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Abstract. Imposing access control onto workflows considerably reduces
the set of users authorized to execute the workflow tasks. Further con-
straints (e.g. Separation of Duties) as well as unexpected unavailabilty
of users may finally obstruct the successful workflow execution. To still
complete the execution of an obstructed workflow, we envisage a hybrid
approach. If a log is provided, we partition its traces into “successful”
and “obstructed” ones by analysing the given workflow and its authoriza-
tions. An obstruction should then be solved by finding its nearest match
from the list of successful traces. If no log is provided, we flatten the
workflow and its authorizations into a Petri net and encode the obstruc-
tion with a corresponding “obstruction marking”. The structural theory
of Petri nets shall then be tweaked to provide a minimized Parikh vector,
that may violate given firing rules, however reach a complete marking
and by that, complete the workflow.
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1 Introduction

From the Société Générale scandal with loss of nearly five billion Euro caused by
shuffling transactions [8] to more recent scandals, for instance in the automotive
industry (e.g. the “Dieselgate” [18]) - the increasing number of corporate fraud
cases underline the growing demand for security and control in enterprises and
their corresponding information systems. These systems increasingly adapt to
a process-oriented view to reach the intended business goals. These so called
process-aware information systems (PAIS) [14] can help to mitigate such fraud-
ulent situations by enhancing workflows with authorization constraints. In this
respect security in business processes gains more and more importance [22, 1].
Classic computer security [4] usually follows the CIA-triade, trying to achieve or
sustain confidentiality, integrity and availability, or simply “keeping bad things
from happening”. Security in business processes, however, should also consider
to “make good things happen” by reaching the intended business goals in com-
pleting corresponding processes.

The interplay of security in business processes and this notion of process
availability can be shown by analysing the impact of introducing authorization
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in PAIS to achieve confidentiality and integrity. First, access control policies are
added on top of users contributing in the process, controlling who is authorized to
perform which task. On top of that, further constraints are defined, for instance
“separation of duties” (SoD) constraints [5] or contrary “binding of duties”(BoD)
constraints. Moreover, users can be on vacation or become ill. In this way, the
set of authorized users to execute the tasks in a process is drastically reduced
and can result in a state where no user can be found to execute the given task
at hand, obstructing workflow execution.

An obstruction describes a state of a workflow instance where the enforce-
ment of the authorization policy conflicts with the business objectives. At the
control-flow level, the business objectives can be achieved by executing a task
t but at the task-execution level there is no user who is authorized to execute
t without violating the given authorization policy [2]. The following minimal
example depicts this notion of (un-)satisfiability in workflows.

1.1 Running Example

Figure 1 illustrates a simplified payment workflow and a user-task assignment.
Now, we add an SoD constraint for t1 and t2, meaning that the preparation of
payment needs to be done by a different user than the one who approves the
payment. Given the user-task assignment in Fig. 1(b), if u2 executes t1, t2 can
be performed by u1. If u1 executes t1, she can not execute t2 due to the imposed
SoD constraint, although she basically is authorized to perform this task. u2 can
neither execute t2, since he is not authorized at all. This situation indicates an
obstruction of the workflow resulting from given authorization constraints [2, 3,
13].

(a) Simplified Payment Worfklow (b) User-Task Assignment

Fig. 1: Simplified Payment Workflow based on [6]

1.2 Related Work

Literature regarding satisfiability of authorization constrained workflows mainly
offers theoretical approaches so far [13]. In particular, research related to the so
called Workflow Satisfiability Problem (WSP) (see Section 2) shows that (under
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the assumption that P �=NP) the NP-complete WSP is efficiently solvable for a
growing number of constraint types. Regarding access control systems in gen-
eral, there mainly exist two approaches for the case when no user is available to
access a certain object [10]: either alternative constraints are defined (“Break-
the-Glass”) that override existing policies or another user is empowered to access
the object by use of delegation. However, classic delegation requires the delegator
to be available to perform the delegation and involves the danger that delegation
capabilities are misused (e.g. collusion [21]). Considering these deficits, the ap-
proach of Crampton et al. [10] suggests the concept of auto-delegation, in which
qualifications are introduced that indicate a potential delegatee. Examples on
how the qualification hierarchy may be computed based on an access control-
model are given. However, the auto-delegation mechanism only exists as a first
concept so far, which seems promising for the use in PAIS. In summary, the state
of the art on workflow satisfiability only scarcely solves the consequent practical
problems in terms of obstructions in workflow executions at runtime. Therefore,
we envisage to develop an approach that caters for the detection of obstructions
and policy-wise sound workarounds that allow their execution.

1.3 Structure

This paper aims to show our intended solution to this problem. We first state
Petri nets, events logs, authorization and structural theory formally and intro-
duce the corresponding terminology in Section 2. On top of that, we present
our approach to tackle obstructed workflows based on the model and logs in
Section 3 and show its potential applications in Section 4. Section 5 concludes
and presents further research steps on the topic.

2 Preliminaries

We first give the definition of a Petri net to model workflows with a clear execu-
tion semantics. Then, we introduce users, user-task authorization and define SoD
and BoD Constraints. In this way, we are able to grasp unsatisfiability in work-
flows formally, leading us to introduce structural theory as a way to encounter
this (see Section 3.1).

2.1 Petri Nets and Event Logs

Definition 1 (Petri net). A Petri net [15] is a 4-tuple N = 〈P, T,F ,m0〉,
where P is the set of places, T is the set of transitions, satisfying P ∩ T = ∅
and F : (P × T ) ∪ (T × P ) → {0, 1} is the flow relation, and m0 is the initial
marking. A marking is an assignment of a non-negative integer to each place.
If k is assigned to place p by marking m (denoted m(p) = k), we say that p
is marked with k tokens. Given a node x ∈ P ∪ T , its pre-set and post-set are
denoted by •x and x• respectively.
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A transition t is enabled in a marking m when all places in •t are marked.
When a transition t is enabled, it can fire by removing a token from each place
in •t and putting a token to each place in t•. A marking m′ is reachable from
m if there is a sequence of firings t1t2 . . . tn that transforms m into m′, denoted
by m[t1t2 . . . tn〉m′. A sequence of transitions t1t2 . . . tn is a feasible sequence if
it is firable from m0.

Definition 2 (System Net, Full Firing Sequences). A system net defines
a set of sequences, each one starting from the initial marking and ending in the
final marking. A system net is a tuple SN = (N,mstart,mend), where N is a
WF-net and the two last elements define the initial and final marking of the
net, respectively. The set {σ | (N,mstart)[σ〉(N,mend)} denotes all the full firing
sequences of SN .

Definition 3 (Trace, Event Log, Parikh vector). Given an alphabet of
events T = {t1, . . . , tn}, a trace is a word σ ∈ T ∗ that represents a finite se-
quence of events. An event log L ∈ B(T ∗) is a multiset of traces. |σ|a represents
the number of occurrences of a in σ. The Parikh vector of a sequence of events
is a function̂: T ∗ → Nn defined as σ̂ = (|σ|t1 , . . . , |σ|tn). For simplicity, we will
also represent |σ|ti as σ̂(ti). The support of a Parikh vector σ̂, denoted by supp(σ̂)
is the set {ti|σ̂(ti) > 0}.

Workflow processes can be represented in a simple way by using workflow
nets (WF-nets) [19]. A WF-net is a Petri net with a place start (denoting the
initial state of the system) with no incoming arcs and a place end (denoting the
final state of the system) with no outgoing arcs, and every other node is within
a path between start and end. The transitions in a WF-net represent tasks.
For the sake of simplicity, the techniques of this paper assume that models are
specified with WF-nets.

2.2 Security in Workflows

To connect WF-nets with users and authorization, we adapt the definitions
from [20]. Further constraints regarding workflow satisfiabilty analysis have al-
ready been investigated [9]. However, in this paper we focus on the SoD related
binary constraints, which are sufficient to reach an obstructed state.

Definition 4 (Authorization). A configuration is given by a tuple 〈U,B〉,
where U ⊆ U is a set of users and B = {ρ1, · · · , ρm} ⊆ B is a set of binary
relations such that ρi ⊆ U × U(i ∈ [1, m]). Furthermore, we assume that B
contains two predefined binary relations = and �=, which denote equality (for
BoD) and inequality (for SoD), respectively. A configuration 〈U,B〉 defines the
environment in which a workflow is to be run.

A workflow is represented as a tuple 〈N,TA,C〉, where N is a WF-net, TA ⊆
U × T is the user-task authorization where (u, t) ∈ TA indicates that a user u
is authorized to perform transition or task t, and C is a set of constraints.
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Definition 5 (Constraints, Workflow Satisfiability). Each of the constraints
takes one of the following forms:

1. 〈ρ(t1, t2)〉: the user who performs t1 and the user who perform t2 must
satisfy the binary relation ρ.

2. 〈ρ(∃X, t)〉: there exists a task t′ ∈ X such that 〈ρ(t′, t)〉 holds, i.e., the user
who performs t′ and the user who performs t satisfy ρ.

3. 〈ρ(t, ∃X)〉: there exists a task t′ ∈ X such that 〈ρ(t, t′)〉 holds.
4. 〈ρ(∀X, t)〉: for each task t′ ∈ X, 〈ρ(t′, t)〉 must hold.
5. 〈ρ(t, ∀X)〉: for each task t′ ∈ X, 〈ρ(t, t′)〉 must hold.

Consider the simplified payment workflow in Figure 1a. Let t1prepare
, t2approve

denote the two tasks in the workflow. The SoD constraint of the workflow can
be represented in tuple-based specification 〈�= (t1prepare , t2approve)〉.

A plan P for workflow W = 〈N,TA,C〉 is a subset of U × T such that,
for every task ti ∈ T , there is exactly one tuple (ua, ti) in P , where ua ∈ U .
Intuitively, a plan assigns exactly one user to every task in a workflow. Given
a workflow W = 〈N,TA,C〉 and a configuration Γ = 〈U,B〉, we say that a plan
P is valid for W under Γ if and only if for every (u, t) ∈ P, u is an authorized
user of t and no constraint in C is violated. We say that W is satisfiable under
Γ if and only if there exists a plan P that is valid for W under Γ .

The Workflow Satisfiability Problem (WSP) checks whether a workflow W is
satisfiable under a configuration Γ . Given configuration 〈U,B〉, checking whether
W is satisfiable under Γ is equivalent to checking whether there is a valid plan
for W under Γ . Note that there can be multiple valid plans for a workflow W
under a configuration. In fact, it is the existence of multiple valid plans that
makes it possible for W to be completed even if a number of users are absent.
Therefore, the notion of resilience in workflows is introduced [20]: Given a
workflow W and an integer n ≥ 0, a configuration 〈U,B〉 is resilient for W up
to n absent users if and only if for every size-n subset U ′ of U , W is satisfiable
under 〈(U − U ′), B〉. In our example, the absence of either u1 or u2 would
result in an unsatisfiable workflow wherefore it is not resilient for n > 0 absent
users. However, although the regarded workflow is satisfiable, it still contains an
obstruction (cf. Section 1.1). We show how we plan to capture such obstructions
based on a WF-net with an “obstruction marking” in Section 3.1.

2.3 Structural Theory of Petri Nets

Let N = 〈P, T,F ,m0〉 be a Petri net. Given a feasible sequence m0
σ→ m, the

number of tokens for a place p in m is equal to the tokens of p in m0 plus the
tokens added by the input transitions of p in σ minus the tokens removed by the
output transitions of p in σ:

m(p) = m0(p) +
∑
t∈•p

|σ|t F(t, p)−
∑
t∈ p•

|σ|t F(p, t)
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Fig. 2: (a) Petri net, (b) Potential reachability graph, (c) Marking equation.

The marking equations for all the places in the net can be written in the
following matrix form (see Fig. 2(c) as an example): m = m0 +N · σ̂, where N
∈ ZP×T is the incidence matrix of the net: N(p, t) = F(t, p)−F(p, t).

If a marking m is reachable from m0, then there exists a sequence σ such
that m0

σ→ m, and the following system of equations has at least the solution
X = σ̂

m = m0 +N ·X (1)

If (1) is infeasible, then m is not reachable from m0. The inverse does not
hold in general: there are markings satisfying (1) which are not reachable. Those
markings are said to be spurious [17]. Figure 2(a)-(c) presents an example of
a net with spurious markings: the Parikh vector σ̂ = (2, 1, 0, 0, 1, 0) and the
marking m = (0, 0, 1, 1, 0) are a solution to the marking equation, as shown in
Fig. 2(c). However, m is not reachable by any feasible sequence. Figure 2(b)
depicts the graph containing the reachable markings and the spurious markings
(shadowed). The numbers inside the states represent the tokens at each place
(p1, . . . , p5). This graph is called the potential reachability graph. The initial
marking is represented by the state (1, 0, 0, 0, 0). The marking (0, 0, 1, 1, 0) is
only reachable from the initial state by visiting a negative marking through the
sequence t1t2t5t1, as shown in Fig. 2(b). Therefore, equation (1) provides only a
sufficient condition for reachability of a marking.

For well-structured Petri nets, e.g. when the net is free-choice [15], live,
bounded and reversible, equation (1) together with a collection of sets of places
(called traps invariants) of the system completely characterizes reachability [11].
For the rest of cases, the problem of the spurious solutions can be palliated by the
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use of trap invariants [12], or by the addition of some special places named cut-
ting implicit places [17] to the original Petri net that remove spurious solutions
from the original marking equation.

3 Tackling Obstructed Workflows

To tackle an obstructed state in a workflow, we envisage a hybrid approach, de-
pending on the existence of historical information. In case no historical informa-
tion is provided, in Section 3.1 we propose a model-based exploration approach
that suggests the minimal amount of resources to be added into the model to
escape from an obstructed state. When historical information is provided in form
of an event log, the method presented in Section 3.2 could be used, which simply
detects the most similar historical successful trace.

3.1 Model-based Obstruction Solving

If only the model of a workflow with its authorizations and constraints are given,
we intend to solve an obstructed state not by changing the model (cf. [3]), but
by finding the best path with minimal violation. By flattening the workflow with
its authorizations and users into a Petri net and encoding the obstruction with
a corresponding marking, the marking equation shall be tweaked to provide a
minimized Parikh vector to reach a completed marking, possibly violating given
firing rules. The minimal Parikh vector shall be computed by solving the marking
equation in the domain of Natural numbers, using Integer Linear Programming
(ILP) techniques [7].

Flattening of Authorization Data into WF-net Given the example work-
flow in Fig. 1(a), we flatten the authorization and constraints into a WF-net step
by step. This encoding may only show our intention and needs to be developed
further in terms of WF-net soundness. The following steps shall give the inten-
tion of this flattening of authorization data into a WF-net and will be refined in
more detail in future.

t 1 t 2

Fig. 3: Simplified Payment Workflow as WF-net with initial marking

First, because of the absence of ambiguous gateways in the model in Fig. 1(a),
we can easily transform the workflow into the Petri net in Fig 3. To model access
control, we assume the simple access control model without roles from Fig 1(b)).
The user-task allocation is noted by the corresponding transitions (e.g. u1t1 in
Fig. 4(a)). Firing u1t1 for instance represents the decision of who shall execute
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u2t1 u1t2

t 1 t 2

u1t1

(a) WF-net with access control

SoD

u2t1 u1t2

t 1 t 2

u1t1

(b) Fig. 4a with SoD

Fig. 4: Flattening access control and SoD into Simplified Payment Workflow

a specific task. In a further step, we model the SoD constraint in Fig. 4(b) by
introducing a choice place for all users authorized for both tasks. In this way,
we are able to model SoD constraints for sequential as well as concurrent tasks.
A generalized way to model SoD constraints in WF-nets shall be provided in
future.

SoD

u2t1 u1t2

t 1 t 2

u1t1

Fig. 5: Obstructed marking in flattened WF-net

The initial marking of the net is represented in Fig. 4(b). After t1 has been
executed by u1, we are running in an obstructed state. This obstructed marking
is represented in Fig. 5.

Tweaking the marking equation Given an obstruction marking mobs and
a final marking mend, the ILP model below sketches our intended approach for
using the marking equation:

133



�

�

�

�

ILP model for Completing an Obstruction State mobs

Min cost(X,Δ) subject to:
mlive = mobs +Δ
mend = mlive +N ·X
X,Δ ≥ 0 X ∈ N|T | Δ ∈ N|P |

After an obstructed markingmobs has been reached, the idea would be to add the
necessary tokens to the deadlocked model in order to take the current obstructed
marking to a final state. The ILP model above has two sets of variables3: Δ is
the addition of tokens to mobs that takes to an unobstructed marking mlive,
and X is the Parikh vector that will take from mlive to mend. A solution to
the ILP model will then jointly decide the necessary amount of tokens and the
consequent firings to be made to reach mend. Remarkably, the cost function
is a minimization that considers both the length of the trace completing the
workflow (through the Parikh vector X) and the amount of tokens needed to
escape from the obstruction marking (the variables Δ), thus globally optimizing
these two decisions. We consider the cost as a user-defined function, since perhaps
different costs can be assigned depending on the context, e.g., if a shortest path
is preferred independently of the violations performed then one can set cost 0
(or significantly less than X variables) to Δ variables. On the other hand, if the
amount of violations should be reduced, the opposite cost can be set. Also, the
cost for variables in the X vector may differ, e.g., if the firing of certain activities
should be incentivated/avoided. The same holds for the Δ variables.

For instance, for the Petri net of Fig. 5, the ILP model above (assigning
unitary costs to both X and Δ) will find the solution Δ = (0, 0, 0, 1, 0, 0, 0, 0),
i.e., putting a token in the SoD place, and X = (0, 1, 0, 0, 1), with X according
to the order t1, t2, u1t1, u2t1, u1t2.

Clearly, the assignment on Δ and X variables defines the violations to make
in order to complete the workflow. Assessing the impact and meaning of these
violations for the authorization, constraints and users is a further challenge here,
representing a next step in our research dealing with security in business pro-
cesses.

3.2 Log-based Obstruction Work-Around

If there is historical information of the process, i.e. logs, our intention is to
exploit this information and divide the cases of the log into successful and ob-
structed ones, based on the analysis of obstructions with the given model. Here,
existing approaches analysing satisfiability and obstructions in workflows could
be adapted to the extended WF-net incorporating authorization and SoD con-
straints.Given such partition of the logs, we intend to take an obstructed trace
and find its nearest match to the successfully executed traces. The nearest match
would then propose the partial sequence for the rest of execution to reach a com-
pleted state.

3 mlive can be computed from mobs and Δ.
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t1

u1

o

…

Fig. 6: Sketch of n-dimensional space indicating obstructed trace o

Fig. 6 sketches an n-dimensional space representing the traces of successful
executions. Point o indicates the obstructed trace. k-nearest neighbour (kNN)
algorithms could then find the closest successful path to reach a completed state.
Here, also the implications from choosing the closest trace regarding security
violations need to be investigated further.

4 Practical Applications

The presented approach provides a range of applications. It could be used to
recommend who shall perform which tasks, for example in a Break-Glass situ-
ation, or as an assisted delegation, showing potential best delegates (with least
violation) to the delegator. The core idea behind the approach however, is to
enable automated delegation. Moreover, obstruction analysis techniques could
also help policy-designer to improve their policies. We envisage to conduct a
case study to further investigate and underline the practical applications of the
approach.

5 Conclusion and Future

Our work is located in the tension between security controls on the one hand
and maintaining flexibility in terms of process availability on the other. The
intention here is to take a certain degree of violation into account to still succeed
the workflow. As a next step, we aim to define more general solutions on how to
flatten SoD and BoD constraints into WF-nets. Regarding the presented model-
based approach there is the limitation that the Parikh vector does not propose
a certain order of executing the transitions. In this regard, results need to be
investigated further. Moreover, to better assess the violations taken into account,
future work will also aim to use profiling techniques based on logs. Moreover, we
want to implement the developed methods into the Security Workflow Analysis
Toolkit (SWAT) [16] to provide more specific evidence on how a reliable solution
in an organizational software system should be constituted.
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