it connects to Internet
it reads your phone state then connects to Internet

The supporting apps of this explanation are:

com.keji.danti607 (v3.0.8) (TROJAN)
com.jjdd (v1.3.1) (MALWARE)
com.keji.danti562 (v3.0.8) (TROJAN)
com.keji.danti599 (v3.0.8) (TROJAN)

—————————————————————————————

It not only shows the decision (malware or benign)
but also elaborates the most unwanted behaviours. A
collection of supporting apps is displayed as well.

Before presenting technical details, let us have a
look at some salient features:

a. (Object:ConnectivityManager.getActiveNetworkInfo,
Runnable:URL.openConnection)

b. (Activity:WifiManager.isWifiEnabled, Activity:WebView.loadUrl)
c. (Object:WebView.loadUrl, Runnable:WifiInfo.getMacAddress)
d. (AsyncTask:DefaultHttpClient.execute,

Runnable:URL.openConnection)
e. (Object:WebView.loadData,

Runnable:TelephonyManager.getDeviceId)
f. (AsyncTask:NotificationManager.notify,

Object:LocationManager.getLastKnownLocation)

They are pairs extracted from the extended call-
graphs of the apps in question. Some of them are
trivial, e.g., the behaviour “access networks state
then connect to Internet”, supported by the feature
(Object:ConnectivityManager.getActiveNetwork

Info, Runnable:URL.openConnection), appears in
almost every app. Some of them are similar, e.g., if we
want to capture the behaviour “connect to Internet”,
then features URLConnection.openConnection and
DefaultHttpClient.execute are considered as re-
peated features. This redundancy will further clutter
the final explanation.

Based on these observations, we generate explana-
tions as follows: map these salient features into simple
phrases, process simple phrases through templates to
output compound phrases, then select the most repre-
sentative compound phrases to present.

First, for each permission, action, event, and each
API call which is not governed by any permission,
a phrase is assigned to describe its function. These
phrases were extracted from their brief documents on
Android Developers. Second, for those permission-
governed API calls, we look up their corresponding
permissions and use phrases for these permissions.
Third, for pair features we combine phrases for their
coordinates to form compound phrases. The templates
used in explanation are listed in Table 2. This step ac-
tually aggregates features to reduce redundancy.

By using the above method, for each supporting
app, we get a collection of phrases with their appear-
ance frequencies in this app. We rank phrases for each
supporting app using the TF-IDF (term frequency -
inverse document frequency) and choose the top-m
phrases as representatives. Then, we apply DF (docu-
ment frequency) to rank representatives of supporting
apps and choose the top-n phrases to present. We use

5
42

Feature Type Template Example

permission request the permission to do sth.
request the permission

to change Wi-Fi connectivity state

API call might invoke the API: API name
might invoke the API:

android.content.Intent.<init>

annotation do sth. read your phone state

action sth. happens the app has finished booting

event the user does sth. the user clicks a view and holds

(annotation, annotation) do sth. then do sth.
read your phone state then

connect to Internet

(annotation, action) do sth. then sth. happens
read SMS then

the app makes a phone call

(action, annotation) after sth. happens do sth.
after the system has finished booting

read your phone state

(event, annotation) when the user does sth. do sth.
when the user touches the screen

get your precise location

(event, action) when the user does sth. sth. happens
when the user performs a gesture

the app sends some data to someone elsewhere

Table 2: Templates for the explanation generation.

formulae
(
0.5 + 0.5×f(t,d)

max{f(t,d)|t∈d}

)
× log10

|C|
|{d|t∈d}| and

log10
|{d|t∈d}|
|C| to respectively calculate TF-IDF and

DF, where d is the collection of phrases for each app,
C is the collection of all d, and f(t, d) denotes the ap-
pearance frequency of t in d. This step helps remove
trivial phrases (features), and is formalised as follows.

Function gen exp (app, judge, group, normal, unwanted, m, n)
Input: the target app, the decision context,

and the control parameters m and n.
Output: the explanation of the target app.
salient ← {}
if judge is malicious then

salient← feature(app) ∩ unwanted
else

salient← feature(app) ∩ normal
end if
supp ← {}
corpus ← {}
for app in group do

features← feature(app) ∩ salient
if features 6= ∅ then

for feature in features do
phrase ← feature to phrase(feature)
if not phrase in doc then

doc[phrase] ← 0
end if
doc[phrase] ← doc[phrase] + frequency(feature, app)

end for
supp ← supp ∪ {app}
corpus ← corpus ∪ {(app, doc)}

end if
end for
exp ← sel df(sel tfidf(corpus, m), n)
return judge, exp, supp

The function feature to phrase constructs a phrase for
a given feature by using templates given in Table 2.
Functions sel tfidf and sel df will respectively select
phrases for each supporting app and representatives
for the whole collection of supporting app. The func-
tion frequency produces the frequency of a feature ap-
pearing in an app.

5 Evaluation

In this section, we report a user-evaluation of the au-
tomatic explanations. We want to show: (a) expla-

nations produced from semantics-based features are
better than from syntax-based features; (b) explana-
tions with supporting apps are more understandable
than without; (c) explanations produced from context
construction are more convincing and preferable than
greedily extracting features from general classifiers. To
test these hypotheses, we design and compare the fol-
lowing methods.

• M-Syntax: By applying the context construc-
tion, from the syntax -based features (permissions
and API calls), we produce explanations without
including supporting apps.

• M-Semantics: By applying the context con-
struction, from the semantics-based features
(happen-befores), we produce explanations with-
out including supporting apps.

• M-Context: By applying the context construc-
tion, from the semantics-based features (happen-
befores), we produce explanations including sup-
porting apps.

• M-L1LR: By using features with top weights in
an L1LR classifier, which is trained from the se-
mantics-based features (happen-befores), we pro-
duce explanations including supporting apps.

We applied the above methods to generate expla-
nations for apps in the testing set which has been de-
scribed in Section 3.2. The generated explanations
were organised into samples. Each sample consists
of two explanations for the same app, which are re-
spectively produced by applying two different meth-
ods. Two example samples are given in Figure 3.

We chose three or four samples for each hypothesis
testing. A survey consisting of 12 samples covering 10
malware instances and 2 benign apps was presented to
participants. Participants are invited to read through

6
43

—————————————————————————

com.android.security (v4.3)

Explanation A (M-Semantics)
This app is malware. Its malicious behaviours are:

read your phone state then connect to Internet
connect to Internet then read your phone state
read your phone state after a phone call is made
send SMS then read your phone state
read your phone state then send SMS

Explanation B (M-Syntax)
This app is malware. Its malicious behaviours are:

request the permission to send SMS
request the permission to receive SMS
request the permission to read your phone state
request the permission to read SMS
might invoke the API:android.content.Intent.<init>

—————————————————————————

org.android.system (v1.0)

Explanation A (M-Context)
This app is malware. Its malicious behaviours are:

read your phone state after a phone call is made
read your phone state then connect to Internet
send SMS then read your phone state
read your phone state then send SMS
send SMS after a phone call is made

The supporting apps of this explanation are:
com.android.security (v4.3) (MALWARE)
org.android.system (v1.0) (MALWARE)
...

Explanation B (M-L1LR)
This app is malware. Its malicious behaviours are:

read your phone state after a phone call is made
The supporting apps of this explanation are:

com.googleapps.ru (v1.0) (TROJAN)
com.keji.danti562 (v3.0.8) (MALWARE)
...

—————————————————————————

Figure 3: Example explanations for hypothesis testing.

all samples and for each sample, to choose the expla-
nation which they prefer, and to give a convince-score
between 1 and 5 to each explanation. This score in-
dicates to what extent an explanation convinces the
participant. We collected participants’ preferences as
well as convince-scores.

People from universities, software companies, and
finance firms in UK and China were invited by mail-
ing lists to participate in this survey. All participants
have no idea of the mechanism behind the automatic
explanation discussed in this paper. We received 20
responses. These respondents include: seven junior
and one senior software engineers, seven postgraduate
students, one lecturer, three data analysts, and one
malware analyst. Three of them declared to be famil-
iar with Android programming and malware analysis.

We report the user-evaluation results as follows.

Method
Convince-score

Average Std.

M-Syntax 3.15 0.85

M-Semantics 3.03 0.66

M-Context 3.61 0.80

M-L1LR 3.32 0.81

Comparison Preference

M-Context 58%
M-Syntax 42%

M-Context 78%
M-Semantics 22%

M-Context 53%
M-L1LR 47%

It shows that the context construction achieves the
highest average convince-score 3.61 and most respon-
dents prefer explanations produced by the context con-
struction. We do paired T-test respectively on the
three comparisons: M-Context versus M-Syntax,
M-Context versus M-Semantics, and M-Context
versus M-L1LR. We set the significance level at 0.05,
then calculate the difference between their convince-
scores and test the null hypothesis: the average is less
than or equal to 0. Their p-values are 0.02, 0.0002, and
0.05 respectively. That is, all null hypotheses are re-
jected at significance level 0.05. The automatic expla-
nation by applying the context construction is better
than alternative methods.

Respondents commented that explanations revealed
some behaviours they had not realised before, e.g.,
an app called “com.antivirus.kav” sends SMS after a
phone call is made, and supporting apps improve their
understanding of the given explanation, e.g., they pre-
fer to believing the given explanation is benign when
they see familiar benign app names like Google Talk
in the supporting apps. But, some of them, especially
the malware analyst and those postgraduate students,
wanted to see detailed features we use to produce ex-
planations. This explains why M-Syntax is slightly
better than M-Semantics in this surverying: API
names are included in explanations produced by M-
Syntax but not in M-Semantics. In practice, we
can hide detailed features from users and only present
them on-demand as evidence.

6 Conclusion and Further Work

We present a new approach to automatically gener-
ate explanations of unwanted behaviours of Android
apps. It exploits semantics-based features, constructs
context-sensitive unwanted behaviours, and produces
explanations by aggregating features into phrases.

The context we have constructed is simple and
straightforward. As shown in Table 1, the groups
are unbalanced—some of them consists of hundreds of
apps and some consists of several malware instances.
In further work, we want to construct more balanced
and fine-grained groups such that the supervised learn-
ing methods can be applied to obtain well-performing
classifiers. By doing so, our approach to generate ex-
planations can be extended to take features from well-
trained classifiers as input.

A good classifier might not lead to a good explainer.
As shown in Section 5, the explanations produced us-
ing the method M-L1LR are not the most preferable,
although the L1LR classifier has better classification
performance. To evaluate the quality of the automatic
explanations is difficult. In this paper, we surveyed 20
general users to show the effectiveness of our method.

7
44

In further work, instead of general users, we want to
survey a bigger group of malware analysts, since mal-
ware analysts are more suitable readers of these ex-
planations. Also, more complex statistical models like
ANOVA will be applied to analyse surveying results.

There are still certain types of high-level behaviours
that are exhibited in Android malware but cannot be
fully captured by our approach, e.g., gain root access
and perform DDoS attacks [ZJ12]. This is because
these complex behaviours do not correspond to simple
semantics-based features like happen-befores. In fur-
ther work, a promising approach to remove this limita-
tion might be to exploit more semantics-based features
to capture these high-level behaviours.

References

[A+14a] Daniel Arp et al. Drebin: Efficient and
explainable detection of Android malware
in your pocket. NDSS, pages 23–26, 2014.

[A+14b] Steven Arzt et al. FlowDroid: Precise
context, flow, field, object-sensitive and
lifecycle-aware taint analysis for Android
apps. In PLDI, pages 259–269, 2014.

[ADY13] Yousra Aafer, Wenliang Du, and Heng
Yin. DroidAPIMiner: Mining API-level
features for robust malware detection in
Android. In SecureComm, 2013.

[AZHL12] Kathy Wain Yee Au, Yi Fan Zhou, Zhen
Huang, and David Lie. PScout: Analyz-
ing the Android permission specification.
In CCS, 2012.

[BKvOS10] David Barrera, Hilmi Günes Kayacik,
Paul C. van Oorschot, and Anil Somayaji.
A methodology for empirical analysis of
permission-based security models and its
application to Android. In CCS, 2010.

[C+13] Kevin Zhijie Chen et al. Contextual policy
enforcement in Android applications with
permission event graphs. In NDSS, 2013.

[EOM09] William Enck, Machigar Ongtang, and
Patrick Drew McDaniel. On lightweight
mobile phone application certification. In
CCS, pages 235–245, 2009.

[EOMC11] William Enck, Damien Octeau, Patrick
McDaniel, and Swarat Chaudhuri. A
study of Android application security. In
USENIX Security Symposium, 2011.

[F+08] Rong-En Fan et al. Liblinear: A library
for large linear classification. J. Mach.
Learn. Res., 9:1871–1874, June 2008.

[F+11] Adrienne Porter Felt et al. Android per-
missions demystified. In CCS, 2011.

[GTGZ14] Alessandra Gorla, Ilaria Tavecchia, Flo-
rian Gross, and Andreas Zeller. Checking
app behavior against app descriptions. In
ICSE, 2014.

[GYAR13] Hugo Gascon, Fabian Yamaguchi, Daniel
Arp, and Konrad Rieck. Structural detec-
tion of Android malware using embedded
call graphs. In AISec, pages 45–54, 2013.

[KB15] Jan-Christoph Kuester and Andreas
Bauer. Monitoring real android malware.
In Runtime Verification 2015, 2015.

[S+13] Michael Spreitzenbarth et al. Mobile-
sandbox: Having a deeper look into An-
droid applications. In SAC, 2013.

[Tib94] Robert Tibshirani. Regression shrinkage
and selection via the lasso. Journal of
the Royal Statistical Society, Series B,
58:267–288, 1994.

[WROR14] Fengguo Wei, Sankardas Roy, Xinming
Ou, and Robby. Amandroid: A precise
and general inter-component data flow
analysis framework for security vetting of
Android apps. In CCS, 2014.

[Y+14] Chao Yang et al. Droidminer: Au-
tomated mining and characterization of
fine-grained malicious behaviors in An-
droid applications. In ESORICS, 2014.

[YSMM13] Suleiman Y. Yerima, Sakir Sezer, Gavin
McWilliams, and Igor Muttik. A new An-
droid malware detection approach using
bayesian classification. In AINA, 2013.

[Z+13] Wu Zhou et al. Fast, scalable detection
of ”piggybacked” mobile applications. In
CODASPY ’13, 2013.

[Z+14] Fangfang Zhang et al. Viewdroid: To-
wards obfuscation-resilient mobile appli-
cation repackaging detection. In WiSec,
2014.

[ZDFY15] Mu Zhang, Yue Duan, Qian Feng, and
Heng Yin. Towards automatic genera-
tion of security-centric descriptions for
Android apps. In CCS, 2015.

[ZJ12] Yajin Zhou and Xuxian Jiang. Dissecting
Android malware: characterization and
evolution. In IEEE Symposium on Secu-
rity and Privacy, 2012.

8
45

