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Abstract. We show the relationship between two different types of com-
mon platforms of till known fuzzifications of a concept lattice, namely
that the notion of a concept lattice with hedges is a special case of our
generalized concept lattice.

1 Introduction

There are some approaches to fuzzify (i. e. generalize for fuzzy case too) the
classical Ganter-Wille construction of concept lattice. If we omit the (maybe
slightly naive) attempt done by Burusco & Fuentes-Gonzalez ([6]), the first ap-
proach, which was theoretically and practically well developed, was given by
Bělohlávek ([1]) and Pollandt ([11]). It use (L-)fuzzy subsets of objects and (L-
)fuzzy subsets of attributes. The another approach, so-called one-sided fuzzy
concept lattice was invented independently by Ben Yahia & Jaoua ([5]), by
Bělohlávek et al. ([4]) and by the author ([8]). It considers fuzzy subsets of at-
tributes but ordinary/classical/crisp subsets of objects (or vice versa). Because
there is no inclusion between these two fuzzy approaches the natural asking for
some common platform of both had arose.

We know about two such generalizations. One of them was shown by Bělohlá-
vek et al. ([3] and partially in [2]) and it uses so-called hedges (or truth-stressers)
(details below). The second one was given by author ([9]) and its idea is to
separate between the ranges of fuzzy sets of objects and fuzzy sets of attributes
(again details below). Till now it seemed that these two generalizing approaches
are not compatible, but in this paper we try to show that the first is contained
in the second.

2 A generalized concept lattice

Let us shortly recall a notion of a generalized concept lattice given by the author.
All these results are proven in [9] (and/or in [10]).

Let P be a poset, C and D be complete lattices. Let • : C × D → P be
monotone and left-continuous in both their arguments, i.e.
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1a) c1 ≤ c2 implies c1 • d ≤ c2 • d for all c1, c2 ∈ C and d ∈ D.
1b) d1 ≤ d2 implies c • d1 ≤ c • d2 for all c ∈ C and d1, d2 ∈ D.
2a) If c • d ≤ p holds for d ∈ D, p ∈ P and for all c ∈ X ⊆ C, then

supX • d ≤ p.

2b) If c • d ≤ p holds for c ∈ C, p ∈ P and for all d ∈ Y ⊆ D, then

c • supY ≤ p.

Let A and B be non-empty sets and let R be P -relation on their Cartesian
product, i.e. R : A×B → P .

Define the following mapping ↗ : BD → AC (by ST we understand the set
of all mappings from the set S to the set T ):

If g : B → D then ↗(g) : A → C is defined as follows:

↗(g)(a) = sup{c ∈ C : (∀b ∈ B)c • g(b) ≤ R(a, b)}.

Symmetrically we define the mapping ↙ : AC → BD:
If f : A → C then ↙(f) : B → D is defined as follows:

↙(f)(b) = sup{d ∈ D : (∀a ∈ A)f(a) • d ≤ R(a, b)}.

Because these two mappings ↙ and ↗ form a Galois connection, it can be
repeated a classical construction of concept lattice. The result of this construc-
tion is called a generalized concept lattice and the following basic theorem on
generalized concept lattice holds (the proofs are in [9] and [10]):

Theorem 1. 1) The generalized concept lattice L is a complete lattice in which

∧
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〉
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2) Let moreover P have the least element 0P and 0C • d = 0P and c • 0D = 0P

for every c ∈ C and d ∈ D. Then a complete lattice V is isomorphic to L if
and only if there are mappings α : A× C → V and β : B ×D → V s.t.
1a) α is non-increasing in the second argument.
1b) β is non-decreasing in the second argument.
2a) α[A× C] is infimum-dense.
2b) β[B ×D] is supremum-dense.
3) For every a ∈ A, b ∈ B, c ∈ C, d ∈ D

α(a, c) ≥ β(b, d) if and only if c • d ≤ R(a, b).

This approach is really a generalization of Bělohlávek’s fuzzy concept lattice
and of one-sided fuzzy concept lattice (and, of course, of a classical crisp case).
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3 A concept lattice with hedges

Bělohlávek consider a (complete) residuated lattice L = 〈L,∨,∧,⊗,→, 0, 1〉,
where ⊗ and → are connectives on L which form an adjoint pair, i.e. x⊗ y ≤ z
iff x ≤ y → z. ⊗ is isotone in both their arguments, → is antitone in the first
argument and isotone in the second one, ⊗ is commutative and x⊗1 = 1⊗x = x.

Moreover he has sets X and Y and an incidence relation I : X × Y → L.
Then he defines the mappings ′ : LX → LY and ′′ : LY → LX as follows: If
A ∈ LX and B ∈ LY then

A′(y) =
∧

x∈X

(A(x) → I(x, y))

and
B′′(x) =

∧
y∈Y

(B(y) → I(x, y)).

The new idea of Bělohlávek (et al.)’s is to modify these definitions in this
way:

A
↑
(y) =

∧
x∈X

(A(x)∗X → I(x, y))

and
B

↓
(x) =

∧
y∈Y

(B(y)∗Y → I(x, y)),

where ∗X and ∗Y are so-called hedges on L. A hedge is a function ∗ on L which
fulfills these properties:

1∗ = 1,

a∗ ≤ a,

(a → b)∗ ≤ a∗ → b∗,

a∗∗ = a∗.

(Note that the last one can be rewrite in the form

∗ ◦ ∗ = ∗

where ◦ is the composition of mappings.) Moreover they work with the following
functions:

– For arbitrary A : U → L (U is some universe) define:

bAc = {〈u, a〉 ∈ U × L : a ≤ A(u)}.

– For arbitrary B ⊆ U × L take the function dBe : U → L defined by:

dBe(u) =
∨
{a ∈ L : 〈u, a〉 ∈ B}.
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– For arbitrary A : U → L and ∗ : L → L define the function A∗ given
pointwise by:

A∗(u) = (A(u))∗.

– For arbitrary B ⊆ U × L and ∗ : L → L define:

B∗ = {〈x, a∗〉 : 〈x, a〉 ∈ B}.

Then they have taken the set

B(X∗X , Y ∗Y , I) = {〈A,B〉 : A
↑

= B,B
↓

= A}

of all fixpoints of the pair 〈↑, ↓〉 and showed that this structure is isomorphic to
the ordinary concept lattice B(X × ∗X [L], Y × ∗Y [L], I〈f,g〉) where

Ag = bdAe↑c∗X

and
Bf = bdBe↓c∗Y ,

and relation I〈f,g〉 is given by

〈〈x, a〉, 〈y, b〉〉 ∈ I〈f,g〉 iff a⊗ b ≤ I(x, y).

Finally, they have proven this basic theorem for concept lattice with hedges
(we present here only its second part):

Theorem 2. An arbitrary complete lattice 〈V,≤〉 is isomorphic to the complete
lattice B(X∗X , Y ∗Y , I) iff there are mappings γ : X × ∗X [L] → V and µ : Y ×
∗Y [L] → V s. t.

1a) µ[Y × ∗Y [L]] is infimum-dense.
1b) γ[X × ∗X [L]] is supremum-dense.
2)

γ(x, a) ≤ µ(y, b) if and only if a⊗ b ≤ I(x, y).

4 A few observations

We add some small, but useful assertions about these notions:

Lemma 1. Every hedge is monotonous, i. e. a ≤ b implies a∗ ≤ b∗.

Proof. By properties of a hedge we obtain: a ≤ b iff 1 ⊗ a ≤ b iff 1 ≤ a → b iff
1 = a → b, which implies 1 = (a → b)∗ ≤ a∗ → b∗, and then a∗ = 1⊗ a∗ ≤ b∗.

Lemma 2. For every hedge ∗ if A ⊆ ∗[L] then supA ∈ ∗[L].

Proof. For every a ∈ A we know a ≤ supA, and then (from the previous lemma)
a = a∗ = (sup A)∗. It means that (supA)∗ is an upper bound of A, which implies
supA ≤ (supA)∗. But it follows sup A = (sup A)∗, i. e. sup A ∈ ∗[L].
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Lemma 3. The function b·c is monotonous.

Proof. If A1, A2 : U → L and A1 ≤ A2, then obviously bA1c = {〈u, a〉 ∈ U ×L :
a ≤ A1(u)} ⊆ {〈u, a〉 ∈ U × L : a ≤ A2(u)} = bA2c.

Lemma 4. The function d·e is monotonous.

Proof. If B1 ⊆ B2 ⊆ U ×L, then for all u ∈ U we have clearly dB1e(u) =
∨
{a ∈

L : 〈u, a〉 ∈ B1} =
∨
{a ∈ L : 〈u, a〉 ∈ B2} = dB2e(u).

Lemma 5. For arbitrary A : U → L it is true that dbAce = A.

Proof. dbAce(u) =
∨
{a ∈ L : 〈u, a〉 ∈ bAc} =

∨
{a ∈ L : a ≤ A(u)} = A(u).

5 Relationship between these two approaches

We can see that the basic theorem for concept lattice with hedges and the basic
theorem for our generalized concept lattice are very similar. And it is suspicious.
So take such special case of our generalized concept lattice given by the following
table:

general special
P L
A Y
B X
C ∗Y [L]
D ∗X [L]
• ⊗

R : A×B → P I : X × Y → L

Then our definitions can be rewritten in this form:
If g : X → ∗X [L] then ↗(g) : Y → ∗Y [L] is defined as follows:

↗(g)(y) = sup{c ∈ ∗Y [L] : (∀x ∈ X)c⊗ g(x) ≤ I(x, y)},

and if f : Y → ∗Y [L] then ↙(f) : X → ∗X [L] is defined by:

↙(f)(x) = sup{d ∈ ∗X [L] : (∀y ∈ Y )f(y)⊗ d ≤ I(x, y)}.

And now we will try to prove that such special case of generalized concept
lattice is isomorphic to the lattice from [3]:

Theorem 3. The lattices L = L(X(∗X [L]), Y (∗Y [L]), I) and B = B(X×∗X [L], Y×
∗Y [L], I〈f,g〉) are isomorphic and the isomorphisms are

Φ(〈g, f〉) = 〈bgc, bfc〉

and
Ψ(〈S, T 〉) = 〈dSe, dT e〉,

where g : X → ∗X [L], f : Y → ∗Y [L], S ⊆ X × ∗X [L], T ⊆ Y × ∗Y [L].
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It is enough to prove the following six claims:

Claim 1 If 〈g, f〉 ∈ L then Ψ(〈g, f〉) ∈ B.

Proof. Let 〈g, f〉 ∈ L, i. e. g = ↙(f) and f = ↗(g), we want to prove bgc =
bfcg = bdbfce↓c∗ = bf↓c∗ (because from the lemma 5 we have dbfce = f) and
bfc = bgcf = bdbgce↑c∗ = bg↑c∗ (because again dbgce = g), which will mean
Φ(〈g, f〉) = 〈bgc, bfc〉 ∈ B, what we want to show.

By above definitions we obtain:

bf↓c∗
= {〈x, d∗X 〉 ∈ X × ∗X [L] : 〈x, d〉 ∈ bf↓c},
= {〈x, d〉 ∈ X × ∗X [L] : 〈x, d∗X 〉 ∈ bf↓c}, (because ∗X ◦ ∗X = ∗X , we have
d∗X = d for all d ∈ ∗X [L]),
= {〈x, d〉 ∈ X × ∗X [L] : d ≤ f↓(x)},
= {〈x, d〉 ∈ X × ∗X [L] : d ≤

∧
y∈Y (f(y)∗Y → I(x, y))},

= {〈x, d〉 ∈ X × ∗X [L] : (∀y ∈ Y )(f(y)∗Y ⊗ d ≤ I(x, y))},
= {〈x, d〉 ∈ X×∗X [L] : (∀y ∈ Y )(f(y)⊗d ≤ I(x, y))} (because ∗Y ◦∗Y = ∗Y ,
we have c∗Y = c for all c ∈ ∗Y [L], especially f(y) ∈ ∗Y [L]),
= {〈x, d〉 ∈ X × ∗X [L] : d ≤ sup{e ∈ ∗X [L] : (∀y ∈ Y )f(y)⊗ e ≤ I(x, y)}},
= {〈x, d〉 ∈ X × ∗X [L] : d ≤ ↙(f)(x)},
= {〈x, d〉 ∈ X × ∗X [L] : d ≤ g(x)},
= bgc,

So we have bf↓c∗ = bgc, and the equality bg↑c∗ = bfc can be proven symmetri-
cally.

Claim 2 If 〈S, T 〉 ∈ B then Φ(〈S, T 〉) ∈ L.

Proof. Let 〈S, T 〉 ∈ B, i. e. S = Tf = bdT e↓c∗ and T = Sg = bdSe↑c∗, we
want to prove ↗(dSe) = dT e and ↙(dT e) = dSe which will mean Ψ(〈S, T 〉) =
〈dSe, dT e〉 ∈ L, what we want to show.

Firstly we show that for all y ∈ Y we have dT e(y) ∈ ∗Y [L]:

dT e(y)
= dbdSe↑c∗e(y),
=
∨
{a ∈ L : 〈y, a〉 ∈ bdSe↑c∗},

=
∨
{a ∈ ∗Y [L] : 〈y, a〉 ∈ bdSe↑c∗},

∈ ∗Y [L] (because of lemma 2).

Hence by above definitions we obtain for every x ∈ X:

↙(dT e)(x)
= sup{d ∈ ∗X [L] : (∀y ∈ Y )dT e(y)⊗ d ≤ I(x, y)},
= sup{d ∈ ∗X [L] : (∀y ∈ Y )dT e(y)∗Y ⊗ d ≤ I(x, y)} (because ∗Y ◦ ∗Y = ∗Y ,
we have c∗Y = c for all c ∈ ∗Y [L], especially for dT e(y) as we have shown
above),
= sup{d ∈ ∗X [L] : d ≤

∧
y∈Y (dT e(y)∗Y → I(x, y))},



Isomorphism of Concept Lattice With Hedges 7

= sup{d ∈ ∗X [L] : d ≤ dT e↓(x)},
= sup{d ∈ ∗X [L] : 〈x, d〉 ∈ bdT e↓c},
= sup{d ∈ ∗X [L] : 〈x, d∗X 〉 ∈ bdT e↓c∗},
= sup{d ∈ ∗X [L] : 〈x, d〉 ∈ bdT e↓c∗} (because ∗X ◦ ∗X = ∗X , we have

d∗X = d for all d ∈ ∗X [L]),
= sup{d ∈ L : 〈x, d〉 ∈ bdT e↓c∗} (the (stronger) condition d ∈ ∗X [L] is

covered by the condition 〈x, d〉 ∈ bdT e↓c∗),
= sup{d ∈ L : 〈x, d〉 ∈ S},
=
∨
{d ∈ L : 〈x, d〉 ∈ S},

= dSe(x).

So we have ↙(dT e) = dSe, and the equality ↗(dSe) = dT e can be proven
symmetrically.

Claim 3 If 〈g, f〉 ∈ L then

Φ(Ψ(〈g, f〉)) = 〈g, f〉.

Proof. Φ(Ψ(〈g, f〉)) = 〈dbgce, dbfce〉 = 〈g, f〉 because of lemma 5. (You can see
that assumption 〈g, f〉 ∈ L is only formal, we do not need it.)

Claim 4 If 〈S, T 〉 ∈ B then

Ψ(Φ(〈S, T 〉)) = 〈S, T 〉.

Proof. By definition we obtain Ψ(Φ(〈S, T 〉)) = 〈bdSec, bdT ec〉, so we want to
prove that bdSec = S and bdT ec = T .

For one inclusion we will need the following observation: Because 〈S, T 〉 ∈ B,
we have S = Tf = bdT e↓c∗, i. e. S = bgc∗ for some g : X → ∗X [L].

Using definitions we obtain:

〈x, d〉 ∈ bdSec
iff d ≤ dSe(x),
iff d ≤

∨
{e ∈ L : 〈x, e〉 ∈ S},

iff d ≤
∨
{e ∈ L : 〈x, e〉 ∈ bgc∗},

iff d ≤
∨
{e ∈ ∗X [L] : 〈x, e∗X 〉 ∈ bgc∗} (because if 〈x, e〉 ∈ bgc∗ then e ∈

∗X [L] and e = e∗X ),
iff d ≤

∨
{e ∈ ∗X [L] : 〈x, e〉 ∈ bgc},

iff d ≤
∨
{e ∈ ∗X [L] : e ≤ g(x)} = g(x),

iff 〈x, d〉 ∈ bgc and d ∈ ∗X [L],
iff 〈x, d∗X 〉 ∈ bgc∗ and d ∈ ∗X [L],
iff 〈x, d〉 ∈ bgc∗ (because ∗X ◦ ∗X = ∗X , so d = d∗X for all d ∈ ∗X [L]),
iff 〈x, d〉 ∈ S.

So we have bdSec = S, and the second equality bdT ec = T can be proven
symmetrically.

Claim 5 Φ is order-preserving.
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Proof. Let 〈g1, f1〉, 〈g2, f2〉 ∈ L and 〈g1, f1〉 ≤ 〈g2, f2〉. This inequality means
that g1 ≤ g2 and f1 ≥ f2 (pointwise) and by monotonicity of b·c we obtain bg1c ⊆
bg2c and bf1c ⊇ bf2c, which implies Φ(〈g1, f1〉) = 〈bg1c, bf1c〉 ≤ 〈bg2c, bf2c〉 =
Φ(〈g2, f2〉).

Claim 6 Ψ is order-preserving.

Proof. Let 〈S1, T1〉, 〈S2, T2〉 ∈ B and 〈S1, T1〉 ≤ 〈S2, T2〉. This inequality means
that S1 ⊆ S2 and T1 ⊇ T2 and by monotonicity of d·e we obtain dS1e ≤ dS2e
and dT1e ≥ dT2e, which implies Ψ(〈S1, T1〉) = 〈dS1e, dT1e〉 ≤ 〈dS2e, dT2e〉 =
Ψ(〈S2, T2〉).

Now we have proven that the lattices B and L are isomorphic. Hence we have
this:

Corrolary 1 The lattices L(X(∗X [L]), Y (∗Y [L]), I) and B(X∗X , Y ∗Y , I) are iso-
morphic.

Or we can say it in another words, that every concept lattice with hedges is
isomorphic to some generalized concept lattice.

6 Conclusions

In this paper we showed that the notion of a generalized concept lattice defined
in [10] contains as a part the notion of a fuzzy concept lattice with hedges. Hence
relationships between all classes of concept lattices mentioned in Introduction
can be depicted in this diagram:

classical CL

L-fuzzy CL one-sided fuzzy CL

L-fuzzy CL with hedge

generalized CL

@
@

@
@@

�
�

�
��

�
�

�
��

@
@

@
@@
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The inverse question arises how big is distinction between these classes, e. g.
what additional conditions are needed for a generalized concept lattices to be
isomorphic to some fuzzy concept lattice with hedges. Or are these notions the
same?. . .
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