89

A Conceptual Model of Version Control in
Method Engineering Environment

Motoshi Saeki Takafumi Oda

Dept. of Computer Science, Tokyo Institute of Technology
Ookayama 2-12-1-W8-83, Meguro-ku, Tokyo 152, Japan
Tel. +81-3-5734-2192 Fax +81-3-5734-2917 E-mail saeki@se.cs.titech.ac.jp

Abstract. Unlike line-based version control of source codes, version con-
trol of model descriptions should be based on logical components such
as Class and Association in a class diagram. In addition, if an adopted
method is changed to a new version during a development, the product
being currently developed should be consistent to the new method. We
proposed three-dimensional conceptual model to clarify version control
in method engineering context.

1 Introduction

Method Engineering is the discipline for exploring techniques to build project-
specific methods for information system development, called situational methods
[1]. Computer Aided Method Engineering (CAME) is a kind of computerized tool
for supporting the processes to build them [3, 5].

Although we can have a powerful situational method, another difficulty orig-
inating from frequent changes of a product still remains. A product is frequently
changed by various reasons, e.g. customer’s requirements changes, even during
its development. Developers should have various versions of a product and man-
age them in their project. In this situation, the techniques for version control are
significant to support their tasks by using computerized tools. Many version con-
trol techniques and supporting tools for source codes such as CVS [6] have been
studied. These tools store the current version of a product and the differences
between the adjacent versions in a repository, so that it can recover all of the
older versions by applying the stored differences to the current one (backward
difference). However, they are for text documents and line based management,
i.e. the granularity of version control is a “line” and the difference is generated
line by line. Since we use diagram documents such as class diagrams, we should
manage the changes on the diagrams, not in the granularity of a line, but of a
logical component, e.g. “Class”, “Association”, “Attribute” etc. in the case of
Class Diagram. The targets of version control should be logical components and
they depend on methods.

Another issue on version control in method engineering environment is the
support for version control of methods themselves. The point that we have to
consider is that the adopted method can be changed to its higher version during
a development project. If the product that was developed following the older

Proceedingsf the CAISE'05Forum- O. Belo, J. Eder,J. Falcdoe Cunha,O. Pastor(Eds.)
© Faculdadele EngenharialaUniversidadedo Porto,Portugal2005- ISBN 972-752-078-2

90 MotoshiSaeki, TakafumiOda

method becomes inconsistent to the new method, some supports of the change
of the product so as to make it consistent to the new method, including the
detection of inconsistency, is necessary. In [4], the changes of methods were
classified into a set of patterns, but it did not mention any support for the
version control of methods themselves.

This paper proposes a conceptual model for version control in method engi-
neering environment in order to clarify and solve above issues.

2 Conceptual Model of Version Control

We have a following simple scenario of a development as an example, which will
be used throughout this paper. A method engineer constructed a new method
assembling Class Diagram and Sequence Diagram of UML. Figure 1 illustrates
a part of Lift Control System developed following this method. Each diagram is
a unit of configuration management, i.e. configuration item.

2.1 Product Version v.s. Configuration Item

Firstly, consider what the target of version control is. A engineer completes the
diagram shown in the left part of Figure 1, and commits it as the version O.
After that, he adds the object “Door” to the sequence diagram as shown in the
right part of Figure 1, and commits it as the version 1. Note that the changes
of layout information on a diagram such as moving the positions of graphical
components and resizing them are not essential. Logical information such as
“adding a Door object” should be held as the target of version control. What
the targets of version control should be made depends on an adopted method.
The targets should be method elements, in this example, Class, Association,
Object, Message and so on. Thus we have to extract method elements from a
method description of the adopted method, i.e., a meta model.

By using method assembly technique [2], a method is obtained as a com-
position of more primitive methods (method fragments). In fact, our example
method consists of Class Diagram and Sequence Diagram. Thus a product in-
cludes a class diagram and sequence diagrams, each of which can be the target
of version control, i.e., a configuration item (see Figure 1). In other words, we
have to control both versions of the class diagram and of the sequence dia-
grams individually and independently. However, to keep consistency between
the class diagram and the sequence ones, we control their versions together, not
separately. Each configuration item in a version has a common version number.
When a configuration item is changed to a new version, the same new version
number is attached to the other items that the product comprises, even if they
are not changed. As shown in Figure 2, we assume that all configuration items
are put on a version plane. The addition of Door object and Open message is the
difference between the two version planes. This figure includes two axes: product
version axis and configuration item axis.

91

Version #0 Version #1
Configuration Item #1 Configuration Item #1 Ver.1
Lift Lift
position position.
) $0n0 [©—Ipoor |
I Version Up
Button Schedller Lift [Button Lon [scheafier [Lift] ~ [Door

1:on - i |
I I3 | | —— || 3: request position I
"2 turn on fght reduest posifon |2 tum on lightll_into ! |

\ i o

I IL4: position info, | } 4: position |nfo.} }
| I _5: request ! 5 foquest_oy !
117 turn off lightll_ ©° ™® 1 7: turn off light) ! |
! ! f I | 6:arrival |
| | 6 arrival | | ‘ i 1
! | u I 7: open
| i 1 i Y i |
! | | J ! ! !
Configuration Item #2 Configuration Item #2 Ver.1

Fig. 1. Lift Control System

2.2 Product Version v.s. Method Version

The second point is on the changes of the adopted methods. As shown in Figure
3, the engineer finds that Lift Control System has real-time property, and ex-
tends the current method so that he can model timing constraints in sequence
diagrams. He modifies the meta model of Sequence Diagram (MO : version 0
of the method) by adding the method concept “Timing Constraint”, and gets
a new version 1 (M1). The version control of meta models is called “method
version control” to distinguish it from usual version control of products (called
“product version control”). Now, the engineer continues his activities following
the new method M1. The change of the adopted method to M1 does not impact
on the current product (version 1 in Figure 1), or does not violate consistency
between the method and the product. When a method is changed, we consider
that the current product is evolved to a new version, i.e., version-up, even if it
is not really changed.

Assume a subsequent scenario that will occur inconsistency. As shown in the
upper part of Figure 3, the engineer adds a timing constraint “b-a< 2 min.”. The
engineer returns back the method to the older one MO after this addition. Since
MO does not include “Timing Constraint”, “b-a<2min.” in the current product
causes inconsistency. The version control system should detect inconsistency
when the currently adopted method is changed. If the version-up of the method
causes any inconsistency on the product, the engineer changes the product so

92 MotoshiSaeki, TakafumiOda

A Product Version door

7:ope
7

difference = {

door

version up —
|

VCF.O(P)I/ e R s ?
14 i E 7:open [:]

}

Configuration Item (CI)
CI#1 CI#2

Fig. 2. Version Up of A Product

that it is consistent to the new method, or he stops the version-up of the method.

Since method version control is independent on product version control, as
shown in Figure 4, there exists two axes: product version axis and method version
axis in our conceptual model. After completing the version 1 (where Door object
has been just added) following the method MO, the engineer evolves the current
method into a higher version M1. The method M1 is the version where timing
constraints of the system to be developed can be specified, as shown in Figure 3.
Since the current version of the product P1 is consistent to the method M1, the
engineer does not need to change it, so difference={} (an empty set) is obtained
shown in Figure 4. However the version of P1 goes up to the version 2 (P2),
because we should distinguish the current product based on M1 from M0’s. After
that, the engineer adds the timing constraint “b-a<2 min.” to P2 and gets the
version 3 (P3). Then he returns the method back to MO after completing P3 by
some reasons. Since MO does not have the method element “Timing Constraints”,
he should delete “b-a<2 min.” from P3, Finally, the current method becomes
MO and he gets the version 4 (P4). As shown in Figure 4, we can project product
version and method one to the corresponding axes respectively, and it is helpful
to understand them.

Consistency checking can be automatically done by examining whether the
current version of a product includes the components belonging to a deleted
method element. Deleted method elements can be identified from the differences
of method changes. In the example, the differences from M1 to MO includes the
deletion of “Timing Constraints” and P3 includes the instance “b-a<2 min.” of
“Timing Constraints”. The engineer is guided to pay attention to it.

93

Button] Scheduler Lift Door Button Scheduler Lift Door
:on 1:on
i | | 1 | |
: - I| 3: request positién | a Il I| 3: request positién |
| 2:turnon light (I jnfo, | | : 2:turn on light || info. | |
| I | h
: | 4: position info. || } : I 4: position info. ! }
I | I I
: |5 {equest I I : L_5: request]| I
0 move
17 tun oftlight | | ! :>' e :> i 7: turn offlight [, ° ™ i, |
. I
I ; 6: arrival I I | } 6: arrival lb-a<2min. |l
! \ - U I
I H 1 7: open 1 I 1‘ f 7: open Lf
! 1 1 1 T I | |
Timing Constraints
 ———
1
participate send participate
>
—— (I
"
b e
receive receive
Ver.0 (M0) Ver.1 (M1)

Fig. 3. Changing a Method

2.3 Three Dimensional Model

Summarizing the discussions above, we can capture a conceptual model of version
control with a three dimensional space, as shown in Figure 5. Each lattice point
represents a version of a product to be managed.

3 Conclusion and Future Work

This paper discusses the problems of version control in method engineering en-
vironments, and proposed a conceptual model to solve them.

Based on the conceptual model, we are implementing a version control system
wherein backward difference are represented using XMI technique [7] will embed
it into our CAME tool. As a result, we can generate diagram editors having
version control mechanism that deal with diagrams in granularity level of their
logical components. As for version control of meta models, we do not consider
propagation of version change of method fragments. If a method engineer changes
a method fragment MF to a new version, what happens to the method M that
is composed of MF? Should we automatically change the method M to a new
method that uses the new version of MF? This is also one of future work.

References

1. S. Brinkkemper. Method Engineering : Engineering of Information Systems Devel-

94 MotoshiSaeki, TakafumiOda

A

. Method Version

Ver.1(M1) O e e
| | | I

ﬁ%}_ﬁ = %ﬂm
7:ope 7:ope:

] difference ={
difference = { } add b-a<2min.}

[Ver.0 (1\9)/ - N: _, door
~THI HL
7:opel

Produgt Version

Ver.0 (P0) Ver.1 (P1) Ver2 (P2) Ver3 (P3) Ver4d (P4)

Fig. 4. Version Up of A Method

Method
Version

DR NERNERNAN

Configurati
Item

Product Version

Fig. 5. Three Dimensional Model

opment Methods and Tools. Information and Software Technology, 37(11), 1995.

2. S. Brinkkemper, M. Saeki, and F. Harmsen. Meta-Modelling Based Assembly

Techniques for Situational Method Engineering. Information Systems, 24(3):209
—228, 1999.

3. F. Harmsen. Situational Method Engineering. Moret Ernst & Young Management

Consultants, 1997.

4. J. Ralyte, C. Rolland, and R. Deneckere. Towards a Meta-tool for Change-Centric

Method Engineering: A Typology of Generic Operators. In CAiSE 200/, pages
202-218, 2004.

5. M. Saeki. Toward Automated Method Engineering: Supporting Method Assembly

in CAME. In Engineering Methods to Support Information Systems Evolution -
EMSISE’03, 0015’03 http://cui.unige.ch/db-research/EMSISE03/, 2003.

6. Concurrent Versions System, http://www.cvshome.org/.
7. XML Metadata Interchange, http://www.omg.org/.

	textHeader_Forum/018-292-CFP-Saeki-et-al:
	pdf_0: 89
	pdf_1: 90 Motoshi Saeki, Takafumi Oda
	pdf_2: 91
	pdf_3: 92 Motoshi Saeki, Takafumi Oda
	pdf_4: 93
	pdf_5: 94 Motoshi Saeki, Takafumi Oda

	textFooter_Forum\018-292-CFP-Saeki-et-al:
	pdf_0: Proceedings of the CAiSE'05 Forum - O. Belo, J. Eder, J. Falcão e Cunha, O. Pastor (Eds.)
© Faculdade de Engenharia da Universidade do Porto, Portugal 2005 - ISBN 972-752-078-2

