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ABSTRACT
While streaming data have become increasingly more popu-
lar in business and research communities, semantic models
and processing software for streaming data have not kept
pace. Traditional semantic solutions have not addressed
transient data streams. Semantic web languages (e.g., RDF,
OWL) have typically addressed static data settings and linked
data approaches have predominantly addressed static or grow-
ing data repositories. Streaming data settings have some
fundamental differences; in particular, data are consumed
on the fly and data may expire.

Stream reasoning, a combination of stream processing and
semantic reasoning, has emerged with the vision of provid-
ing “smart“ processing of streaming data. C-SPARQL is
a prominent stream reasoning system that handles seman-
tic (RDF) data streams. Many stream reasoning systems
including C-SPARQL use a sliding window and use data
arrival time to evict data. For data streams that include
expiration times, a simple arrival time scheme is inadequate
if the window size does not match the expiration period.

In this paper, we propose a cache-enabled, order-aware,
ontology-based stream reasoning framework. This frame-
work consumes RDF streams with expiration timestamps
assigned by the streaming source. Our framework utilizes
both arrival and expiration timestamps in its cache eviction
policies. In addition, we introduce the notion of “seman-
tic importance“ which aims to address the relevance of data
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to the expected reasoning, thus enabling the eviction algo-
rithms to be more context- and reasoning-aware when choos-
ing what data to maintain for question answering. We eval-
uate this framework by implementing three different proto-
types and utilizing five metrics. The trade-offs of deploying
the proposed framework are also discussed.

Categories and Subject Descriptors
C.1.3 [Other Architecture Styles]: Data-flow architec-
tures—stream reasoning ; D.2.11 [Software Architectures]:
Patterns

General Terms
Design, Experimentation, Management

Keywords
Data Cache, Order-awareness, Stream Reasoning, Semantic
Web

1. INTRODUCTION
Streaming data are increasingly pervasive on the web,

however many semantic applications may not be well aligned
with the requirements of streaming data applications[17].
The Semantic Web[9] architecture has traditionally concen-
trated on storing and linking the web of data, rather than
on managing rapidly changing data streams that become
obsolete over time[16]. Although capable of processing data
streams at large scale with a high velocity data rate, the
primitive operations in the data-stream management sys-
tems[14] have not typically addressed the extraction of hid-
den knowledge via complex reasoning. In 2009, E. Della
Valle et al.[15] introduced the research area of stream rea-
soning with the aim to bridge the gap between semantic



reasoning and stream processing. Stream reasoning can pro-
vide many benefits in application areas that demand gener-
ation and analysis of data streams. Examples include smart
cities[27][22], social networks[5] and financial market data
feeds[26]. These data streams often have diverse conceptual
models and physical formats and thus pose challenges for
effective semantic processing and reasoning.

The best practices for linking static information on the
web have inspired several solutions to face these challenges.
Examples include extending RDF and Linked Data prin-
ciples to model data streams, extending SPARQL to con-
tinuously process RDF streams, and implementing efficient
stream reasoning systems.

1.1 RDF streams
In 2009, E. Della Valle et al.[15] envisioned two alternative

RDF stream formats, namely the RDF molecules stream and
RDF statements stream. The former is an infinite number
of pairs <ρ, τ>, where ρ is an RDF molecule[19], and τ
is a timestamp denoting the arrival time of ρ; the latter
is a special case of the former, where ρ only contains one
statement.

D. F. Barbieri et al.[8] proposed an approach to publish
data streams as Linked Data. In this work, an RDF stream
is defined as an ordered sequence of pairs, each of which con-
sists of an RDF triple and a monotonically non-decreasing
timestamp τ .

An RDF stream[4] is identified by a unique IRI that is
a streaming source locator, and is published in a named
graph[13]. Each named graph is given an IRI that is de-
signed following the guidelines of Cool URIs[25] and best
practices on how to publish Linked Data on the Web[10].

RDF streams are generated and consumed in a certain
order. This order can be a natural time-based order, or
it may use another ranking criteria such as importance or
precision. Thus, semantic RDF Stream Processing (RSP)
systems should be able to manage data with rank-awareness
and time sensitiveness.

1.2 Existing RDF Stream Processing Systems
C-SPARQL[4], among the initial RSP1 languages, is a con-

tinuous extension of the standard SPARQL. It is tailored
to semantically process data streams and facilitate reason-
ing. A C-SPARQL query is registered in a form of either a
stream or a query, prior to the arrival of data streams. Its
execution model is inherited from CQL[3], including opera-
tors of stream-to-relation, relation-to-relation and relation-
to-stream. Its built-in translator will translate a C-SPARQL
query into static and dynamic parts, and execute them sep-
arately. The C-SPARQL engine can be used as a linked data
stream publisher[8].

Other works such as EP-SPARQL[2], TrOWL[28] and Stream
SPARQL[12] are either extensions of SPARQL from differ-
ent angles or are built from scratch to fulfill the purpose
of continuously processing and reasoning on data streams.
The IMaRS[6] algorithm has been proposed by the same au-
thors of C-SPARQL, and is focused on inferred statement
management (mainly statement deletions) in a time-based
sliding window. This algorithm assigns an expiration times-
tamp for each RDF statement entering into the window,
labels and updates all the related inferences with this ex-
piration timestamp. The expiration timestamp is the time

1https://www.w3.org/community/rsp/

when the explicit data exit the window, and is calculated by
adding the data arrival timestamp and the window size. A
deletion is triggered when the original explicitly stated data
exits the window and both explicit and inferred statements
will be deleted. However, IMaRS is not adequate to process
RDF streams with source-assigned expiration timestamps,
because it cannot control when the data expire and lacks
the ability to delete the data that expire before exiting the
window. Hence, two problems will be caused. The First
In First Out (FIFO) eviction strategy can evict unexpired
data, data with a valid period longer than the window size,
which still have the potential to contribute to the reasoning
and query. The FIFO eviction strategy can also let expired
data, data with a valid period shorter than the window size,
generate invalid reasoning and query results in the window.
Thus, not only the arrival order, but also the expiration or-
der of RDF streams has a big effect on the RSP outputs.

1.3 Assumptions and Contributions
This paper proposes a cache-enabled, order-aware, ontology-

based stream reasoning framework. This framework is able
to process and reason across dynamic streaming data and
provide correct results. It uses a background ontology that
describes the domain knowledge where the streaming data
is interpreted. It also leverages a data cache and a set of
order-aware data management strategies. Our framework is
built under the following assumptions.

• The background ontology is provided by domain ex-
perts and does not change during processing.

• The streaming sources encapsulate the streaming data
in unique named graphs and assign expiration times-
tamps.

• An arrival timestamp is assigned to each streaming
graph by the framework.

Under these assumptions, we list the following contributions.

• We leverage a data cache and order-aware algorithms2

in a stream reasoning context to manage and process
RDF streams.

• We define semantic importance as a ranking strategy
and show its value to distinguish a cache from a win-
dow, facilitate order-awareness and data management
in the cache.

• We implement three prototypes3 based on off-the-shelf
triplestores, and evaluate them under different cache
configurations4 from the following aspects:

– runtime of query, reasoning, reasoning explana-
tion and data eviction

– the statistics of precision, recall and F-measure

• We discuss the trade-offs to deploy our framework in
different scenarios where small, medium and large RDF
streams are processed.

2We introduce them in details in Section 3.
3https://github.com/raymondino/CacheStreamReasoning
4We cover cache configurations in Section 3.



2. APPROACH
We use the cache as our framework’s central component to

manage the RDF streams. Similar to what a window does in
other RSP settings, the cache works as a stream-to-relation
(S2R) operator[7], isolating a portion of the unbounded RDF
streams. However, crucial differences between them lie in
both their data consumption rules and data eviction strate-
gies. The window consumes RDF streams by sliding along
them. This restricts data eviction to only be FIFO, namely
the window is only able to move forward by deleting some old
data. The cache keeps static and is fed by RDF streams. It
has flexibility to utilize semantics (the background ontology
and any processing results) to inform its eviction and poten-
tially consumption. All cached RDF streams can be ranked
using different types of criteria. Temporal orders (arrival
and/or expiration) are most common although other con-
siderations including precision, popularity, trust, certainty,
and provenance have been proposed [17]. We can leverage
all of these rankings in our data eviction policies and in
addition, we add reasoning perspectives to the criteria for
ranking.

FIFO can be realized by ranking arrival timestamps. First
Expired First Out (FEFO) can be realized by ranking ex-
piration timestamps to guarantee valid results. Semantic
ranks can also be provided from the reasoning and/or query
participation status of the data.

In order to present these semantic ranks, we would like
to introduce the notion of semantic importance. For each
named graph in the cache, its semantic importance (SI) is
defined as an indicator that measures its contribution to the
reasoning and/or query results. The cache ranks all named
graphs according to their SI. This notion is intentionally
abstract so as not to limit its application in different data
eviction strategies where a named graph’s contributions are
specified. For every named graph in FIFO, its SI is based on
its arrival timestamp. For every named graph in FEFO, its
SI is based on its expiration timestamp. The cache also uses
Least-Frequently-Used and Least-Recently-Used algorithms
to semantically rank the data. In Least-Frequently-Used,
SI is embodied as a total reasoning-participation frequency
counter of a named graph. In Least-Recently-Used, SI is
embodied as the most recent reasoning-participation times-
tamp of a named graph. SI can also be composite under the
scenario where multiple data eviction strategies are applied.

We have discussed above that there are distinctions be-
tween a window and a cache, and SI is among the keys to
distinguish them. SI is mentioned in several published pa-
pers but never as a core topic. In[11], the authors use SI
as an attribute of interface objects to improve the design of
traditional GUIs in the Computer Human Interaction (CHI)
domain. In[23], the authors use SI to filter Snooker balls in
order to 3D reconstruct the game for analysis. In[31], the
authors use SI to differentiate the semantic components in
semantic-linked network. Nonetheless, none of these works
formally define SI. This, together with the value that the SI
provides in the stream reasoning context, contributes to our
motivation for defining it for the stream reasoning context.

Our framework utilizes background knowledge encoded in
OWL[24] when processing RDF streams. The ontology is
loaded into the cache prior the data arrival, and provided by
the domain experts. It describes the specific domain knowl-
edge necessary to interpret the RDF streams. However, its
expressiveness should be considered together with the query

and deployed reasoner ability. If the ontology is in a descrip-
tion logic (DL) profile and the query requires DL reasoning,
but the reasoner only provides RDFS reasoning, then the
goal will not be achieved. Generally speaking, the purpose
of the ontology is to provide enough domain background in-
formation and enable reasoning, which will help the query
answer questions that cannot be answered directly from the
explicit data.

2.1 Framework Architecture
Our framework consists of four sequential components:

data consumption, querying and reasoning, reasoning ex-
planation and data eviction. These four components are ex-
ecuted in order. The execution flow forms a loop to process
data streams and to produce query results in a continuous
fashion, as it is shown in Figure 1.

2.1.1 Data Consumption Component
In this work, we extend the RDF stream format by adding

another timestamp and a unique graph ID. An RDF stream
is represented by < ρ, τa, τe, G >, where ρ denotes the RDF
molecule/statement, τa denotes its arrival timestamp, τe de-
notes its expiration timestamp and G denotes its unique
graph ID. The RDF streams are first consumed by the Data
Consumption Component (DCC)at Stage 1. DCC works
like a storm spout. When the cache is not full, DCC sends
RDF streams to it. When the cache is full, DCC stops send-
ing. The incoming RDF streams will wait till the next cache
opening. The data structure in the cache is a minimum heap,
which enables the cache to be order-aware. The key feature
of the minimum heap is that it always keeps the smallest
element at the top. Evicting the top element takes O(1)
time, then the minimum heap takes O(logn) time to update
its top with the smallest element among the preserved ones.
If we incorporate this feature with SI, the least semantically
important data will be at the top and can be evicted easily.
The bigger the SI is, the more important the data is, the
less likely it is evicted.

The arriving data will be immediately ranked by the cache
and ready for the next step.

2.1.2 Querying and Reasoning Component
When the cache is full, the processing moves to Stage 2

- Querying and Reasoning Component. The query in the
stream reasoning scenario should be continuous in order to
provide proactive answers. This requires the query to be
pre-registered in the system before the data arrival. We use
standard SPARQL query that will be executed continuously
5 in the framework , which is shown in Figure 1.

In our framework, reasoning happens during the query
time. This provides an advantage that only the necessary
entailments for the answer will be computed. However, we
would like to point out that reasoning does not have to hap-
pen at the same time as the query. One example is ma-
terialization that is performed iteratively: the materialized
snapshot of the database is always updated as long as the
new data arrive.

5This continuous standard SPARQL is another key differ-
ence among C-SPARQL, EP-SPARQL and other extended
SPARQL as the latters require different execution models
and syntaxes so that the learning curve might be steep for
users.
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Figure 2: Semantic Importance Update Flowcharts

2.1.3 Reasoning Explanation Component
After the query results are delivered, the cache needs

to know the reasoning-participation status of every named
graph. In Stage 3, the Reasoning Explanation Component
works in a way to trace back to the provenance of the in-
ference; that is to find which cached named graphs partici-
pated in the reasoning process. The reasoning is explained
by proof trees. A resulting inferred statement can be en-
tailed by both explicit triples and intermediate inferences.
Only explicit triples’ graph IDs and reasoning-participation
will be recorded. This provides the foundation to collect
the statistics of the reasoning-participation for each of the
named graphs. The statistics are different under different
ranking algorithms, and we will cover the details in the Data
Eviction Component.

2.1.4 Data Eviction Component
This component evicts the named graphs with small SI

from the cache. We have applied three ranking algorithms
shown in Table 1. One and only one ranking algorithm is
applied in the cache at one time to determine which named
graph needs to be evicted. In each framework execution
cycle, every named graph’s SI is updated by the statistics
collected, as Figure 2 shows.

FEFO collects one statistic – the expired data count, Ed.
Ed increments by one if a named graph is expired. The SI
under FEFO is the expiration timestamp, which will not
change. LRU collects two statistics – Ed and the most
recent reasoning-participation timestamps, τmrrp, for ev-
ery named graph. The SI is updated by incrementing Ed

by one if a named graph is expired, and replacing every
valid named graph’s old τmrrp with the corresponding new
τmrrp. LFU collects two statistics – Ed and every named
graph’s reasoning-participation frequency counts, δrpfc, in
the latest cycle. The SI is updated in the following way.
Ed increments by one if a named graph is expired. Every
valid named graph’s total reasoning-participation frequency
counter, Ctrpf , adds the corresponding δrpfc.

Figure 3: Data Eviction Flowchart

The cache re-ranks the data immediately after the SI is
updated. We introduce a parameter called eviction amount,
Ea, to guarantee a minimum percentage of the cache is avail-
able for the insertion of new data.6 When composite SI,
like expiration timestamp and reasoning-participation fre-
quency, is applied, it is possible that data with long expira-
tion timestamps do not participate in the reasoning at all.
While valid, this data are less semantically important, and
the framework should make this data available for eviction,
till the actual amount of data evicted is equal to Ea.

Figure 3 shows the data eviction procedure in this compo-
nent. The cache will first delete all data in the expired data
pool (that is Ed data). Then a comparison between Ea and
Ed will be made. If Ea is greater, the cache will continue
to delete top (Ea − Ed) data. Otherwise, no data will be
evicted.

2.2 Framework Implementation
We have implemented our framework using two off-the-

shelf triplestores, AllegroGraph V5.0.27 and Stardog 4.0 RC38.
Both provide Java APIs and step-by-step tutorials. Allegro-
Graph is a modern and efficient graph database and a com-
mercial product of Franz Inc9. It supports up to OWL2 RL
reasoning and full SPARQL 1.1. Stardog is a graph database
by Complexible Inc10. It supports up to OWL2 DL & rule-
based reasoning and SPARQL 1.1. We use the free versions
of both products.

Stardog has an important feature - the ability to support
reasoning explanation. An entailment is explained by track-
ing back to the original asserted statements, which form a
proof tree that includes all the statements involved during
the reasoning. Stardog also supports merging proof trees be-
cause the same inferred statements can be generated utiliz-

6We cover the details of Ea in Section 3.
7http://franz.com/agraph/allegrograph/
8http://stardog.com/
9http://franz.com/

10http://complexible.com/



Table 1: Applied Ranking Algorithms
Algorithm Abbreviation Type Semantic Importance
First Expired First Out FEFO temporal, single expiration timestamp

FEFO & Least Recently Used LRU temporal, composite
expiration timestamp &

most recent reasoning-participation timestamp

FEFO & Least Frequently Used LFU counter-based, composite
expiration timestamp &

total reasoning-participation count

ing different reasoning paths. This allows us to analyze and
rank the reasoning-participation of each data in the cache.
Unfortunately, AllegroGraph does not provide similar func-
tionality thus we can only manage data under the FEFO
strategy with it.

The cache is implemented in the triplestore. It has a fixed
size, Cs, limiting the contained maximum data amount.
Eviction amount, Ea, as mentioned in Section 2, denotes
the least amount of data to be deleted in each framework
execution cycle. The SPARQL drop argument is leveraged
to fully remove named graphs from the cache in the data
eviction component. We avoid using the SPARQL delete
because it only removes the statements in the graphs, not
the graph ids. This will pollute the cache.

Stardog supports both memory & disk-based databases,
while AllegroGraph only supports disk-based databases. We
have implemented three prototypes, focusing on Stardog
memory & disk-based and AllegroGraph disk-based cache
stream reasoning system. As we have already mentioned,
the reasoning abilities of these two triplestores are different.
In order to perform a fair comparison we use a query that
only requires RDFS reasoning11.

3. EVALUATION
The stream reasoning community has not yet come to con-

sensus on the best method to evaluate stream reasoning ap-
plications. In 2012 SRbench[30] was proposed as a general
benchmark system designed to test streaming RDF/SPARQl
engines. In the same year, LSBench[21] was proposed to fo-
cus on assessing different Linked Stream Data (LSD) appli-
cations’ capabilities. The following year CSRBench[18] was
proposed with a special emphasis on the effects of operation
semantics for stream reasoning applications. More recently
CityBench[1] was proposed to target smart city applications.
We chose the LUBM benchmark[20] dataset because it is
easy to use and satisfies our needs. LUBM provides a well-
constructed ontology describing the relations among univer-
sities, professors and students etc. It also features a data
generator which accepts customized parameters to generate
arbitrary ABox data.

Our work produced 6,031,109 ABox triples. A data source
generates streaming data by disk-reading this generated data
line-by-line from a static n-triples file. We configured the
streaming throughput as follows:

• The streaming source packs either 1, 10 or 100 triples
per named graph, Tpg.

• Each graph is assigned a unique graph id and expira-
tion timestamp by the streaming source12.

11The team used Stardog to test OWL-DL reasoning on
streaming data[29], but these results are not included within
the scope of this paper.

12http://streamreasoning.org/slides/2015/10/sr4ld2015-02-

Figure 4: The Pre-registered SPARQL Query that
Requires RDFS Reasoning

• The framework assigns an arrival timestamp to each
arriving named graph in a monotonically non-decreasing
order.

The streaming data is then streamed to our three proto-
types, where the cache is configured as follows:

• Cs is either 10, 100 or 1000 graphs.

• Ea is either 25%, 50%, 75% and 100% of Cs.

• The pre-registered query, as shown in Figure 4, re-
quires RDFS reasoning.

• The background ontology is pre-loaded into the cache

Our evaluation platform specifications include 14.04 64bits
Ubuntu LTS operating system, Intel(R) Xeon(R) CPU E5-
2620 v2 @2.10GHz, 2040MB memory, and 16GB HDD.

Together with the generated ABox data and provided
LUBM ontology we conducted 252 experiments and obtained
a ground truth of 27,192 results as the basis to test the
framework’s correctness on precision, recall and F-measure.
We also recorded each prototype’s memory consumption,
runtime of querying, reasoning explanation and data evic-
tion under different configuration combinations of streaming
data and cache. We did not record reasoning explanation
time for all the FEFO strategy and other strategies with
the Ea = 100% of Cs, because the FEFO does not need rea-
soning explanation, and it does not make sense to explain
reasoning as the whole cache will be dumped.

Using these results we ask the following questions:

1. What are the effects of different caches from different
producers (AllegroGraph v.s. Stardog), types (disk-
based v.s. memory-based) and configurations (differ-
ent combinations of Cs and Ea)?

rsp-extensions.pdf, Page 7, from “Streaming Reasoning for
Linked Data 2015“ by J-P Calbimonte, D. Dell’Aglio, E.
Della Valle, M. I. Ali and A. Mileo.



Figure 5: F-measure performance by different
branded, typed and configured cache with FEFO
strategy

Figure 6: F-measure performance by different
strategies under different configuration combina-
tions

2. How do various strategies perform under different com-
bined configurations of the streaming data and cache
(currently we are using F-measure to evaluate the per-
formance)?

3. What are the trade-offs to consider when deploying our
framework in different scenarios?

We show two figures of the total forty-six visualizations13

generated from the results to answer the first two questions.
The third one will be thoroughly discussed in the next sec-
tion.

For the sake of convenience, we use the following abbre-
viations in the rest of this paper: prototypes are abbrevi-
ated such that SM denotes Stardog memory-based cache,
SD denotes Stardog disk-based cache and AD denotes Alle-
groGraph disk-based cache. Each test case is labeled as <
prototype abbreviation> < data management strategy> <
streaming data configuration >. For example, SD FEFO 1
denotes a Stardog disk-based cache that performs FEFO
strategy to process RDF streams with 1 triple per graph.

Figure 5 shows the F-measure performances brought by
caches of different producers, types and configurations. There
are several facts that can be easily captured:

• The F-measure increases as the streaming throughput
increases.

• The F-measure at 50% is always best, and 100% is
always worst for all visualized cases.

13Please refer to out github repository for all visualizations.

• AD FEFO performs similarly as others do when stream-
ing throughput is 1 triple per graph, but outperforms
as the streaming configuration increases.

• SD FEFO and SM FEFO compete with each other in
each test run.

This can partially answer the first question, with the points
that different brands do affect the F-measure performance,
but different types do not have a significant influence. The
greater the streaming throughput, the more influences are
made on the F-measure. However, in order to give a thor-
ough answer we need to look at other metrics before assess-
ing the overall performances of these caches. For example,
AD FEFO gives the best F-measure, but does it take more
time to execute the query and data eviction?

Figure 6 shows the F-measure performance by different
strategies for the SM cache with different streaming data
configurations. The observed facts are:

• The F-measure score increases as the streaming through-
put increases.

• 50% eviction amount has the biggest F-measure score,
100% has the smallest score for all the cases.

• For the same streaming data configuration, LFU al-
ways performs best, followed by LRU and then FEFO.

These observations can answer the second question from the
perspective of big cache size. Nevertheless, does cache size
affect these strategies’ performances? Does it take longer
time to explain all of the inferences? If yes, is it worthwhile
to sacrifice system responsiveness for a better F-measure?

Additional observations are as follows:

• F-measure score: Our raw experimental results have
shown that F-measure increases as the cache size in-
creases. The F-measure score is also affected by dif-
ferent triplestores. We believe this is because Alllegro-
Graph’s and Stardog’s inner processing engines and
mechanisms are different 14.

• Memory consumption: when Cs = 10, cases of Tpg =
1 require 3 times on average the memory of bigger
streaming configured cases. When Cs = 100, the over-
all memory consumption decreases as the eviction amount
increases. When Cs = 1000, the overall memory con-
sumption increases as the eviction amount increases.
However, within this evaluation, no significant differ-
ences are observed between memory-based cache and
disk-based cache. Small cache and streaming through-
put cases usually requires more memory. Average FEFO
strategy memory consumed is 41.93MB, LRU is 40.4MB
and LFU is 39.59MB.

• Query time: AD requires the most query time for
all cases. SD requires less time than AD but more
than SM. The query time increases as cache size and
streaming throughput increases. One potential reason
for this is because a disk-based cache needs some IO
time when executing a query, which takes more time
than a memory-based cache. Average query time for
all FEFO cases is 18ms, LRU is 15ms, LFU is 13ms.

14Exploration and explanation of triplestores’ inner imple-
mentations are out of the scope of this paper



• Explanation time: reasoning explanation time increases
approximately linearly as cache and streaming through-
put increases. In most cases, LFU takes longer time to
explain. Average LFU explanation time for all LFU-
cases is 90371ms, LRU is 86100ms.

• Eviction time: eviction time increases as eviction amount,
cache size and streaming throughput increases. AD
eviction time is very fast, 30ms on average. SD on
average is 2879ms. SM on average is 4042ms.

4. DISCUSSION
According to the cache and streaming data configurations,

there can be either 10, 100, 1,000, 10,000 or 100,000 triples
in the cache during one processing loop. We identify a small
case where 10 or 100 triples are processed, a medium case
where 1,000 or 10,000 triples are processed, and a large case
where 100,000 triples are processed. Together with Table 2
We present a thorough comparison among triplestores, cache
types and data management strategies under these scenar-
ios.

We summarize our experimental results in Table 2 to help
answer the third question in the previous section, i.e., what
are the trade-offs to consider when deploying our framework
in different scenarios?

Under the small case, AllegroGraph’s query and eviction
time is several times that of Stardog. Disk and memory
performs equally on F-measure, though disk requires more
time to query, evict and explain. LFU performs best in F-
measure, followed by LRU then FEFO. Though FEFO needs
more time to query and evict, the explanation time required
by LRU and LFU is significantly greater. The trade-offs
in deploying our framework under the small scenario is de-
pendent on the use case. If system responsiveness is the
first class citizen, a FEFO strategy will be chosen since it
does not require explanation and provides a fine F-measure.
Stardog memory cache can be chosen since it provides faster
execution time and better F-measure. If F-measure is most
important, LFU is the right strategy. Stardog memory cache
is the best as memory cache provides less explanation time.
It is also noticed that Ea = 25% or 50% of Cs provides
better F-measure.

For medium cases, Stardog’s eviction time increases sig-
nificantly. Though Stardog’s query time is better than Al-
legroGraph’s, the difference is very small when compared
with the eviction time. Disk cache provides less eviction
time; its other metrics are similar as memory caches. LFU
is the best at F-measure scores, but is traded for longer ex-
planation time. Actually FEFO provides decent F-measure
without explanation time. Overall, AllegroGraph disk cache
with FEFO is most suitable for this scenario. Ea = 50% or
75% of Cs provides best F-measure as well.

For large cases, AllegroGraph’s eviction time, F-measure
and memory performs better, though query is slower. Disk
cache query time is 9 times greater than the memory depen-
dent graph database, but provides better F-measure, expla-
nation , eviction time and memory. FEFO performs best in
F-measure but it spends more time on query, with smallest
eviction time and memory consumption. Hence, Allegro-
Graph disk cache with FEFO is most suitable for this exper-
iment’s use case. It is also recommended to use Ea = 50%
of Cs to provide the best F-measure.

5. CONCLUSIONS AND FUTURE WORK
We have discussed the distinctions between a window and

a cache, highlighted some challenges with a simple sliding
window, and have described the enhanced data eviction flex-
ibility that a cache is able to provide. We have defined se-
mantic importance as a ranking strategy and showed how it
can be exploited in a stream-reasoning context. We imple-
mented semantic importance with a range of settings and
evaluated them, laying the foundation for expanding the
range of data management strategies. We have also pre-
sented our cache-enabled stream reasoning framework. By
leveraging a cache and a set of data management strategies,
this framework is able to consume RDF streams on the fly
while performing reasoning and answering standing queries.
The cached RDF streams are ranked according to the seman-
tic importance, and data are evicted when as less important
or expired. We have implemented three prototypes of the
proposed framework, and evaluated them by emulating an
RDF stream generated by LUBM and time stamped with ar-
rival and expiration times. We also discussed the trade-offs
of deploying our framework in different scenarios.

In this work, our framework and prototypes are evalu-
ated on a synthetic situation. Future work includes apply-
ing our framework on realistic data set benchmarks such as
SRbench, as well as apply our work on some compelling use
cases such as smart cities.15

Our current data eviction strategies are domain agnos-
tic. We will also develop some domain literate strategies
for our actual scenarios. (We have partially applied the
framework in one streaming NMR setting with one simple
domain-aware strategy yielding promising results). We no-
ticed that the reasoning environment in this work is limited
due to AllegroGraph’s limited reasoning ability, and would
like to explore more complex reasoning in OWL DL and/or
rule-based reasoning as our future work as well.
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test cases, while memory-based cache’s score is averaged from SM FEFO, SM LRU & SM LFU test cases.
We would like to highlight an empirical comparison of the two cache types, the disk-based cache (DC) and the memory-based cache
(MC).

• SPARQL query time: for every scenario, DC is slower than MC. As the scenario increases, DC grows much faster than MC. The
ratio between 100,000 triples/cache and 10 triples/cache for DC is 15.45, whilst MC is 3.34. Though DC is less restricted by storage
space, its query time slows down the system response time, and this effect will become worse as the scenario size grows. However,
this is expected, as accessing disk when executing query is always slower than accessing the memory.

• F-measure: for every scenario, DC’s and MC’s F-measure scores are very similar. This means both types are able to provide same
level correctness. F-measure increases as scenario increases, this is because the more data in the cache, the more correct results can
be calculated, which raises the F-measure.

• Reasoning Explanation Time: in most scenarios, MC’s explanation time is slower than DC’s. The difference increases significantly as
the scenario size increases. Reasoning explanation is very time-consuming. Strategies (such as LFU) requiring reasoning-explanation
provide better F-measure when the scenario is small and explanation time is quick, but provide similar F-measure when the scenario
is large and explanation time is slow.

• Eviction Time: in small scenarios, DC is slower; in medium and large scenarios, MC is slower. The difference between DC and MC
increases significantly as the scenario size increases. This indicates a bias towards DC for large RDF streams, and MC for small
RDF streams.

• Memory Consumption: Both DC and MC consume similar memory for each scenario. This could be because Stardog triplestores
are implemented very efficiently, but again, explaining this requires the knowledge of inner mechanisms of Stardog, which is out of
the scope of this work.
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