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Abstract— The PRobabilistic Self-Organizing Maps 
(PRSOM) become more and more interesting in many fields such 
as: pattern recognition, clustering, classification, speech 
recognition, data compression, medical diagnosis, etc. The 
PRSOM give an estimation of the density probability function of 
the data, which depends on the parameters of the PRSOM, such 
as the architecture of the network. When we take a random 
PRSOM architecture choice (the number of neurons or 
components), we could have degenerated solutions, called also 
singular solutions. Associated with a given problem, it is one of 
the most important research problems in the neural network 
research. In the present paper we describe a recent approach of 
probabilistic self-organizing maps (PRSOM) trying to propose a 
solution to this problem. We propose  a speech compression 
technique based on vector quantization. The main innovation is 
the use of an optimal probabilistic self-organizing map to 
determine the optimal codebook, unlike in classical PRSOM.  
Also, we give an implementation and an evaluation of the 
proposed method; the numerical results are powerful and show 
the practical interest of our approach. 

Keywords— Neural Network ; self-organization; classification; 
unsupervized learning; compression. 

I.  INTRODUCTION 

Artificial Neural Network (ANN) often called Neural 
Network (NN) is a computational model or mathematical 
model based on biological neural networks. 

Teuvo Kohonen has introduced the very interesting 
concept of self-organizing topological feature maps [18], The 
central property of this formalism is that it forms a nonlinear 
projection of a high-dimensional data manifold on a regular, 
low-dimensional (usually 2D) grid. In the display, the 
clustering of the data space as well as the metric-topological 
relations of the data items are clearly visible[17,19]. 

In the following we introduce the probabilistic Self-
Organizing Maps (PRSOM) using a probabilistic 
formalism[1,2]. This algorithm gives a maximum 
approximation of the density distribution obtained by the 
learning phase. Since the training stage is very important in 
the probabilistic Self-Organizing Maps (PRSOM) 
performance, the selection of the architecture of PRobabilistic 

SOM, associated with a given problem, is one of the most 
important research problems in the neural network research. 
More precisely, the choice of components (neurons)  number, 
the initial weights and covariances matrix  has a great impact 
on the convergence of learning methods. The optimization of 
the artificial neural networks architectures, particularly 
PRSOM networks, is a recent problem. The first techniques 
consist in building the map in an evolutionary way: allowing, 
adding neurons and deleting some others. Some methods that 
have been proposed in the literature can be broadly classified 
into two categories: the first fixes a priori the size of the map 
in an evolutionary way [24]; the second category allows the 
data themselves to choose the dimension of the map. Recently, 
another method is introduced to determine the network 
parameters, in the supervised learning and in the Kohonen 
networks [8,9,10]. The mean purpose of this work is to model 
this choice problem of neural architecture in terms of a mixed-
integer nonlinear problem with linear constraints. Because of 
its effectiveness in solving the optimization problems, the 
genetic algorithm approach is used to solve this nonlinear 
problem. It should be noted that a good local optimum of the 
obtained model permits to improve the performance of the 
PRSOM learning algorithm. 

This paper is organized as follows: The section 2 presents 
the formalism of probabilistic self-organizing maps and vector 
quantization. In section 3 we introduce the model to optimize 
the probabilistic Self Organizing architecture Maps. And 
before concluding, experimental results are given in the 
section 5. 

II. PROBABILISTIC SELF ORGANIZING MAP AND VECTOR 

QUANTIZATION  

A. Probabilistic Self-Organizing Map  

In this section, we will briefly introduce the formal PRSOM 
model. It allows not only the quantification of data space, but 
also it does local densities estimation. 
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As the standard Self-Organizing Maps (SOM) [17,19,18], 
PRSOM consists of a discrete set C of formal neurons, which 
associates to each neuron ( )c C a spherical Gaussian density 
function cf  [5], which is defined by its mean (referent vector)  
wc ∈ ℝn and its covariance matrix. Thus we denote by 

{ ; }cW w c C  and { ; }c c C   the two sets of parameters 
defining the PRSOM model [1]. 

In this probabilistic formalism presented in Figure 1, the 
classical map C is duplicated into two similar maps 

1C  and 
2C  provided with the same topology as C. It is assumed that 

the model satisfies the Markov chain hypothesis [7], thus for 
every input data x D and every pair of neurons 

1 2 1 2( , )i jc c C C  :   
2 1 2 1( / , ) ( / )j i j ip c x c p c c  and 1 2 1( / , ) ( / )i j ip x c c p x c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is thus possible to compute the probability of any pattern 
x  
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
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Where K is the number of neurons for the two maps 1C
and 2C  

2
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j i j ic
i

p x p x c p c c p x c


   

The probability density 2 ( )
jc

p x  is a mixture of densities 
completely defined from the map given the conditional 
probability 1 2( / )i jp c c on the map and the conditional 
probability 

1( / )ip x c on the data. In the following we deal with 
Gaussian densities and assume that: 
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The curve of this likelihood is a very complicated shape, 
which often has very numerous local maxima. Practically, it is 
impossible to maximize directly this likelihood, even to reach 
a local maximum [5]. 

The following algorithm ensures the convergence into a 
local maximum of data probability. 

PRSOM learning algorithm: 
- Initialization : k=0 

- Initial parameters 0W and 0 , and the maximum 
number of iterations T_max is chosen. 

- Let’s compute 2
2

0 ( ) arg max ( )
j

j
cc

x p x  1,...,j K  

- Iterative  step k 
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(2) 

With       1,...,ic K  

2
2

( ) arg max ( )
j

j

k

cc
x p x                                                                    

(3) 

While (k>T_max) 

The expression (1) is used to update the neurons weights 
(referents). 

Figure 1: Probabilistic Self Organizing Map (PRSOM) 
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The expression (2) is used to update the neurons standard 
deviations. 

The expression (3) is used to partition the data space. 

B. Vector quantization 

 Vector  quantization  (VQ)  is defined as follows: given a 

set of feature vectors  , find a partitioning of the  feature  
vector  space  into  the  predefined  K number of regions 

which 
1

K

i i j
i i j

with
 

       . Every vector inside 

such region is represented by the corresponding centroid. 
These regions are called clusters and a set of  centroids, which 
represents the whole vector space, is called a codebook[7]. 

In addition, vector quantization is considered as a data 
compression technique in the speech coding [9] [11].  Vector 
quantization  has  also  been increasingly  applied  to  reduce  
complexity  problem like  pattern  recognition.   The  
quantization  method using the Artificial Neural Network, 
particularly in Probabilistic Self Organizing Maps, is more 
suitable in this case than  the  statistical  distribution  of  the  
original  data that changes  with  time,  since  it  supports  the  
adaptive data  learning  [11].  Also, the neural network has a 
huge parallel structure and the possibility for high speed 
processing. 

But the main problems encountered in the probabilistic 
SOM formalism are: 

- The risk to find degenerated solutions that present at 
least one neuron non adjusted to any input. But the 
likelihood of such Gaussian cannot be infinite, i.e. we 
get closer from a peak of Dirac. 

- The problem of the network architecture choice, i.e. 
the number of neurons in the map and the 
initialization parameters. 

III. PROPOSED MODEL TO OPTIMIZE THE PROBABILISTIC 

SELF-ORGANIZING  ARCHITECTURE MAPS 

A. Problem description 

Generally, if the size of the probabilistic self-organizing 
map is chosen randomly, the PRSOM learning algorithm gives 
three classes of neurons as showing in Figure 2. The first class 
(red neurons) doesn’t represent any observation (empty class), 

the second class (green) represents the neurons that contain 
few information data and the third class represents the 
important information data (blue). 

In the above remark, we noticed that there exists a strong 
relation between the two problems mentioned in the previous 
section.  In other words, we cannot distinguish between the 
two cases. When we take a random PRSOM architecture 
choice (the number of neurons or components), we could have 
degenerated solutions, called also singular solutions. More, the 
neurons (components) of the first class have a negative effect 
because they make the learning process heavier. 

To overcome this problem we propose in this paper a new 

mathematical model of PRSOM that controls the size of the 
map. In  this  section,  we  will  describe  the  construction  
steps  of  our  model.  The  first  one  consists  in  integrating  
the  special  term  which controls  the  size  of  the  map.  The  
second  step  gives the  constraints  which  ensure  the  
allocation  of  each  data  to  only  one  neuron (component).   

B. Modeling of PRSOM architecture optimization 

We propose a new modeling of neural architecture 
optimization problem of probabilistic self-organizing maps as 
an optimization problem in terms of a mixed-integer nonlinear 
problem with linear constraints. To formulate this model we 
need to define some parameters as follows: 
Parameters 
 n : number of data set observation, 
 N : Optimal number of neurons (components) in the 

topology map of PRSOM, 
 Nmax : Maximal number of neurons in the topology map 

of PRSOM. 
 
Variables 
 X = (xij)1≤i≤n

1≤j≤p
 : Matrix of Training base elements; 

 U = (uij) 1≤i≤n
1≤j≤Nmax

:matrix of the binary variables   
 W = (wij)1≤i≤Nmax

1≤j≤p

 Matrix of referent vectors  
 σ = (σi)1≤i≤Nmax

 matrix of covariance   
A general formulation for the (MINLP) is given by (𝑃𝑀𝑎𝑥) 

then (𝑃𝑀𝑖𝑛). 
 

 

Figure 2:  illustration of the three classes neurons of  (PRSOM) 
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The mathematical problem Pmax is equivalent to the 

problem P’max 
            

max max

max

max

max

max

1 1 1

'

1

ln( ( , , )) [ln( ) ln( ( ( , )) (x , , ))] (1)

:
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N Nn
T

ij j k i k k
i j k

N

ijMax
j

n N

N p

N

Max p U W u K j k w

Subject to

u i nP

U

W

    



  








 




    

 

 




 



 
The research for a maximum can always be transformed to 

the research of a minimum. 
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In the following section, we study the resolution of the last 
mathematical program. 

C. Resolution of the obtained nonlinear model 

We use the Genetic Algorithm approach to solve this 
mathematical model. 

1) Genetic algorithm 
Genetic  Algorithm  belongs  to  a  class  of  stochastic  

methods  called  “evolutionary  algorithms”. Introduced by J. 
HOLLAND [16], they are efficient and robust adaptive search 
techniques based on the idea of natural evolution (Darwin 
theory). This algorithm  has  been  applied  in  a  large number 
of optimization problems in several  domains:  

telecommunication,  routing, scheduling, and it proves its 
efficiency to  obtain  good solutions [24]. 

Each  solution  represents  an  individual  who  is coded  in  
one  or  several  chromosomes. These chromosomes represent 
the problem’s variables.  

First,  an  initial  population  composed  by  a  fixed  number  
of  individuals  is  generated,  then  operators  of  reproduction  
are  applied  to  a  number  of individuals  selected  according 
to  their  fitness. This  procedure  is  repeated  until  the  
maximum  number of  iterations  is  attained.    

The relevant steps of GA are: 

Step 1: Coding individuals  

Step 2: Randomly generate an initial population. 

Step 3: Evaluate the fitness of each individual in the current 
population. 

Step 4: Execute genetic operators including selection, 
crossover and mutation. 

Step 5: Generate the next population using genetic operators. 

Step 6: Return to Step 2 until the maximum of the fitness 
function is obtained. 

2) Solving the optimized model 
A specially designed genetic algorithm is applied to solve 

the optimization problem of the Architecture optimization 
model of the probabilistic self-organizing maps described in 
Section 3.2. 

Encoding  

In our model, we have encoded an individual by three   
chromosomes see Figure 3 ,  the  first  one (a) represent  the  
matrix of  decision variables  U,  the  second one (b) 
represents  the  matrix of weights W and the last one (c) 
represents the vector of variances   . 

Figure 3: Genetic representation of an individual Initial Population 

0.2 0.8 … … 0.5 
0.1 … … … 0.6 
… … … … … 
0.9 … … … 0.3 

(a) 
1 0 0 … 0 0 0 
0 0 1 0 … 0 0 
0 0 1 0 … 0 0 

… … … … … … … 
0 0 … … … 0 1 
1 0 0 … 0 0 0 
0 1 0 0 … 0 0 

(b) 
1200 780 395 … … 702 2000 

(c) 
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An initial population is built such that each individual must 

at least be possible solution, i.e., every component  ( , , )U W   
in the initial population must be feasible solution. The initial 
population could be randomly generated, but there exist other 
ways to generate the initial population like applying other 
heuristics.  In our case, we do not use the random initialization 
of the variable U. When we set the variables W and Sigma in
( )MinP , we find a linear model of binary variables under linear 
constraints. Thus, the initialization of the variable U is 

obtained by the resolution of the model ( )UP , with W and 
Sigma randomly initialized. 

The obtained model ( )UP is defined by: 

max max

max

max

1 1 1

1
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:
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
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
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

 

 



 
The matrix U can be transformed into a vector X of size m, 

with m=n*Nmax 

 1,1 1,2 1, ,1 , 1k i i k n nkX u u u u u u u

 

Afterwards we can define the objective function as follows: 
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Linear constraints associated with this problem are defined 
by the following statement: 

Each element ; 1,...,ix i n is affected to a single neuron j. 
These constraints are given by: 

 
max

1

1;...;1
N

ij
j

u i n AX b


      

The matrix 
max{0,1}n NA 

  and the vector 
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1 1 0 0 0 0
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Finally we obtain a linear program with variables 0-1, and 
with linear constraints.  

max

(X) ,X

:
( )

AX b

{0,1}

U

nN

Min E C

Subject to
P

X

 

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 
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Evaluating individuals 
In this step, to each individual is assigned a numerical value  

called  fitness  which  corresponds  to  its  performance; it 
depends essentially on the value of  objective  function  
corresponding to this  individual.  An individual who has a 
great fitness is the most adapted to the problem. 

The fitness suggested in our work is the following function: 

1

1i
i

f
E


  

Minimize the value of the objective function is equivalent to 
maximizing the value of the fitness function. 

 
Selection  

The application of the fitness criterion is intended to select 
which individuals from a population will go on to reproduce.  
Where: 

1

i
i n

j
j

f
P

f





 

 
Crossover 
 

The crossover is a very important phase in the genetic 
algorithm. In this step, new individuals called children are 
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created by individuals selected from the population called 
parents. Children are constructed as follows see Figure 4 : 

We fix three points of crossover, the parents are cut from 
these points, the first part of parent 1 and the second of parent 
2 goes to child 1 and the rest goes to child 2.  

In the crossover that we adopted, we choose 4 different 
crossover points: the first one corresponds to the matrix of 
weights, the second one is for vector U and the last one 
corresponds to the vector of variances   . 

Mutation 
 

The rule of mutation is to keep the diversity of solutions in 
order to avoid local optimums. It corresponds to changing the 
values of one (or several) value (s) of the individuals who are 
(s) chosen randomly. 

 

IV. PROPOSED MODEL TO OPTIMIZE THE PROBABILISTIC 

SELF-ORGANIZING  ARCHITECTURE MAPS 

This algorithm is probabilistic self-organizing based on 

solving the optimization problem Min( )P
 that gives in 

output: weights initialization (vectors referents), covariance 
matrix and the optimal neurons number. This is summarized in 
the following scheme Fig 5: 

Figure 4: Training Model OPRSOM 

To more understand the previous scheme, we explain it 
using the following iterative algorithm 

 

Input:  

        n, p, X, iterN , maxN  ; 

        min max[ , ]T T  the interval of the parameter T; 

         
Output: 

         Optimal probabilistic topological map 

Initialization: 

         max1(0),..., (0)Nw w  Randomly initialized 

         max1(0),..., (0)N   Randomly initialized with the 

great values 

         U initialized via resolution of the model ( )UP . 

          max 0T T t        

           
Step 1:  

        Construction the model of PRSOM Min( )P  

Step 2: 
- Solving the model of PRSOM via Genetic algorithm. 
- Outcome : the optimal number of neurons N used. 
- Initial weights matrix Initial variances vector. 

Step 3:  
       - Optimized model outputs, constructed in the 
initialization phase of OPRSOM. 
       - Training phase of OPRSOM. 
       - Assignment-decision phase (Equation 3). 
       - Minimization phase (Equation 1 and Equation 2). 
Return  
         Optimal parameters of OPRSOM. 
 

V. PROPOSED MODEL TO OPTIMIZE THE PROBABILISTIC 

SELF-ORGANIZING  ARCHITECTURE MAPS 

A. Data set Description  

The experiments were performed using the Arabic digit 
corpus collected by the laboratory of automatic and signals, 
University of Badji-Mokhtar - Annaba, Algeria. A number of 
88 individuals (44 males and 44 females), Arabic native 
speakers were asked to utter all digits ten times [27]. 
Depending on this, the database consists of 8800 tokens (10 
digits x 10 repetitions x 88 speakers). In this experiment, the 
data set is divided into two parts: a training set with 75% of 
the samples and test set with 25% of the samples 

Table 1. Arabic Digits 

 Arabic English Symbol 
 ’ZERO ‘0 صفر
 ’ONE ‘1 واحد
 ’TWO ‘2 اثنان
 ’THREE ‘3 ثلاثة
 ’FOUR ‘4 أربعه
 ’FIVE ‘5 خمسه
 ’SIX ‘6 ستة
 ’SEVEN ‘7 سبعه

Solving via genetic 
algorithm 

Optimal neurons number 
+ initialization of weights 

matrix and vectors 
variances in the 

Probabilistic Kohonen 
topological map 

 

Optimal 
Codebook 

Training 
set 

Optimal probabilistic 
Kohonen Model 
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 ’EIGHT ‘8 ثمانية

 ’NINE      ‘9 تسعه

 

Table 1 shows the Arabic digits, the first column presents 
the digits in Arabic language, the second column presents the 
digits in English language and the last column shows the 
symbol of each digit. 

B. Experiments and discussion  

In this section, we extensively study the performance of the 
proposed approach of speech compression using OPRSOM 
algorithm, Arabic digits set is considered. 

The evaluation of the proposed approach in speech data 
compression was performed using the following measure, 

Peak Signal-to-Noise Ratio (PSNR) is given by: 

PSNR = 10 log10 (
nX2

MSE
) 

Where n is the length of the reconstructed signal, X is the 
maximum absolute square value of the signal x, and Mean 
Squared Error (MSE) is defined as follows: 

MSE =
1

n
∑(x̂(i) − x(i))2
n

i=1

 

Where x̂ is the original speech signal, and x is the 
reconstructed speech signal. 

To choice of optimal neural network (N), we tried five 
different sizes of topological maps (Nmax). In each map, we 
compute the optimal size by our model (P). Numerical results 
obtained on dataset of Arabic digits are presented in the 
Table2. We note that the optimal size is between 3 and 7 
neurons whatever the initial size is. For example, for a map of 
50 neurons on digits 1,2,3,7 the optimal size is 5 neurons. 

Table 2. Optimal results of topological map 

  
 
 

20 30 50 

SYFR 0 N 7 6 7 

WAHID 1 N 5 5 5 

ITNAN 2 N 5 5 5 

THALATA 3 N 5 5 5 

ARBAA 4 N 3 4 3 

KHAMSA 5 N 7 7 6 

SITA 6 N 6 6 6 

SABAA 7 N 5 5 5 

THAMANIA 
8 

N 5 5 5 

TISAA 9 N 7 6 7 

The compression numerical results using optimal size are 
presented in Table 3. This table list all Arabic digits, The 

PSNR and the MSE calculated by classical approach 
(PRSOM) a map of T=20  (Because for the other choices of 
map we find degenerated solutions) neurons and the MSE 
calculated by a new size of map (mean of N for each digit) for 
example N=5 for WAHID (1), N=3 for ARBAA (4) neurons 
which determined by the proposed approach. 

Table 3. MSE and PSNR obtained for Arabic digit by PRSOM    and 
OPRSOM 

ARABIC 

DIGITS 

PSNR PSNR MSE MSE 

OPRSOM PRSOM OPRSOM PRSOM 

0 17.95 20.36 0.95 0.85 
1 17.65 17.80 0.98 0.95 
2 14.91 15.36 1.64 1.50 
3 16.60 17.18 1.25 1.10 
4 15.55 16.22 1.45 1.25 
5 19.77 19.72 0.73 0.74 
6 18.44 18.69 1.26 1.20 
7 20.00 21.00 1.00 0.79 
8 16.09 15.68 1.20 1.31 
9 18.80 18.80 1.09 1.09 

Figure 6 and Figure 7 show the MSE and the PSNR 
comparison of digits Arabic between both approaches PRSOM 
and OPRSOM. We can see that the MSE and PSNR very close 
between both approaches. But proposed method can reduce 
the training time and the number of neurons, from the 20 to 5 
neurons, rate of reduction is about 75%. 

 

Figure 5: Comparison between both approaches for the MSE 

 
Figure 6: Comparison between both approaches for the PSNR 

maxN
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Recall that the proposed method contains an additional 
phase; this phase consists on solving the proposed model in 
order to remove the unnecessary neurons from the initial map. 
For example, for a map with 50 neurons we get a map of 5, the 
proposed approach can thus remove about 90% neurons from 
initial map to construct the optimal PRSOM. 

 

VI. PROPOSED MODEL TO OPTIMIZE THE PROBABILISTIC 

SELF-ORGANIZING  ARCHITECTURE MAPS 

In this paper, we have presented an approach to determine 
the optimal codebook and covariance matrix by the Optimal 
Probabilistic Self Organizing Maps (OPSOM). As a first step 
we construct a mathematical model, after we solve via genetic 
algorithm, therefore we obtain the optimal number used in the 
card and the best initialization parameters of the network. 

This approach has been compared to speech compression 
problem using a datasets of Arabic digit. The obtained results 
demonstrate the performance of our proposed method.  

 In the future works, we will use exact approaches or 
others heuristics methods to resolve this problem and 
determine the optimal solution for the optimization of neural 
networks architectures. The proposed method can be applied 
to solve the pattern recognition problems, speech recognition 
problems and image compression problems.  

REFERENCES 

1. F. ANOUAR, F.BADRAN and S.THIRIA, Self Organized Map, A 
Probabilistic Approach proceedings of the Workshop on Self-
Organized Maps, Helsinki University of Technology, Espoo, 
Finland, June 4-6,1997. 

2. F. Anouar. Modélisation probabiliste des auto-organisées : 
Application en classification et en régression. Thèse de doctorat 
soutenue au conservatoires national des arts et métiers. 1996. 

3. M. Ayache, M. Khalil and F. Tranquart. "Artificial Neural 
Network for Transfer Function Placental Development: DCT 
and DWT Approach". IJCSI International Journal of Computer 
Science Issues, Vol. 8, Issue 5, No 3, September 2011. 

4. C.M. Bishop. Pattern Recognition and Machine Learning, 
Springer,2006 

5. P. Bruneau, Marc Gelgon and F. Picarougne, Parameter-based 
reduction of Gaussian mixture models with a variational-Bayes 
approach, IEEE, 2008. 

6. M. Duran, I. E. Grossmann. "An outer-approximation algorithm 
for a class of mixed-integer non linear programs". 
Mathematical Programming, 1986, pp. 307-339. 

7. Z. En-Naimani, M. Lazaar, M. Ettaouil  ‘Hybrid System of 

Optimal Self Organizing Maps and Hidden Markov Model for 
Arabic Digits Recognition”. Journal of WSEAS Transactions on 

Systems, Volume 13, pp. 606-616, 2014. 
8. Z. En-Naimani, M. Lazaar,  M. Ettaouil, “Architecture 

optimization model for the probabilistic self-organizing maps 
and classification”, 9th International Conference on Intelligent 

Systems: Theories and Applications, Rabat (Morocco), May 07-
08, 2014. 

9. M. Ettaouil, M. Lazaar, "Improved Self-Organizing Maps and 
Speech Compression", International Journal of Computer 

Science Issues (IJCSI), Volume 9, Issue 2, No 1, pp. 197-205, 
2012. 

10. Ettaouil, M. ; Lazaar, M. ; En-Naimani, Z. "A hybrid 
ANN/HMM models for arabic speech recognition using optimal 
codebook”, Intelligent Systems: Theories and Applications 
(SITA), 2013 8th International Conference on  Mai 5-6. 

11. M. Ettaouil, M. Lazaar, K. Elmoutaouakil, K. Haddouch, A New 
Algorithm for Optimization of the Kohonen Network 
Architectures Using the Continuous Hopfield Networks, WSEAS 
TRANSACTIONS on COMPUTERS,Issue 4, Volume 12, April 
2013. 

12. R. Fletcher and S. Leyffer. "Solving Mixed Integer Programs by 
Outer Approximation", Math. Program. 66, 1994, 327–349. 

13. Gascuel O. Canu S. Thiria .S and Lechevallier Y. Statistique et 
méthodes neuronales. 1997. 

14. D.E Goldberg, “Genetic Algorithms in Search, Optimization,  

and  Machine  Learning”. Addison-Wesley, 1989. 
15. O.K. Gupta and A. Ravindran. "Branch and Bound Experiments 

in Convex Nonlinear Integer Programming", Manage Sci., 31 
(12) , 1985, pp. 1533–1546. 

16. Holland J. ”Adaptation in natural and artificial systems”. Ann 

Arbor,MI: University of Michigan Press, 1992 
17. T. Kohonen, S. Kaski, K. Lagus, J. Salojr , J. Honkela, V. 

Paatero, A. Saarela. "Self organization of a massive document 
collection". IEEE transaction on neural networks, 11, No. 3, 
2000. 

18. T. Kohonen. "Self Organizing Maps". Springer, 3th edition, 
2001. 

19. T. Kohonen. "The Self Organizing Maps". Proceedingsof IEEE, 
78, No. 9, 1990, pp. 1464-1480. 

20. S.P Luttrel. A bayesian analysis of self- organizing maps. Neural 
Computing 6: 767-794, 1994. 

21. S.  Manuel,  M.  L.  José,  M.  B.  Victor,  M.R. José, GENES, “a 

Genetic Algorithms and Fast Time  Simulation’’,  3nd  ATM  

R&D Symposium, Spain, 2002. 
22. I. Quesada and I.E. Grossmann. "An LP/NLP Based Branch and 

Bound Algorithm for Convex MINLP Optimization Problems", 
Computers Chem. Eng., 16 (10/11), 1992, pp. 937–947. 

23. N. Rogovschi. Classification à la base de modèles de mélanges 
topologiques des données catégorielles et continues. Thèse de 
doctorat soutenue à l’université Paris 13- Insitut Galilée. 2009. 

24. E. Taillard, J. Dréo, A.Pétrowski, P. Siarry. Métaheuristiques 
pour l’optimisation difficile, Eyrolles,2003. 

25. D. Wang. "Fast Constructive-Coverting Algorithm forneural 
networks and its implement in classification".Applied Soft 
Computing, 8, 2008, pp. 166-173. 

26. M. YACOUB and al, Clustering and classification based on 
expert knowledge propagation using Probabilistic Self 
Organizing Map: application to geophysics, Data 
AnalysisStudies in Classification, Data Analysis, and Knowledge 
Organization 2000, pp 67-78 . 

27. http://archive.ics.uci.edu/ml/datasets/Spoken+Arabic+Digit 
 
 
 
 
 
 

 

15

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ettaouil,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lazaar,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.En-Naimani,%20Z..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6560806&queryText%3Dlazaar
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6560806&queryText%3Dlazaar
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6560806&queryText%3Dlazaar
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6554181
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6554181
http://link.springer.com/book/10.1007/978-3-642-58250-9
http://link.springer.com/book/10.1007/978-3-642-58250-9
http://link.springer.com/bookseries/1564
http://link.springer.com/bookseries/1564

