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Abstract. In this paper, we describe the architecture of our plant clas-
sification system for the LifeClef 2016 challenge [14]. The objective of
the task is to identify 1000 species of images of plants corresponding to 7
different plant organs, as well as automatically detecting invasive species
from unknown classes. To address the challenge [10], we proposed a plant
classification system that uses a convolutional neural network (CNN).
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1 Introduction

Plant classification has received particular attention in the computer vision field
due to its important implications in agriculture automation and also for envi-
ronmental conservation. For instance, botanical knowledge of plants is essential
to improve agricultural development. Researchers in computer vision [19, 17, 16,
2,6,12,20] have used variations of leaf characteristics as a comparative tool to
classify plant. The reason is because leaf characters have been used extensively
in traditional text-based taxonomic; they have been keys for plant identification
since the early days of botanical science [5,4]. Although the structural features
of a leaf play an important role in the plant identification task, for certain plants,
such as deciduous plants or semi-evergreen plants, leaves are not available over
different periods of the years. Moreover, some species are hard to be differen-
tiated using only their leaf organ as leaves in nature might have very similar
shape and colour [20,9]. Therefore, botanists usually extend their observation
to more than one organ such as stems, flowers, branches or fruits. Since 2013,
the LifeClef challenge [11] has provided the first multi-organ plant dataset that
not only covers leaf-based images but different organs of given individual plants.
Such images of plants were collected in an unconstrained environment, at dif-
ferent periods of time during the year, by different users. The objective of the



plant identification task [10] in the LifeClef 2016 [14] challenge is to identify
1000 species of images of plants corresponding to 7 different organs, as well as
automatically detecting invasive species from unknown classes.

Inspired by the deep learning breakthrough in image classification, more re-
searchers have started to use deep learning models such as the CNN, to learn a
robust plant image representation [1, 21, 3,8, 24]. In this work, we employ a CNN
model to build a plant classification system. We re-purpose the current state-
of-the-art VGG net [22] to incorporate species and organ features and solve the
multi-organ plant classification problem.

The rest of the paper is organized as follows. In Section 2, we present the
methodology of our proposed architecture. Section 3 illustrates its training scheme.
Section 4 shows the experiments and results for both the validation and testing
set. Lastly, Section 5 presents conclusions and future work.

2 Method Description

The CNN model was initially designed to process multiple arrays of data such
as colour (RGB) images, signal or sequences as well as video. Due to the avail-
ability of large scale image datasets, such as ImageNet [7], and, followed by the
advancement of technology, such as Graphic Processing Units (GPUs), CNN is
currently a commodity in the computer vision field. The VGG net [22] offers
currently the best state-of-the-art result for image classification.
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Fig.1: VGG-net 16 layers architecture

Fig. 1 depicts the configuration of the proposed 16 layers VGG net. In this
work, we initialize our model architecture based on the VGG net and modify
its higher level convolutional layer to learn the combined species and organ
features. Fig. 2 shows our proposed architecture. We do not handcraft any feature
descriptor for the fusion features, but introduce convolution layers to learn the
filters themselves. We could view these filters as the learned feature descriptors
encoding the distinctive fusion structures.

Our architecture mainly comprises four components: (i) shared layers, (ii)
organ layers, (iii) species layers, and (iv) fusion layers that handle those combi-
nations of both species and organ features. We introduce shared layers for both
species and organ components. The reasons are threefold. First, [25,23] demon-
strated that preceding layers in deep networks response to low-level features
such as corners and edges. Since both higher level species or organ components
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Fig. 2: Organ-species high level fusion architecture

require low-level features to build higher level features, we introduce shared pre-
ceding layer for both components. Second, according to [23], the shared layers
may reduce both floating point operations and the memory footprint of the
network execution, which are of importance for real world application. Lastly,
using shared layers helps to reduce the number of training parameters, which is
beneficial to the architecture performance.

To incorporate both organ and species features, we firstly train the organ
layers CNN based on organ classes. Then, we keep the shared and the organ
layers unaltered, in order to reuse it to train the species layers. After we trained
the species layers, we cascade both of them to learn the fusion features. Before
cascading both features, a feature downsizing convolution layer is added in each
layer to reduce the feature maps dimension and produce compact based features.
This step is essential to reduce the number of training parameters, to compensate
the overfitting issue. Last but not least, we train three fully connected layers as
the classifier to classify input images to its corresponding species classes. To
embed four components into one pipeline and jointly trained end-to-end, we
employ the multiple steps training as outlined in Sec. 3.
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3 Training

The algorithm below shows the training procedure of the proposed high level
fusion architecture:

Algorithm of our proposed high-level fusion architecture:

procedure High-level fusion architecture training
Step 1: Pre-Training Two-Path CNN
Step 2: Initializing Organ Layers
Step 3: Initializing Species Layers
Step 4: Initializing Fusion Layers
Step 5: Finetuning Organ-species high level fusion

Step 1: Pre-Training Two-Path CNN We initially design a two-path CNN
for the purpose of training two different components (species and organ) as
shown in Fig. 3a. Each path of the CNN configuration is similar to the VGG-net
16 layer architecture [22], except that each of them share the preceeding layers.

Step 2: Initializing Organ Layers After we have the two-path CNN pre-
trained with Imagenet dataset, we re-purpose one of the path to train an or-
gan layer as shown in Fig. 3b. We perform fine-tuning with seven organ labels:
branch, entire, flower, fruit, leaf, leafscan and stem. These organ labels are an-
notated together with species in PlantClef Dataset. We finetune the VGG-16
network by replacing the final fully connected layer with a total of seven neu-
rons corresponding to seven classes.

Step 3: Initializing Species Layers After we obtained the organ layers, we
train the species layers based on the species labeled dataset as shown in Fig.
3c. As mentioned in Sec. 2, we allow both species and organ layers to share the
common proceeding layers. Hence, to make the sharing of the filters possible, we
keep the first two convolutional layers’ weights to be consistent by setting the
learning rate to zero during the species layers training. In addition to that, we
set the organ layers learning rate to zero in order to avoid having their filters
altered throughout the species layers training.

Step 4: Initializing Fusion Layers After having both organ and species com-
ponents fine-tuned on the two-path CNN, we first migrate its convolutional layers
to a new architecture as shown in Fig 3d. Then, we add a convolution layer to
each component to reduce the feature map dimension and follow by another
two stacks of convolutional layers to learn the fusion features. Lastly, we assign
three fully connected layers for species classification. When training, we set the
predefined layers’ learning rate to zero and only train the newly assigned con-
volutional layers with species labeled dataset. Typically, we could see this third
step as the fusion feature learning stage.



Step 5: Finetuning Organ-species high level fusion Finally, we finetune
the whole architecture end-to-end using the same learning rate.

4 Experiments and Results

We evaluate the architectures on the PlantClef2015 dataset [15]. The models
are trained using the Caffe [13] software. For the parameter setting in training,
we employ fixed learning policy. We set the learning rate to 0.01, and then
decrease it by a factor of 10, when the validation set accuracy stops improving.
The momentum is set to 0.9 and the weight decay to 0.0001. The networks are
trained with back-propagation, using stochastic gradient descent [18]. We run
the experiments using multiple GPUs on two NVIDIA TitanX graphics cards.

4.1 Data augmentation

The images used for training capture living plants, where every object in the
image can be captured at different size. Multi-scale training is therefore proposed.
We isotropically rescale the training images into three different sizes: 256, 385
and 512, then randomly crop 224 *224 pixels from the rescaled images to feed
into the network for training. Thus, the crop from the larger scaled images will
correspond to the small part of the image or particularly subpart of the organ
that may be an important feature for recognition. Besides that, we also increase
the data size by mirroring the input image during training. Finally, we have a
new set, of training images that contains 272892 images and a validation set of
66711 images.

4.2 Experimental results on the validation set

For the evaluation of our validation set, we directly employ the softmax output
from the model, i.e. we assign each test image the label with maximum softmax
output from the classifiers and measure the numbers of correctly assigned labels
over all the testing images.

Contribution of Imagenet pretraining. In this section, we evaluate the
contribution of the Imagenet dataset [7] pretraining to the plant classification
task. We perform transfer learning experiments on the PlantClef2015 dataset.
We re-purpose a VGG-16 net by performing fine-tuning on the top fully con-
nected layer. We compare it to the model trained directly from scratch using the
PlantClef2015 dataset without any pretraining. The results of our analysis show
that the VGG-16 net pretrained using Imagenet data improves by 9.5%, the
original 61.7 % score. Hence, pretraining from a larger diversity dataset like Im-
agenet [7] is clearly beneficial, as it helps to improve the generalization accuracy
of the model.

Contribution of data augmentation Table 1 demonstrates the results of
data augmentation. We can observe that the VGG-16 net gains 14.8% while the



proposed high level fusion gains 14.5%. Hence, it can be deduced that data aug-
mentation is important for the plant classification task, especially when training
a large CNN with limited amount of data. Indeed, this enables models to ex-
pose to larger amount of data with higher diversity. However, the proposed high
level fusion method has lower classification accuracy compared to the finetuned
VGG-16 net. This might be because the VGG net uses species features only,
performing better than the fusion of features, robust enough to represent plant
images.

Table 1: Performance comparison using augmented and non-augmented dataset

\ Method [Non-Augmented (%)|Augmented (%)|
Finetuned VGG-16 top layer 56.4 71.2
High level fusion (proposed) 54.4 68.9

4.3 Experimental Results on Test set

We have submitted four runs using the LifeClef 2016 - multi-organ plant dataset.
The characteristics of each runs are stated as below:
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Fig. 4: Results of the LifeClef2016 multi-organ plant classification task

— UM RUN 1: pretrain VGG-16 net with Imagenet 2012, then finetune the top
most layer with augmented PlantClef2015 training dataset.

— UM Run 2: train VGG-16 net from scratch with augmented PlantClef2015
training dataset.



— UM Run 3: train the proposed high level fusion architecture with augmented
PlantClef2015 training dataset
— UM Run 4: finetune UM Run 1 architecture with validation set.

Fig. 4 shows the results of the mean average precision scores with the eval-
uation of the robustness of the system handling unseen categories. We observe
that Run 4 is the best among the submitted Runs. The reason is because it
was trained with a larger training dataset compared to other runs. In addition,
Run 1 is better than Run 3 which is consistent with the results obtained in
the validation set. Last but not least, Run 2 shows the lowest result among the
submitted runs. This again shows the importance of the pre-training model with
a large-scale dataset. Overall, all submitted runs obtain average results in the
LifeClef2016 multi-organ plant classification task.

5 Conclusions and Future work

This paper proposed using the CNN model to incorporate species and organ
features for the plant classification task. We described the methodology of our
architecture and analyzed the results based on both validation and testing set.
The results of the proposed high level fusion architecture is promising but still
limited compared to the VGG net. In future, we will focus on exploring the CNN
model for the plant classification task including its implication in the open-set
recognition task.

References

1. Champ, J., Lorieul, T., Servajean, M., Joly, A.: A comparative study of fine-grained
classification methods in the context of the lifeclef plant identification challenge
2015. In: CLEF 2015. vol. 1391 (2015)

2. Charters, J., Wang, Z., Chi, Z., Tsoi, A.C., Feng, D.D.: Eagle: A novel descriptor
for identifying plant species using leaf lamina vascular features. In: Multimedia and
Expo Workshops, 2014 IEEE International Conference on. pp. 1-6. IEEE (2014)

3. Choi, S.: Plant identification with deep convolutional neural network: Snumedinfo
at lifeclef plant identification task 2015. In: Working notes of CLEF 2015 conference
(2015)

4. Clarke, J., Barman, S., Remagnino, P., Bailey, K., Kirkup, D., Mayo, S., Wilkin,
P.: Venation pattern analysis of leaf images. In: Advances in Visual Computing,
pp. 427-436. Springer (2006)

5. Cope, J.S., Corney, D., Clark, J.Y., Remagnino, P., Wilkin, P.: Plant species identi-
fication using digital morphometrics: A review. Expert Systems with Applications
39(8), 7562-7573 (2012)

6. Cope, J.S., Remagnino, P., Barman, S., Wilkin, P.: The extraction of venation from
leaf images by evolved vein classifiers and ant colony algorithms. In: Advanced
Concepts for Intelligent Vision Systems. pp. 135-144. Springer (2010)

7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: IEEE Conference on Computer Vision and
Pattern Recognition, 2009. pp. 248-255 (2009)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Ge, Z., Mccool, C., Corke, P.: Content specific feature learning for fine-grained
plant classification. In: Working notes of CLEF 2015 conference (2015)

Goéau, H., Bonnet, P., Barbe, J., Bakic, V., Joly, A., Molino, J.F., Barthelemy,
D., Boujemaa, N.: Multi-organ plant identification. In: Proc. of the 1st ACM in-
ternational workshop on Multimedia analysis for ecological data. pp. 41-44 (2012)
Goéau, H., Bonnet, P., Joly, A.: Plant identification in an open-world (lifeclef 2016).
In: CLEF working notes 2016 (2016)

Goéau, H., Bonnet, P., Joly, A., Bakic, V., Barthélémy, D., Boujemaa, N., Molino,
J.F.: The imageclef 2013 plant identification task. In: CLEF (2013)

Hall, D., McCool, C., Dayoub, F., Sunderhauf, N., Upcroft, B.: Evaluation of fea-
tures for leaf classification in challenging conditions. In: Applications of Computer
Vision (WACV), 2015 IEEE Winter Conference on. pp. 797-804 (2015)

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
In: Proc. of the ACM International Conference on Multimedia. pp. 675-678 (2014)
Joly, A., Goéau, H., Glotin, H., Spampinato, C., Bonnet, P., Vellinga, W.P.,
Champ, J., Planqué, R., Palazzo, S., Miiller, H.: Lifeclef 2016: multimedia life
species identification challenges

Joly, A., Goéau, H., Glotin, H., Spampinato, C., Bonnet, P., Vellinga, W.P.,
Planqué, R., Rauber, A., Palazzo, S., Fisher, B., et al.: Lifeclef 2015: multimedia
life species identification challenges. In: Experimental IR Meets Multilinguality,
Multimodality, and Interaction, pp. 462—-483. Springer (2015)

Kadir, A., Nugroho, L.E., Susanto, A., Santosa, P.I.: Leaf classification using shape,
color, and texture features. International Journal of Computer Trends and Tech-
nology 1(3), 306-311 (July to August 2011)

Kalyoncu, C., Toygar, O.: Geometric leaf classification. Computer Vision and Im-
age Understanding 133, 102-109 (2015)

Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097-1105 (2012)

Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J., Lopez, 1.C.,
Soares, J.V.: Leafsnap: A computer vision system for automatic plant species iden-
tification. In: Computer Vision-ECCV 2012, pp. 502-516. Springer (2012)

Lee, S.H., Chan, C.S., Wilkin, P., Remagnino, P.: Deep-plant: Plant identification
with convolutional neural networks. In: IEEE International Conference on Image
Processing 2015. pp. 452-456 (2015)

Reyes, A.K., Caicedo, J.C., Camargo, J.E.: Fine-tuning deep convolutional net-
works for plant recognition. In: Working notes of CLEF 2015 conference (2015)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556 (2014)

Yan, Z., Zhang, H., Piramuthu, R., Jagadeesh, V., DeCoste, D., Di, W., Yu, Y.: Hd-
cnn: Hierarchical deep convolutional neural networks for large scale visual recog-
nition. In: Proc. of the IEEE International Conference on Computer Vision. pp.
2740-2748 (2015)

Yanikoglu, B., Tolga, Y., Tirkaz, C., FuenCaglartes, E.: Sabanci-okan system at
lifeclef 2014 plant identification competition. In: Working notes of CLEF 2014
conference (2014)

Zeiler, M.D.; Fergus, R.: Visualizing and understanding convolutional networks.
In: Computer vision—-ECCV 2014, pp. 818-833. Springer (2014)



