Transaction-Time Queries in Dydra

James Anderson and Arto Bendiken

Datagraph GmbH

Abstract Dydra is an RDF graph storage service. It stores and retrieves
the contents of RDF datasets through SPARQL, LDF and LDP interfaces.
In addition to these basic capabilities, it retains previous store states, in
addition to the current state, as active addressable aspects of a dataset
analogous to named graphs in a quad store. It incorporates arbitrary
revisions into target datasets according to query arguments for HTTP
requests and an additional REVISION clause in SPARQL.

This document describes a taxonomy of archival RDF queries and il-
lustrates it with examples drawn from three popular ontologies: gist,
schema.org and STW, which demonstrate how the Dydra TB storage
architecture combines with simple interface extensions to support the
principal tasks and address the primary concerns when working with
RDF data over time.

Keywords: RDF, temporal data, SPARQL, revisions

1 Introduction

Dydra is an RDF graph storage service. It operates as a cloud service, a local
service or an embedded library. It stores and retrieves the contents of RDF
datasets through SPARQL, LDF and LDP interfaces. In addition to these basic
capabilities, Dydra retains previous store states, in addition to the current state,
as active addressable aspects of a dataset analogous to named graphs in a quad
store. It addresses these states in its REST interfaces through the values supplied
for a revision argument, which acts in a manner analogous to the graph argument
for a quad store request, or through the Accept-Datetime header defined by
Memento. Its SPARQL dialect includes a REVISION clause which plays a role
for revisions analogous to that which the GRAPH clause plays with respect to
named graphs. These facilities suffice to manage and analyze evolving datasets
over time. In order to demonstrate this, we present a taxonomy of archival RDF
analytics, describe its relation to the BEAR framework[l] for benchmarks for
RDF archives, and illustrate individual concrete cases with SPARQL queries.

The next section introduces a taxonomy with which to comprehend the
possible query forms, Section 3 aligns this taxonomy with that from the BEAR
proposal and illustrates each case with a simple query. Section 4 provides extended
examples. Section 5 discusses implementation considerations.

2 James Anderson and Arto Bendiken

2 A Taxonomy for Archival RDF Analysis

We characterize queries, for the purpose of this discussion, according to two
principle dimensions: dataset constitution and algebra combination. Constitution
concerns which revisions to include in the target dataset and how to address them.
Combination concerns how the query algebra combines those constituent elements.
An a-temporal query specifies a target RDF dataset with respect to named graphs
by indicating which graphs are to be merged into the target dataset default graph
and/or which are to be made available as named graphs. When a variable is
specified in a GRAPH clause, it ranges over the specified set or, when none
was specified, over a default set. In order to perform inter-graph comparisons,
a query includes multiple GRAPH clauses and combines the respective results
through arbitrary SPARQL[5] algebra operations. In this case, the target dataset
constitutes a collection of these graphs, they are addressed by respective IRI
and the solutions are combined with or without extensions to bind the graph
depending on whether the respective clause took the default graph, a constant
named graph, or the domain of an an abstract graph variable as the target.

In a transaction-time query, revisions play a role analogous to graphs. The
query can specify one or more revisions to indicate the transaction state(s) which
constitute(s) the target dataset. If none is specified, as a default, the dataset
reflects the latest revision. Any revision variable ranges over known revisions.
A revision variable extends solutions within their scope with a binding for its
value, which contributes to algebra operations in the same manner as any other
binding. In contrast to graphs, however, in addition to specifying an individual
revision, a revision designator can compose revisions, for example, to incorporate
all states over a temporal interval, or to indicate the difference between the
states which correspond to transactions. The query algebra then matches graph
patterns against the composed revision datasets and combines them to produce
the results.

In terms of dataset constitution and algebra combination, descriptions of
transaction-time queries supports the following characterisations:!

— dataset revision constitution : none (&), single (@), multiple (n), ranges (- - -),
or differences (A)
— algebraic combination : default (&), constant (V;)?, or abstract (?v) .

The revision designators provide means to constitute datasets corresponding
to various temporal entities:

— A single revision is identified directly by it UUID, for example
58bd5f7-7d46-48f8-b64a-43f257c48817, or by a timestamp in the interval in

! This exposition concerns neither streaming data nor graph store operations. Any
use cases related to streaming data will still require an individual query reduction to
occur on a static dataset, but may require additional means to refer to transaction
when constituting the dataset. Use cases related to graph store operations are always
identity projections of a composed dataset.

2 A constant corresponds to a date, a revision name, or the revision associated with
some user label.

https://www.w3.org/TR/2013/REC-sparql11-query-20130321/#specifyingDataset

Transaction-Time Queries in Dydra 3

Table 1. Query taxonomy and correspondence to the BEAR framework.

Combination n(o@n)e si(n@g)le mu(llzi)ple r(ang;a diﬂ’(eze)nce
Constitution
default (@) — single| Mat(Q,HEAD) - - -
Mai(@, V)
constant (V;) - Join(Q1, Vi, Q2, Vj) - -
Dfo(Q7 Vi, vj)
abstract (?v) Ver(Q) Change(Q) - - -

which the revision was current for its repository, in that case
2016-03-15T01:11:38Z.

— A relative revision is designated by inflection, for example
58bd5ff7-7d46-48f8-b64a-43f257c48817 The compositon of two revision is des-
ignated by their sequence, for example
58bdbff7-7d46-48£8-b64a-43f257c48817,f47acl0b-58cc-4372-a567-0e02b2c3d479.

— The additions and deletions between two revision is designated by connecting
identifiers for the bound with "..", for example
58bdbflf7-7d46-48{8-b64a-43f257c48817..f47acl0b-58cc-4372-a567-0e02b2c3d479.

The combined characterisations yield the taxonomy shown in Table 1. In these
terms, all query variations present in the BEAR framework are accommodated
in four of the twelve combinations, as indicated in the none and single columns.
In particular, a mechanism which provides just a request revision specification
analogous to the SPARQL graph clause is sufficient. For more complex use cases,
the constitution forms multiple, range, and difference compose a basic graph
match target a dataset which comprises distinct revisions, but is processed as a
single entity. This supports diachronic use cases, such as

— Retrieve those concepts changed during a given calendar interval.

— Compute those ontology items which contradict the state recorded in the
previous revision.

— Retrieve those concepts which are universally valid across the entire repository
lifetime.

Once the distinction has been made between dataset constitution and algebraic
composition, in order to extend SPARQL to query revisioned datasets, is it
necessary only to provide means establish the scope of a given revision and,
where the value is not constant, to bind it to a variable. This is accomplished
with a REVISION clause, analogous to a GRAPH or SERVICE clause. Where
the latter limit the application of contained patterns to composed local graphs and
or to a graph at a remote location, the REVISION clause limits the application
to composed versions. Where alternative approaches, suggest to conflate revision
metamodel with the domain model either by reifying the domain data in order
to store it in the revision model[4], by using named graphs to associate revision

4 James Anderson and Arto Bendiken

[[66]] GraphPatternNotTriples ::=
OptionalGraphPattern | GroupOrUnionGraphPattern
MinusGraphPattern | GraphGraphPattern |
RevisionGraphPattern | ServiceGraphPattern

[[60a]] RevisionGraphPattern ::=
"REVISION’ (VarOrIRIref | String) GroupGraphPattern

Figure 1. SPARQL grammar REVISION extension

transaction information with domain data[6], or by extending the domain model
to include revision transaction attributes|[2], the goal of this approach is to abstract
the revision model from the domain model and facilitate an implementation which
is at once simpler and more flexible. Rather than extend the data model, temporal
attributes are factored out to a provenance repository, where the service maintains
transaction time information, the application can augment the provenance records
as necessary, and federated queries compose revisions as required.

The implementation extends one grammar production, as indicated in figure 13,
to establish the scope of a revision designator and permit its binding. If the value
is constant, the target is that revision. If the value is a bound variable, the query
applies to all revision values apparent for that variable in the respective solutions.
If the variable is free, the revision ranges over all repository revisions, in reverse
chronological order.

3 BEAR Comparison

Each element from the BEAR blueprint for temporal RDF analytics is realized
as in Table 3. In Dydra, the semantics diverge from that proposed by [1], in
that a temporal annotation takes the same form as that for named graphs: a
variable binding. That means the annotations are present in solutions and, as
such, figure in any compatibility computation. Under this semantics, any join
and aggregation operations must account for the binding. Table 3 contains the
SPARQL query which implements each BEAR case in Dydra.

4 Examples

In order to illustrate how the facility applies to concrete cases, we present examples
for archival analysis of ontology datasets. One is drawn from each of three popular,
evolving ontologies: gist schema.org, Standard Thesaurus for Economics, and
Each alternative is illustrated below with a case related to ontology curation.

4.1 gist
Use the provenance records to determine the revisions current at given dates and
analyse the ontology state for each.

3 See http://www.w3.org/TR/2013 /REC-sparqlll-query-20130321/ as available on
2016-04-25 .

https://www.w3.org/TR/2013/REC-sparql11-query-20130321/#BasicGraphPattern
http://semanticarts.com
http://schema.org
http://ebw/stw
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

Transaction-Time Queries in Dydra

SELECT “?concept (count(?subConcept) as ?frequency)
(sample(?releaseDate) as 7date)
(sample(?label) as ?release)

WHERE {

{ SERVICE <http://localhost/schema/gist - provenance> {

{ SELECT 7?releaseDate (max (7revisionDate) as ?releaseRevisionDate)
WHERE {
VALUES ?releaseDate {

’2009-02-28T12:00:00Z’ "~ <http://www.w3.org/2001/XMLSchema#dateTime >
’2009-07-31T12:00:00Z’" " <http://www.w3.org/2001/XMLSchema#dateTime >

}
GRAPH ?revision {

?revision <http://www.w3.org/ns/prov#generatedAtTime> 7revisionDate

}
FILTER (?revisionDate <= ?releaseDate)
} GROUP by 7?releaseDate
} { GRAPH ?revision {
?revision rdfs:label ?7label

?revision <http://www.w3.org/ns/prov#generatedAtTime> ?releaseRevisionDate

T}
3
REVISION “?revision {
?subConcept rdfs:subClassOf ?concept
+
}
GROUP BY ?concept ?revision
ORDER BY DESC (?frequency)
LIMIT 10

4.2 STW

Indicate the prevalence of descriptors across thesaurus revisions.

prefix skos: <http://www.w3.org/2004/02/skos/core#>

prefix zbwext: <http://zbw.eu/namespaces/zbw-extensions/>

#

Show the number of versions in which a descriptor is present
#

select ?prevalence (count(?prevalence) as ?frequency)

where {
select 7?s (count(?r) as ?prevalence)
where {
revision ?r { 7s a zbwext:Descriptor . }

} group by 7?s

group by ?prevalence
order by desc (?7frequency)

4.3 schema.org

Indicate the prevalence of classes which have been marked as deprecated.

select 7concept ?revisionDeprecated ?revisionUsed
where {
{ select ?concept ?rDeprecated where {
revision ?rDeprecated {
?concept <http://www.w3.o0rg/2000/01/rdf -schema#comment> ?comment
filter (regex(7comment, ’.xdeprecated.*’)) } } }
{ revision ?rUsed {
?concept a ?type

6 James Anderson and Arto Bendiken

} 3
{ service <http://localhost/schema-org-test/provenance> {
graph ?rUsed { 7rUsed rdfs:label ?revisionUsed }
} o}
{ service <http://localhost/schema-org-test/provenance> {
graph ?rDeprecated { ?rDeprecated rdfs:label ?revisionDeprecated }
} 3

} order by 7?concept

5 Implementation Considerations

The store implementation has been designed for efficient mutation at scale
balanced with the requirement to access historical revisions of data. It combines
graph-partitioned triple tables with clustered, persistent B+tree indexes, based
on a memory-mapped MVCC design with full ACID semantics. By default,
repository data is comprehensively indexed six ways: GSPO, GPOS, GOSP,
SPOG, POSG, OSPG, enabling any quad-pattern match to be answered from
indices. RDF terms are interned on an installation-wide basis into integer ordinals.
In the storage for a repository, B+tree keys consist of four integers representing
the graph, subject, predicate, and object terms. B+tree values store a revision
visibility map indicating which revisions a particular quad is visible in.

The revisioning can be disabled in a per-repository basis in which case B+tree
values are of zero length; further, the trade-off between mutation performance
versus query performance can be tuned by configuring the revision visibility map
to be used only on the GSPO index, which speeds up mutation about six-fold
at the constant cost of a factor two increase in B+tree lookups during query
processing of non-GSPO patterns.

There are various encodings of revision visibility maps as succinct data
structures that optimize for efficient revision lookup and compact space utilization.
The base storage requirements for an un-versioned repository involve sixteen or
thirty-two bytes per statement, depending on intended capacity, times the index
count plus storage for term strings. With revisions, the space should increase
in a sublinear relation to mutation count, where those statements not modified
since first insertion require no additional space, while mutated quads require a
visibility map, the size of which depends on the mutation pattern.

Table 2 compares the space for RDF document and indexed representations
of the example datasets. In addition to the gist, schema.org and STW datasets,
the table includes statistics from the revision history of the "Experimental Factor
Ontology" [3] in the rows "efo" , "efo @2.67" and "efo unrevisioned". contain the
space requirements for the complete revision history and for a single-revision
repository which includes the latest 2.69 version only. The results indicate that
the representation for revisions adds significant overhead with respect to unique
statements, but provides and advantage with respect to total statement count.

As illustrated by the green components in figure 2 4, the implementation
effort to support REVISION clause was limited. The service depends on a

4 See http://arxiv.org/pdf/1504.01891v2, as available on 2016-04-25.

http://arxiv.org/pdf/1504.01891v2

Transaction-Time Queries in Dydra 7
Table 2. Revision Space Characteristics
ontology revisions|files (MB) quads store (MB)|bytes/quad
total HEAD
gist 16 2.9 27,519 849 11.4 434
schema.org 23 19.1] 156,146| 11,228 22.4 151
STW 7 94.2] 771,375/108,967 116.5 158
efo 144 1,384.0(17,614,527|260,503 3,079.0| 183 (total)
efo 144 1,384.0| 4,221,100{260,503 3,079.0|765 (unique)
efo @2.69 2.8| 260,503|260,503 93.2 375
efo unrevisioned 2.8| 260,367|260,367 93.5 377
((Dydra Web UI]\r(WEB UI] (HTTP API]) Interfaces
[ADMIN API] [SPARQL 1.1 Protocol and Graph Store HTTP Protocol] APIs
-E Repository SPARQL Processor Graph Store Processor g
E ([isterevisions) (Aeebrai293/1515450c) lm;;on §
< ((Modetir: 0729634350) Export H —— Processing
[Shared Memory Connector]

Data Store

I === IS

e Persistence
Mechanims

Loader

(

|

Figure 2. Service Implementation Changes for Revision Support

strict separation between the SPARQL processor and the RDF store. This
limits the query processor to operations which manage transactions for specific
repository revisions and to perform count, match and scan operations with respect
to statement patterns. As a consequence of this interface, the changes to the
SPARQL processor are limited to 293 sloc for the algebra operator and the two
productions in the grammar in figure 1.

This compares well, for example, to the SERVICE operator, which requires
453 sloc and to the 13,151 sloc for the entire algebra implementation. The store
implementation is more substantial. In this case, 1,921 / 101,416 sloc implement
the revisioned index, which is still a relatively small amount, considering the
capabilities.

References

1. Javier David Fernandez Garcia, Jiirgen Umbrich, and Axel Polleres. Bear: Bench-
marking the efficiency of rdf archiving. Technical report, Department fiir Informa-
tionsverarbeitung und Prozessmanagement, WU Vienna University of Economics
and Business, 2015.

. Claudio Gutierrez, Carlos A Hurtado, and Alejandro Vaisman. Introducing time
into rdf. Knowledge and Data Engineering, IEEE Transactions on, 19(2):207-218,
2007.

James Anderson and Arto Bendiken

. James Malone, Ele Holloway, Tomasz Adamusiak, Misha Kapushesky, Jie Zheng,
Nikolay Kolesnikov, Anna Zhukova, Alvis Brazma, and Helen Parkinson. Modeling
sample variables with an experimental factor ontology. Bioinformatics, 26(8):1112—
1118, 2010.

. Marios Meimaris, George Papastefanatos, Stratis Viglas, Yannis Stavrakas, and
Christos Pateritsas. A query language for multi-version data web archives. arXiv
preprint arXiv:1504.01891, 2015.

. Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of
sparql. ACM Transactions on Database Systems (TODS), 34(3):16, 2009.

. Jonas Tappolet and Abraham Bernstein. Applied temporal rdf: Efficient temporal
querying of rdf data with sparql. In The Semantic Web: Research and Applications,
pages 308-322. Springer, 2009.

Transaction-Time Queries in Dydra 9

Table 3. Dydra - BEAR alignment

[Dydra SPARQL forms corresponding to BEAR Abstract Notation

Version Mat(Q,vi) SELECT * WHERE { Q :[vi] }
materialisation SELECT * WHERE {
REVISION <urn:uuid:12345678-----123456789012> {
(@»Vi) ?s ?p 7o
}
}
SELECT * WHERE {
Delta Diff(Q,vi,vj) t{n&ong :[vil} MINUS {Q :[vjl} } BIND(vi AS?V) }
materialisation {{ {Q :lvjl } MINUS {Q :[vil}} BIND(vi AS?V) }

SELECT * WHERE {
REVISION 7v {

{ {?s ?p 70} MINUS {REVISION "~" {?s ?p ?0}}}
(@.7v) UNION
{ { REVISION "~" {?s ?p ?7o0}} MINUS {?s ?p ?o0}}
}
¥
Ver(Q) SELECT * WHERE { P :?V }

Version Query
SELECT * WHERE {
REVISION ?v {

(2.70) ?s ?p 7o
}
T
Cross-version [join(QL,vi,Q2,vj)|SELECT * WHERE { {Q :[vil} {Q :[vjl} }
Join SELECT * WHERE {
{REVISION <urn:uuid:12345678-----123456789012> {
(@.V;) {?s 7p 7o} })
{REVISION <urn:uuid:87654321-----098765432109> {
{?s ?p 7o} }
}
SELECT ?V1 ?V2 WHERE {
Ch {{P :?V1 } MINUS {P :?V2}}
Change ange(Q) FILTER(abs(?7V1-?V2) = 1)
materialisation 3

SELECT ?v WHERE {
REVISION ?v {
{?s ?p 7o}
(@.7v) MINUS
{ REVISION '~' {?s ?p 7o} }
}
}

