
LIMSI ICD10 coding experiments
on CépiDC death certificate statements

Pierre Zweigenbaum and Thomas Lavergne

1 LIMSI, CNRS, Université Paris-Saclay, F-91405 Orsay, France
pz@limsi.fr,

WWW home page: https://perso.limsi.fr/pz/
2 LIMSI, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France

lavergne@limsi.fr,
WWW home page: https://perso.limsi.fr/lavergne/

Abstract. We describe LIMSI experiments in ICD10 coding of death
certificate statements with the CépiDc dataset of the CLEF eHealth 2016
Track 2. We tested a classifier with humanly-interpretable output, based
on IR-style ranking of candidate ICD10 diagnoses. A tf.idf-weighted bag-
of-feature vector was built for each training set code by merging all
the statements found for this code in the training data. Given a new
statement, we ranked candidate codes with Cosine similarity. Features
included meta-information and n-grams of normalized tokens. We also
prepared an ICD chapter classifier with the same method and used it to
rerank the top-k codes (k=2) returned by the code classifier.
For development we focused on mono-code statements and obtained a
P@1 of 0.749 increased to 0.778 by chapter reranking. On the test data
we returned one code for each statement, leaving multiple code assign-
ment for future work, and obtained a precision, recall and F-measure of
(0.7650, 0.5686, 0.6524).

Keywords: ICD10 coding, information retrieval, CépiDc, death certifi-
cates, chapter coding, reranking

1 Introduction

Coding in the International Classification of Diseases (ICD) has been the subject
of a number of studies in the past (e.g., [9,2]). Until recently, only one shared
task had taken it as its target [8], and after ten more years the CLEF eHealth
2016 Task 2 on multilingual information extraction offers a much larger-scale
and real-life dataset for ICD10 coding.

The main methods for coding or more generally for concept normalization
rely on dictionary-based lexical matching and on machine-learning. In the med-
ical domain, most dictionary-based methods use the UMLS [3] or one of the
vocabularies it contains, including the ICD10 classification. For the English lan-
guage, MetaMap [1] is the best known system and combines the wealth of term
variants of the UMLS MetaThesaurus with lexical knowledge including mor-
phological rules from the UMLS Specialist Lexicon to map phrases to UMLS



concepts. Language-agnostic methods of approximate term look-up have also
been proposed [10].

Koopman et al. [5] studied the classification of Australian death certificates as
pertaining to diabetes, influenza, pneumonia and HIV with SVM classifiers based
on n-grams and SNOMED CT concepts, and with rules. They also addressed
their classification into 3-digit ICD-10 codes such as E10. In another study, the
same team [6] trained SVM classifiers to find ICD-10 diagnostic codes for cancer-
related death certificates. Because they focused on cancer, they used a first-level
classifier to identify the presence of cancer then applied a second-level classifier
to identify the specific type of cancer, again as 3-digit ICD-10 codes from C00
to C97. An important difference from the present work is that they targeted
the underlying cause of death, i.e., one diagnosis per death certificate, whereas
we aim to determine all the diagnoses mentioned in a given death certificate,
more precisely at the level of each input statement. Besides, the present work
addresses full four-digit ICD-10 codes (e.g., R09.2) instead of three-digit codes
(e.g., R09).

The International Classification of Diseases is hierarchical, and previous work
has tried to take advantage of this hierarchy to improve classification [7,4]. We
have performed limited experiments to leverage the hierarchical structure of the
ICD-10 by using an ICD chapter classifier to rerank base results.

The present work addresses the coding of death certificate statements with
no restriction on the domain, i.e., into the whole of ICD-10. Rather than aiming
at a method that would obtain the best possible results, we were interested
in exploring simple, humanly-interpretable vector space representations which
would highlight the importance of each word in the classification. We selected
an Information Retrieval style method based on the vector space model and
Cosine similarity and made experiments with it, reporting a relatively good
precision (0.7650) on the official test set. Since we only targeted one code per
statement and reserved multi-label classification for further work, we miss the
many additional codes present in statements with multiple codes and obtain a
limited recall of 0.5686 on the official test set.

We describe how we prepared the source data (Section 2), the methods we
tested to find ICD10 codes for input statements (Section 3), ICD10 chapter
classification and its use for reranking (Section 4). Experiments and results on
the training dataset are presented and discussed along the way. We then provide
the results obtained on the test set, perform a short error analysis based on the
training set, and discuss perspectives for future work (Section 5).

2 Preparation of the material

CLEF eHealth 2016 participants were provided with the ‘Aligned Causes’ file
(AlignedCauses 2006-2012.csv) which contains 65,843 death certificates split into
close to 200,000 diagnostic statements. Each diagnostic statement has associated
metadata and zero, one or more ICD-10 codes. In the provided training and test
data, statements with multiple codes were repeated on as many lines as they had



codes. We considered such repeated statements as one statement, and a large
part of our work focused on statements with exactly one code. Besides, we used
the resulting list of diagnostic statements independently of each other, without
taking into account their grouping into death certificates.

2.1 Basic processing

We processed each diagnostic statement as follows:

– tokenize (French style: NLTK v3.2.1, regular expression);
– remove stop words (French NLTK);
– remove diacritics;
– lower-case;
– stem (Snowball French stemmer in NLTK).

All programs here and in the remainder of this work were written using Python
v3.5.

2.2 Hyphenated words

A number of medical words are (often neoclassical) morphological compound
words (e.g., cardiovasculaire). These words are often written with hyphens (e.g.,
cardio-vasculaire), and sometimes even split (e.g., cardio vasculaire). To normal-
ize these words, we adopted the following strategy:

– Our goal is to replace variants with the split form: we hope this will allow
to take better account of the components of these words (e.g., the compo-
nent vasculaire in cardiovasculaire will share counts with the free-standing
vasculaire in arrêt vasculaire).

– To build a dictionary which normalizes concatenated forms to split forms,
• We collect tokens with hyphens in statements.
• We produce concatenated forms from these tokens.
• We associate the concatenated form to the split form in the dictionary.
• Once all forms in the training corpus have been processed, dictionary

expansions are examined to find tokens which are themselves an entry
in the dictionary: these tokens are replaced with their split form.

– During tokenization, hyphenated forms are split on hyphens. Their compo-
nents are checked for further splitting based on the above dictionary. Non-
hyphenated forms which have an entry in the dictionary are replaced with
the associated split form.

– In a few cases, components are not meaningful in French (e.g., the English
load word pace-maker, or the misspellings inhalat-ion, aort-ique, ac-fa). A
small set of exceptions (the four above-mentioned cases) was compiled man-
ually based on an examination of the dictionary built with the training cor-
pus. Instead of being split during tokenization, they are replaced with their
concatenated form (pacemaker, inhalation etc.).

The addition of this processing improved precision by about 1pt in all exper-
iments. For the sake of space, we only present below experiments where this
processing is included.



2.3 ICD-10 data

We obtained the ICD-10 hierarchy from the UMLS MRREL table and used it
to know which code belongs to which ICD-10 chapter. In some experiments we
also used the actual labels of the ICD-10 diagnoses. For this purpose, we used
the French ICD10, German Modification, version of 2014, downloaded on 12 Feb
2015.

3 IR-style, vector space representation for coding

We tested information-retrieval type methods as described below.

3.1 Principles

Representation and training

– Each statement of the training corpus is tokenized and normalized as de-
scribed in Section 2.

– One ‘document’ is created for each code: all the statements associated with a
given ICD-10 code Ci are grouped into one text collecting its tokens T (Ci) =
(t1, t2, . . . tn).

Statements with more than one code are excluded from our training split:
the goal is to gather into our training material only statements which are
fully associated with one code (‘mono-code’ statements).

– A bag-of-words, tf.idf model is computed from the token×document matrix
(using the tf.idf implementation in gensim v12.4).

Coding as search

– Each tested document is represented as a bag-of-words with tf.idf weights
according to this model.

– This representation is compared to the representations of the training ‘doc-
uments’, which represent the ICD10 codes present in the training corpus.
Cosine similarity is used.

– The top-N most similar documents (codes) are returned.

Only the top code is used in the prediction. Additionally, the following codes
are computed to evaluate success-at-N metrics (this is detailed in Section Ex-
periments below). Besides, examining the quality of the top-N codes can inform
us about the potential relevance of reranking methods which could be applied
to these top-N codes.



3.2 Experiments

Base principle: test on last 10,000 statements, train on rest (–10k*) For our
experiments, we split the CépiDc training corpus into a training split and a test
split. The training split consists of the training corpus except its last 10,000
statements (i.e., the first 185,203 statements). The test split consists of the last
10,000 statements, which were all coded in year 2012.

A tf.idf model was created from the training corpus as explained above. Only
mono-code statements were used for training.

Statements in the test split were coded as explained above. For each such
statement, we measured the following information: whether the correct code was
found among the top N codes (Success@N, or S@N, for N ∈ [1 . . . 5], as named
for instance in TREC); note that S@1 is equal to P@1 (precision computed by
examining only the top returned code), and that we therefore often use the term
“precision” to comment success results; for some of the tests, the official scoring
program was also applied to the system results and computed Precision, Recall
and F-measure based on all statements in the test split (columns P, R, F).

We were mostly interested in evaluating results on mono-code statements,
since these are those for which our system is relevant. As we shall see below,
they represent 77% of the statements in the test split. However, for information,
we also evaluated results on all statements with at least one code (98% of the
statements in the test split; the remaining 1.7% have no associated code). These
two settings imply a different number of statements submitted to the test.

Table 1 provides this information for the various experiments described be-
low. The experiment name (–10k*) codes the characteristics of the experiment,
such as 10k (10,000 statements in the test split), 1 (mono-codes) vs. a (all state-
ments with at least one code), etc. Column Sttmts shows the actual number of
statements submitted to the test, then the rest of the columns provide evalua-
tion results as described above. The same statements are evaluated by testing
whether the code found has the correct ICD10 chapter (rows Chapter, shown for
a subset of the evaluations). The statistical significance of differences between
experiments was computed using approximate randomization at p < 0.01.

We now turn to the description of a series of experiments performed by
adding various features to the representation of statements.

Features = tokens (Table 1, rows –10k1t) In this test, the only features for a
training or test statement are its normalized tokens. We test our classifier on
the subset of 7669 statements with exactly one code among the 10,000 test
statements (mono-code statements): in this setting, one precision point (1%)
represents 77 statements. As shown on row –10k1t Codes, 71.1% of these state-
ments obtain a correct code at rank 1, and for 84.1% the top code belongs to the
correct ICD10 chapter (row Chapter). Success increases significantly between
S@1 and S@2 both for codes (12pt from 0.711 to 0.836) and for chapters (10pt
from 0.841 to 0.941).

Use of the standardized form of statements (only available for training) (–10k1ts)
Each CépiDc training data line includes a standardized form of the part of the



Table 1. Code classification, one target ‘document’ per code in the training corpus.
Train and test on splits of 185,203 and latter 10,000 statements of the training corpus.
–10k1tmb: add bigrams. –10k1tmbt: bigrams and trigrams. –10k1tmbts: bigrams and
trigrams; add standardized tokens to training documents. –10k1tmbt4: 1–4-grams and
meta-information. –10k1tmbt45: 1–5-grams and meta-information. –10k1tmbt4i: 1–
4grams and meta-information, use ICD labels.
–10katmBt: unigrams, pairs, trigrams and meta-information. –10katmBT: pairs and
triples. –10katmbt4: 1–4grams and meta-information.
S@1 results in bold have a statistically significant difference with the previous row;
those in italics have a statistically significant difference with two rows above.

Success at N Official evaluation
Experiment Level Sttmts. S@1 S@2 S@3 S@4 S@5 P R F
Evaluation on statements with exactly one code
–10k1ts 7669 Codes 0.706 0.854 0.890 0.907 0.914 0.7289 0.4201 0.5330
–10k1ts 7669 Chapters 0.835 0.945 0.966 0.974 0.977
–10k1t 7669 Codes 0.711 0.836 0.886 0.898 0.906 0.7149 0.4102 0.5213
–10k1t 7669 Chapters 0.841 0.941 0.962 0.971 0.975
–10k1tm 7669 Codes 0.714 0.862 0.896 0.911 0.920 0.7185 0.4122 0.5239
–10k1tmb 7669 Codes 0.734 0.863 0.897 0.913 0.922 0.7344 0.4234 0.5371
–10k1tmb 7669 Chapters 0.861 0.947 0.968 0.977 0.981
–10k1tmbt 7669 Codes 0.738 0.865 0.898 0.913 0.922 0.7383 0.4256 0.5400
–10k1tmbt 7669 Chapters 0.860 0.948 0.968 0.977 0.980
–10k1tmbt4 7669 Codes 0.741 0.866 0.898 0.914 0.923 0.7420 0.4277 0.5426
–10k1tmbt4 7669 Chapters 0.862 0.948 0.968 0.977 0.980
–10k1tmbt45 7669 Codes 0.741 0.866 0.898 0.914 0.923 0.7418 0.4277 0.5425
–10k1tmbt4i 7669 Codes 0.742 0.864 0.895 0.908 0.918 0.7439 0.4283 0.5436
–10k1tmbt4i 7669 Chapters 0.864 0.947 0.966 0.975 0.979
–10k1tmB 7669 Codes 0.743 0.869 0.901 0.918 0.927 0.7434 0.4286 0.5437
–10k1tmB 7669 Chapters 0.861 0.952 0.969 0.977 0.982
–10k1tmBt 7669 Codes 0.744 0.872 0.903 0.917 0.926 0.7445 0.4292 0.5445
–10k1tmBt 7669 Chapters 0.860 0.953 0.969 0.976 0.981
–10k1tmBT 7669 Codes 0.749 0.873 0.903 0.918 0.927 0.7499 0.4323 0.5485
–10k1tmBT 7669 Chapters 0.860 0.953 0.969 0.977 0.983
Evaluation on statements with at least one code
–10katmBt 9831 Codes 0.751 0.880 0.912 0.928 0.936 0.7518 0.5557 0.6391
–10katmBt 9831 Chapters 0.869 0.957 0.973 0.980 0.984
–10katmBT 9831 Codes 0.753 0.882 0.912 0.928 0.937 0.7534 0.5568 0.6404
–10katmBT 9831 Chapters 0.868 0.957 0.973 0.980 0.985
–10katmbt4 9831 Codes 0.753 0.878 0.910 0.925 0.933 0.7537 0.5571 0.6406
–10katmbt4 9831 Chapters 0.870 0.954 0.972 0.980 0.983

statement which supported the choice of a target code (StandardText field).
In the CépiDc coding process, the human coder records in this field the text
segment which led to the chosen ICD10 code for the current line, keeping only
content words and correcting spelling errors if any. If training is performed on
the tokens of the standardized form of a statement instead of the tokens of
the original form, performance decreases by 2pt (codes, not shown in table). If
training is performed on the tokens of both the original and the standardized
form of a statement (rows –10k1ts), performance decreases less, by 0.5pt to



S@1=0.706 (codes), and this is confirmed when evaluating on all statements
(not shown in table). We therefore do not pursue with this feature.

Meta-information (–10k1tm) Meta-information, provided in the CépiDc training
and test data, was added as follows to training and test bag-of-words:

– Gender: two features, =g0 and =g1

– Age: 5 features corresponding to age ranges based on clusters of initial five-
year age ranges : =a0, =a5-20, =a25-35, =a40-65, =a70-; these clusters were
manually selected based on a study of the distribution of ages per ICD10
chapter in the training set

– LocationOfDeath: 6 features, one for each LocationOfDeath in the source:
=l1, =l2, . . . , =l6

– Type of interval: 5 features, one for each LocationOfDeath in the source:
=i1, =i2, . . . , =i5

The addition of these four types of meta-information (rows –10k1tm) slightly
improves S@1 (+0.3pt for codes at 0.714, not significant, no improvement for
chapters), and S@2 by 2.6pt (codes: 0.862).

Bigrams (–10k1tmb), pairs (–10k1tmB), trigrams (–10k1tmbt), triples (–10k1tmbT),
tetragrams (–10k1tmbt4) of tokens were added as follows to training and test
bag-of-words:

– After tokens were computed and normalized and stop-words removed,

• sequences of n consecutive tokens were joined into one n-gram (with
space separator);

• the list of normalized tokens was sorted (in alphabetical order); sets of
non-necessarily contiguous tokens were joined into one pair (resp. triple)
(with space separator); the order of tokens in pairs or triples is always the
alphabetical order. Note that pairs include sorted bigrams, and triples
include sorted trigrams.

The addition of bigrams on top of meta-information (rows –10k1tmb) improves
S@1 by 2.0pt (codes: 0.734, chapters: 0.861). If pairs are used instead of bigrams
(rows –10k1tmB), S@1 improves by another 0.9pt (codes: 0.743) but does not
change for chapters (+0.1pt at 0.861).

The addition of trigrams on top of bigrams (rows –10k1tmbt) obtains an
improvement of 0.4pt on S@1 (codes: 0.738, chapters: 0.860). The addition of
trigrams to pairs (rows –10k1tmBt) does not change S@1 much (codes: 0.744,
chapters: 0.860).

The addition of pairs and triples (rows –10k1tmBT) instead of bigrams and
trigrams further improves S@1 (codes: 0.749).

Adding tetragrams to bigrams and trigrams increases S@1 by 0.3pt (–10k1tmbt4,
codes 0.741). Adding 5-grams (–10k1tmbt45) does not obtain a further increase.



ICD10 labels (–10k1tmbt4i) Some ICD10 codes present in the test corpus may
occur rarely or not at all in the training corpus. To make sure that every ICD10
code is known to the trained model, we add ICD10 terms as additional training
material. They are added to the ICD code ‘documents’:

– The label of each ICD10 code is tokenized and normalized as described in
Section 2.

– One ‘document’ is created for each code: if multiple labels are available for
a code, they are pasted into one such document.

– These ‘documents’ are merged with those obtained from the training corpus.
– A bag-of-words, tf.idf model is computed from the token×document matrix

as explained in Section 3.1.

Added to one of the best configurations (1–4-grams, meta-information), this
does not bring a significant change S@1 (+0.1pt = 0.742).

Testing on statements with at least one code (–10ka*) All tests until now were
performed on the mono-code statements of our test split. Our system is designed
to produce one code per statement, whatever the expected number of codes. In
the case of a multi-code statement, the evaluation considers this code correct if
it matches any of the expected codes. Testing on all statements with at least one
code therefore results in a slightly higher precision: for instance, with 1–4-grams
and meta-information (–10kambt4), +1.2pt for codes and +0.8pt for chapters.
Differences among the top performing features are not significant anymore in
this setting.

Official evaluation program We also applied the official evaluation program to
the same system output, comparing it to the full set of 10,000 statements in our
test split. Its precision is consistent with Success@1. It adds the measurement
of recall, which is necessarily impaired when our system is run only on the 7669
mono-code subset of the test split, and which is harmed anyway because our sys-
tem returns one code per statement even for multi-code statements. This results
in an F-measure of 0.640 for –10katmbt4 (1–4-grams and meta-information),
which we retain for further experiments.

4 Chapter classification and reranking

We have seen that success increases sharply from S@1 to S@2, suggesting that
reranking the top proposed codes could lead to improvements. For instance,
finding the ICD10 chapter for a statement, if precise enough, could help rerank
candidate codes.

4.1 Chapter classification as search

Therefore, we created an ICD10 chapter classifier in the same way as the ICD10
code classifier:



– Each tested document is represented as a bag-of-words with tf.idf weights
according to this model.

– This representation is compared to the representations of the training ‘doc-
uments’, which represent the ICD10 chapters present in the training corpus.
Cosine similarity is used.

– The top-N most similar documents (chapters) are returned.

Only the top code is used in the prediction (the following codes are only com-
puted to evaluate success at N metrics).

Experiments Table 2 shows the results obtained for chapter classification on
our test split. Using the best features found for codes (1–4-grams and meta-
information), chapter classification reaches a S@1 of 0.873 (mono-codes) or 0.882
(statements with at least one code), which looks reasonably good enough to
attempt to use it for reranking.

Table 2. Chapter classification: IR experiments, tf.idf, one target ‘document’ per chap-
ter in the training corpus. Splits: train and test on separate splits of 185,203 and latter
10,000 statements of the training corpus.
–10kC1t: only test on 7669 mono-code subset of the latter 10,000 statements; features
= tokens. –10kC1tmbt: add meta-information, bigrams and trigrams –10kC1tmbt4:
add 4grams. –10kC1tmBT: pairs and triples. –10kCatmbt: test on all statements
with at least one code, features = tokens, meta-information, bigrams and trigrams.
–10kCatmbt4: add 4grams. –10kCatmBT: pairs and triples.
S@1 results in bold have a statistically significant difference with the previous row;
those in italics have a statistically significant difference with two rows above.

Success at N
Expe. Level Sttmts. S@1 S@2 S@3 S@4 S@5

Evaluation on statements with exactly one code

–10kC1t 7669 Chapters 0.809 0.936 0.951 0.954 0.957
–10kC1tmbt 7669 Chapters 0.872 0.931 0.944 0.948 0.948
–10kC1tmbt4 7669 Chapters 0.872 0.931 0.944 0.948 0.948
–10kC1tmBT 7669 Chapters 0.873 0.924 0.937 0.940 0.941

Evaluation on statements with at least one code

–10kCatmbt 9831 Chapters 0.881 0.939 0.951 0.954 0.954
–10kCatmbt4 9831 Chapters 0.881 0.939 0.951 0.954 0.954
–10kCatmBT 9831 Chapters 0.882 0.932 0.944 0.947 0.947

4.2 Reranking codes based on chapter classification

We use the results of ICD10 chapter classification to rerank ICD10 code classi-
fication:

– Only the top-predicted chapter is used, if any.
– The top N predicted codes are examined:



• The first code which belongs to that chapter is pushed to top position,
if any;

• Otherwise, code ranking is kept unchanged.

– We experimented with N ∈ {1 . . . 5} in the training set and found out that
a conservative value of N = 2 obtained the best results.

Experiments Table 3 shows the results obtained for chapter-reranked code clas-
sification on our test split. Using the best features found for codes (1–4-grams
and meta-information, or unigrams, pairs and triples, and meta-information),
chapter-reranked code classification boosts S@1 by 4.5pt (0.786, mono-codes) or
3.2pt (0.785, statements with at least one code): both differences are significant.

Table 3. Chapter-based code classification reranking: IR experiments, tf.idf. Rerank
top-2 codes. Splits: train and test on separate splits of 185,203 and latter 10,000 state-
ments of the training corpus.
–10kB1tmbt: only test on 7669 mono-code subset of the latter 10,000 statements; fea-
tures = tokens, meta-information, bigrams and trigrams. –10kB1tmbt4: add 4grams.
–10kBatmbt: only test on 9831 statements with at least one code of the latter 10,000
statements; features = tokens, meta-information, bigrams and trigrams. –10kBatmbt4:
add 4grams.
S@1 results in bold have a statistically significant difference with the previous row.

Success at N Official evaluation
Expe. Level Sttmts. S@1 S@2 S@3 S@4 S@5 P R F

Evaluation on statements with exactly one code

–10kB1tmbt 7669 Codes 0.776 0.865 0.898 0.913 0.922 0.7766 0.4477 0.5679
–10kB1tmbt4 7669 Codes 0.778 0.866 0.898 0.914 0.923 0.7792 0.4492 0.5698
–10kB1tmBT 7669 Codes 0.786 0.873 0.901 0.917 0.927 0.7866 0.4535 0.5753

Evaluation on statements with at least one code Eval. on all statements

–10kBatmbt 9831 Codes 0.782 0.877 0.909 0.925 0.933 0.7824 0.5783 0.6650
–10kBatmbt4 9831 Codes 0.784 0.878 0.910 0.925 0.933 0.7845 0.5799 0.6668
–10kBatmBT 9831 Codes 0.785 0.882 0.912 0.928 0.937 0.7857 0.5808 0.6679

5 Results and discussion

5.1 Results

The system was trained with parameters –10kBatmbt4 (codes reranked with
chapters, with 1–4grams and meta-information) on the full training set then
applied to the test dataset. It was asked to produce one code per input statement,
as on the training set. Table 4 shows the results it obtained. For comparison, we
recall in the same table the results obtained with the same settings by training
on our training split of the training corpus and testing on our test split of the
training corpus.



Table 4. Official results on our test split and on the test set.

precision recall F-measure

Test split (development) (–10kBatmbt4) 0.7845 0.5799 0.6668
Test set 0.7650 0.5686 0.6524

5.2 Discussion

Without surprise, recall and F-measure remain lower than precision, as on the
development set, mainly because our system does not include provision for multi-
label classification.

We also observe that the precision, recall and F-measure of the system did not
change much (about –2pt for P, –1pt for R and –1pt for F) from the development
set to the test set: this shows that our system did not overfit the training corpus.

We examined the most frequent false positive codes in our test split as follows.
Given the set of statements associated with an ICD code in the gold standard
codes, we counted the number of incorrect codes in system results (false positives)
for these statements. We ranked them in decreasing order of false positives and
show the top 20 in Table 5.

Table 5. Gold standard codes with the largest number of system errors in the test
split

Gold code Correct Incorrect % Incorrect Top-1 system Top-2 system Top-3 system

I619 3 102 0.97 I691 (40) P524 (22) S062 (19)
I640 3 101 0.97 I64 (38) I694 (32) I601 (5)
C349 145 86 0.37 C349 (145) C799 (11) J984 (8)
A419 224 80 0.26 A419 (224) B99 (50) A415 (9)
J189 194 77 0.28 J189 (194) J851 (24) T857 (13)
R092 423 53 0.11 R092 (423) T798 (13) R09 (8)
R263 3 53 0.95 Z740 (40) E46 (3) R263 (3)
I635 48 52 0.52 I635 (48) I693 (41) I678 (3)
I10 86 51 0.37 I10 (86) I272 (13) I509 (3)
I509 173 42 0.20 I509 (173) I971 (9) N19 (5)
R571 2 42 0.95 T794 (39) R571 (2) R578 (1)
I48 84 37 0.31 I48 (84) I10 (6) F03 (2)
R999 42 34 0.45 R999 (42) R99 (13) C349 (4)
E119 22 34 0.61 E119 (22) E118 (7) I10 (6)
I259 117 27 0.19 I259 (117) I509 (5) N189 (3)
R53 62 27 0.30 R53 (62) Z515 (7) R068 (3)
C787 45 27 0.38 C787 (45) C786 (7) C799 (4)
J449 42 27 0.39 J449 (42) J180 (7) J961 (5)
G200 14 27 0.66 G20 (17) G200 (14) Q871 (3)
T179 1 27 0.96 W799 (10) W78 (5) W79 (4)



Many of the top false-positive codes are among the most frequent codes (e.g.,
A419, R092, etc.).

The code with the largest number of errors is I619 (Hémorragie intracérébrale,
sans précision [Intracerebral haemorrhage, unspecified]). This code frequently
occurs (105 times in our test split) and was confused by our system 102 times
(97%) with other codes. Among these it was confused 40 times with I691 (Séquelles
d’hémorragie intracérébrale [Sequelae of intracerebral haemorrhage]). Table 6
shows the vector space representation (the top five features) of I619 and its top-
three confused codes. Because of these representations, statements such as AVC
hémorragique (30 occurrences in the test split), which are represented as ’avc’,
’hemorrag’, ’avc hemorrag’, are more similar to I691 than to I619, although they
miss the sequel feature which would make them really relevant for I691.

P524 (Hémorragie intracérébrale (non traumatique) du fœtus et du nouveau-
né [Intracerebral (nontraumatic) haemorrhage of fetus and newborn]) is the sec-
ond most confused code with I619. The discriminant factor for P524 with respect
to I619 is that it is a perinatal diagnosis in Chapter XVI of ICD10. However,
age=0 (less than 5 years old), an important feature for that ICD10 chapter, did
not make it to these top five features, i.e., it has a lower tf.idf weight than the
features displayed in Table 6. Statements such as hémorragie cérébrale [Cerebral
haemorrhage] or hémorragie intra-cérébrale [Intracerebral haemorrhage] and the
like, whatever their age metadata, have therefore nearly as strong unigram sim-
ilarity to I619 as to P524, and have higher bigram similarity to it. The absence
in a statement of the feature age=0, which is present in all examples of P524 in
the training corpus, does not prevent the IR-style classifier from considering the
representation of hémorragie cérébrale (with an age different from 0) as more
similar to that of P524 (which includes the age=0 feature) than to that of I619.

Finally, S062 (Lésion traumatique cérébrale diffuse [Diffuse brain injury]) is
the third most confused code with I619. Its top five features also show its strong
similarity to I619 and give higher weights to ’cerebral’, ’hemorrag’, ’intra’, ’intra
cerebral’ than I619. Because of that, statements such as hématome intra-cérébral
[Intracerebral haemorrhage] or hématome cérébral [Cerebral haemorrhage] ob-
tain a representation whose ’cerebral’, ’intra’, and ’intra cerebral’ features get a
higher similarity score to S062 than to I619. The discriminant factor for S062
is the fact that in the context of Chapter XIX of ICD10 (traumas, poisoning,
etc.), it must be a traumatic lesion. In the CépiDc death certificates, this factor
is often present not in the statement itself but in its context, i.e., in the other
statements of the same certificate. Contrast for instance hématome intra-cérébral
in Examples 1 and 2 below, each of which shows an excerpt of a death certifi-
cate as annotated in the gold standard data. In Example 1 there is no specific
context, therefore it is coded as a cardiovascular diagnosis (I619); in Example 2
the problem in Statement 2 is caused by a fall (chute in Statement 3), therefore
it is coded as a traumatic injury (S062).

Example 1.
77938;2012;2;75;2;1;détresse respiratoire;3;5;1-1;détresse respiratoire;J960



Table 6. Representation of codes confused with I619 in the test split

Code ICD10 Label Representation (top five features with tf.idf)

I619 Hémorragie intracérébrale,
sans précision
[Intracerebral haemorrhage,
unspecified]

(’hemorrag’, 0.511), (’cerebral’, 0.380), (’avc
hemorrag’, 0.320), (’avc’, 0.285), (’intra cere-
bral’, 0.239)

I691 Séquelles d’hémorragie in-
tracérébrale
[Sequelae of intracerebral
haemorrhage]

(’hemorrag’, 0.419), (’avc hemorrag’, 0.401),
(’sequel’, 0.388), (’avc’, 0.363), (’sequel avc’,
0.317)

P524 Hémorragie intracérébrale
(non traumatique) du fœtus
et du nouveau-né
[Intracerebral (nontraumatic)
haemorrhage of fetus and
newborn]

(’cerebral’, 0.414), (’hemorrag’, 0.411),
(’hemorrag cerebral’, 0.382), (’hemorrag
intra cerebral’, 0.289), (’intra cerebral’,
0.267)

S062 Lésion traumatique cérébrale
diffuse
[Diffuse brain injury]

(’cerebral’, 0.464), (’hemorrag’, 0.380),
(’intra’, 0.305), (’intra cerebral’, 0.267),
(’hemorrag cerebral’, 0.246)

77938;2012;2;75;2;2;Hématome intra-cérébral;NULL;NULL;2-1;hématome intra-
cérébral;I619

Example 2.
65397;2012;1;80;2;1;Hypertension intra-crânienne;NULL;NULL;1-1;hypertension
intra-crânienne;G932
65397;2012;1;80;2;2;hématome intra-cerebral;NULL;NULL;2-1;hématome intra-
cérébral;S062
65397;2012;1;80;2;3;chute de sa hauteur;NULL;NULL;3-1;chute de sa hauteur;W18
[...]

This analysis of the top false positive codes for I619 gives an idea of the types
of shortcomings of our method and outlines directions for future work.

5.3 Future work

Improving precision. We observed that some discriminant features were not given
sufficient weight in the classification. While using more state-of-the-art IR scores
and similarities such as BM25 or language models might improve upon tf.idf and
Cosine, we believe that using a more classical machine learning classifier based
on individual training examples (instead of global pseudo-documents as we did in
an Information Retrieval style) might lead to more important changes. Since our
submission, we also experimented with various classifiers, among which Logistic
Regression and Support Vector Machines, which obtained a precision of 0.89–
0.91 on mono-codes (+15pt) with only tokens as features.

The context of a statement, i.e., the other statements of the same certificate,
may provide important information in some cases, as we observed in our error



analysis. We plan to incorporate this context as additional features for classifi-
cation. Another possibility will be to use such features in a reranking stage, as
we already started to do with our chapter classifier.

Improving recall. The main cause of the low recall of our classifier is that it
only proposes one code for each statement, whereas some statements may lead
to multiple codes. A possible direction to address it is to select the top-ranked
code, then to greedily remove the tokens which support it, and to iterate on the
remaining tokens as long as codes are proposed with sufficiently high confidence.

Adding a more traditional strategy based on simple dictionary matching
would be yet another way to identify sequences of diagnoses in a statement.

References

1. Aronson, A.R., Lang, F.M.: An overview of MetaMap: historical perspective and
recent advances. J Am Med Inform Assoc 17(3), 229–36 (2010)

2. Blanquet, A., Zweigenbaum, P.: A lexical method for assisted extraction and coding
of ICD-10 diagnoses from free text patient discharge summaries. Journal of the
American Medical Informatics Association 6(suppl) (1999)

3. Bodenreider, O.: The Unified Medical Language System (UMLS): Integrating
biomedical terminology. Nucleic Acids Research 32(Database issue), D267–270
(2004)

4. Kamkar, I., Gupta, S.K., Phung, D., Venkatesh, S.: Stable feature selection for
clinical prediction: exploiting ICD tree structure using tree-lasso. J Biomed Inform
53, 277–290 (Feb 2015)

5. Koopman, B., Karimi, S., Nguyen, A., McGuire, R., Muscatello, D., Kemp, M.,
Truran, D., Zhang, M., Thackway, S.: Automatic classification of diseases from
free-text death certificates for real-time surveillance. BMC Med Inform Decis Mak
15, 53 (2015)

6. Koopman, B., Zuccon, G., Nguyen, A., Bergheim, A., Grayson, N.: Automatic
ICD-10 classification of cancers from free-text death certificates. Int J Med Inform
84(11), 956–965 (Nov 2015)

7. Perotte, A., Pivovarov, R., Natarajan, K., Weiskopf, N., Wood, F., Elhadad, N.:
Diagnosis code assignment: models and evaluation metrics. J Am Med Inform
Assoc 21(2), 231–237 (Mar-Apr 2014)

8. Pestian, J.P., Brew, C., Matykiewicz, P., Hovermale, D., Johnson, N., Cohen, K.B.,
Duch, W.: A shared task involving multi-label classification of clinical free text. In:
Biological, translational, and clinical language processing. pp. 97–104. Association
for Computational Linguistics, Prague, Czech Republic (June 2007), http://www.
aclweb.org/anthology/W/W07/W07-1013

9. Wingert, F., Rothwell, D., Côté, R.A.: Automated indexing into SNOMED and
ICD. In: Scherrer, J.R., Côté, R.A., Mandil, S.H. (eds.) Computerised Natural
Medical Language Processing for Knowledge Engineering, pp. 201–239. North-
Holland, Amsterdam (1989)

10. Zhou, X., Zhang, X., Hu, X.: MaxMatcher: Biological concept extraction us-
ing approximate dictionary lookup. In: Proceedings of the 9th Pacific Rim
International Conference on Artificial Intelligence. pp. 1145–1149. PRICAI’06,
Springer-Verlag, Berlin, Heidelberg (2006), http://dl.acm.org/citation.cfm?

id=1757898.1758065


