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Abstract. The automated, formal verification of distributed algorithms
is a crucial, although challenging, task. In this paper, we study the prop-
erties of distributed algorithms solving the reliable broadcast problem
in various failure models. We investigate the suitability of a direct Sat-
isfiability Modulo Theories (SMT) approach to model these algorithms
in order to validate safety properties. In a previous work, we modeled
distributed algorithms using the declarative framework of array-based
systems. In this work, we try also a simulation of array-based systems
via counter systems. In fact, this simulation does not indeed introduce
spurious runs violating the safety properties we want to formally verify
in a significant class of problems.

We report the related performance evaluations of some SMT-based model-
checkers (essentially, our tool MCMT and tools like ;Z, nuXmv). The
experimental results are interesting because they show on one hand that
state-of-the-art SMT-based technology can handle problems arising in
fault-tolerant environments, and on the other hand that different heuris-
tics and search strategies (e.g. acceleration versus abstraction) can have
practical impact.

1 Introduction

The validation of fault-tolerant distributed algorithms like those in [7]25] is a
crucial, although challenging, task. This kind of algorithms may support co-
ordinated actions of distributed systems in critical applications such as, e.g.,
industrial plant monitoring through wireless sensors and actuators networks,
fleet coordination, intelligent transport applications, or aerospace applications.
Hence, guaranteeing certain safety properties of the algorithms is compulsory.
The processes executing these algorithms communicate to one another, their
actions depend on the messages received, and their number is arbitrary. These
characteristics are captured by so called reactive parameterized systems, that is,
systems composed by an arbitrary number N of processes (“parameterized”),
whose behavior depends on the interactions with the environment (“reactive”),
namely, with the other processes.

We are interested in formally validating or refuting safety properties of reac-
tive parameterized systems encoding fault-tolerant algorithms. This is a daunt-
ing task given their intrinsic infinite-state nature. In this paper, we consider in



particular distributed algorithms to solve the reliable broadcast problem (see,
e.g., [24]) in the presence of crash, send-omission, general-omission, and byzan-
tine failures. In particular, our goal is to analyze the extent to which a direct
encoding into Satisfiability Modulo Theories (SMT) problems can be adopted for
automated formal verification of these algorithms.

In our opinion, array-based systems |17] offer the most suitable formal model
for these verification tasks; however, only quite recently decision procedures
for arrays with cardinality constraints were designed and implemented [1] (see
also |14] for a related framework) and a model checker exploiting them in a fully
automated setting is still under construction. Our current tool MCMT - ‘Model
Checker Modulo Theories’ [18] implements array-based specifications, but the
impossibility of expressing in a direct way cardinality constraints causes diffi-
culties in handling verification of fault-tolerant distributed algorithms whenever
threshold guards are involved (although sometimes ad hoc abstraction strategies
may be successfully used).

In this paper, we report some experiments using counter systems [13] to
specify the problems we consider. Whereas array-based modelizations are suffi-
ciently faithful and close to the original informal specifications drawn from the
literature, the same does not happen for counter systems: the latter can often
only simulate the original algorithms and such simulation may sometimes be the
fruit of an a-priori reasoning on the characteristics of the algorithm, embedded
into the model. Despite this fact, all runs from the array-based specifications
are represented in the simulations with counters systems (this is in fact the for-
mal content of the notion of a ‘simulation’), thus safety certifications for the
simulating model apply also to the original model. The advantage of this ap-
proach is that, as it is evident from our experiments, verification of counters
systems performs well and is much more supported from the existing technology.
In conclusion, whereas array-based specifications remain one of the mainstreams
for verification of distributed algorithms (due to their expressivity), a flexible
approach should not disregard counter specifications as powerful tools to check
subgoals and to solve subproblems fitting a more restrict syntax.

The paper is organized as follows: in Section [2] we report some generalities
about model-checking of infinite state systems and about our approaches. In Sec-
tion[3] we introduce reliable broadcast problems and comment on crucial aspects
of their modelizations with counter systems, compared with array-based systems
presented in a previous work [2]. Finally, in Section [4| we report a performance
evaluation of the verification with different state-of-the-art SMT-based tools.

2 Preliminaries

The behavior of a reactive system can be modeled through a transition system,
which is a triple T = (W, Wy, R) such that W is the set of possible configurations
of the system — expressed in terms of the state of each component process —
Wo C W is the set of initial configurations, R C W x W is the transition relation:
w1 Rwsy describes how the system may evolve in one step. A safety problem for



a subset Bad C W consists in determining whether there is a path
woRwi Rws - - - Rw,,

within (W, R) leading from wy € Wy to w,, € Bad. We say that (W', W{, R)
(with safety problem Bad') simulates (W, Wy, R) (with safety problem Bad) iff
there is a relation p C W x W’ such that (i) for all w € W there is w’ € W'
such that wpw’; (i) if wpw’ and w € Wy then w' € Wy, (iil) if wpw’ and
w € Bad then w’ € Bad'; (iv) if wpw’ and wRw there is a path w’' R'w] - - - w}, R'v'
with vpv'. Tt is evident that the existence of such a simulation p guarantees
that if there is no path in (W', W{, R") leading from W}, to Bad’, then there
is no path in (W, Wy, R) leading from Wy to Bad. Thus one can model-check
(W', W{, R") (w.r.t. Bad') instead of (W, Wy, R) (w.r.t. Bad), in case there is a
simulation of the former to the latter (notice however that the existence of a path
in (W', Wy, R') from W/ to Bad' does not imply that an analogous path exists
in (W, Wy, R) because the latter essentially has ‘more runs’, i.e. ‘more paths’).
When we speak of simulations in the paper, we refer to the above notion of
simulation: in fact, checking the existence of such a relation satisfying conditions
(i)-(iv) above in our examples is a matter of more or less straightforward details.
It is not clear whether such details can be checked automatically (they are specific
to each example); this might be seen a weak point of the method, however it
should be pointed out that the substantial content of the verification task is in
fact lifted to the simulating model, where it is checked automatically.

Various approaches are studied in the literature in order to formally verify
safety properties. The problems we address in this paper are typically infinite-
state: although the behavior of a single process could often be described by a
finite state automaton, the family of systems is infinite due to the parameter
N € N indicating the number of the component processes. In the infinite-state
case an exaustive search through the states (in the style of textbooks like |9]) is
not possible; states must be handled symbolically through logical formulae. In ad-
dition, satisfiability tests for these formulae need to be discharged when a model-
checker performs its analysis; these satisfiability tests are typically constrained
by theories describing both data (integers, Booleans, reals, ...) or datatypes (ar-
rays, lists, ...). This is where SMT solvers may be of help.

Essentially, an SMT-solver (Z3 [11], Yices [15], MathSAT [8], CVC4 [4],...) is
an integrated framework for automated reasoning, involving a SAT-solver, a con-
gruence closure solver, a solver for the manipulation of arithmetic expressions,
and so on. Among further theories that might be supported by such solvers we
have arrays, bit-vectors, non-linear arithmetic, etc.; quantified formulae are oc-
casionally supported too, but with limitations due to well-known undecidability
results. By itself, an SMT-solver cannot solve a model-checking problem, but
a main application of SMT-solvers is within model-checking frameworks, where
the model-checker (acting as a client) asks the SMT-solver (acting as a server)
to discharge the satisfiability tests it generates. First of all, the transition sys-
tem must be specified via a logical formalism and the choice of the appropriate
formalism requires a careful balance between expressivity and efficiency. When a



logical formalism is chosen, the transition system is specified via a set of variables
z, the initial and unsafe configurations are specified via formulae Wy(z), Bad(z)
and the transition relation is specified via a formula R(z,z’). When this formal
framework is fixed, the SMT-solver can be used for instance as follows. If we are
supplied an invariant I(z), the SMT-solver can check whether Bad(z) A I(z) is
satisfiable, thus proving in the negative case that states in Bad are not reach-
able. The SMT-solver can also certify that I is actually an invariant, by checking
formally that the initial set of states is included in I and that the system cannot
exit I (starting from a set in I) when executing a step of the transition R. All
this amounts to check the unsatisfiability of the following two formulae

Wo(z) A —I(z) I(z) A R(z,2') AN =I(2]) .

Even when the above satisfiability tests are effective and feasible (because the
underlying logic is not too expressive), the trouble is that invariants can be far
from trivial and one cannot expect a user to be able to supply them in full
details.

To sum up, the problems we need to face when trying to use an SMT-based
approach to model-checking are two-fold: (i) choosing a formalization; (ii) defin-
ing a search strategy for invariants. Whereas (ii) typically depends on the tech-
nology implemented in each model checker (we shall briefly turn on this below
too, when we describe the tools), (i) is a modelisation problem relying on the
user’s choices: we discuss our own choices in next subsection.

2.1 Choosing a formalization

We discuss two methods for describing distributed algorithms. First, we have
the array specification relying on the notion of an array-based system [17]. An
array-based system is a transition system where a configuration, or system state,
is represented as a collection of arrays whose length is not a priori bounded and
whose i-th elements represent the state of process p;. Array-based systems can
be enriched by adding to variables representing arrays also variables representing
shared data, like integers, Booleans, etc. This is the more natural and widely
applicable approach, and is well suited for parameterized systems; this formal-
ization is adopted by tools like MCMT [18] and Cubicle [10]. Relevant properties
need quantifiers to be expressed: for instance, the violation of mutual exclusion
is expressed as

Jz1329 (21 # 22 A az1] = critical Aafzg] = critical) (1)

where a maps every process to its location.

Counter systems is the formalization we take into consideration in this work.
In a counter system, we can only use integer variables to describe the system
state, i.e., we can just count the number of processes which are in each possible
location (or, more generally, satisfying a predicate). The method is suitable in
case the behavior of a process in a reactive parameterized system is driven by
conditions of the type:



if (number of received messages is in [min, max])
then perform action;

where action can be a location change, a message send, etc. The counters specifi-
cation may be used when processes are indistinguishable, and it does not matter
“who” performs an action but rather “how many” do it (so called threshold-
guarded algorithms [20}/21]). Counter specifications have been used to formalize
broadcast protocols [12,/16], cache coherence protocols [13] and are the basic
formalism accepted by automata-based tools like FAST [3]. The main advan-
tage of counter specifications is that only integer variables are used; quantifiers
are not needed (for instance in this setting can be formulated simply as
critical > 1), so much more support is available from existing solvers. The
drawback is that this approach may not be expressive enough: when processes
are structured as a ring, as a linear order or as a graph, nothing can be done
within it. Even in case processes are unstructured, the use of counters models
may require some form of abstraction. Take for instance a byzantine environ-
ment: correct processes either send or do not send a message to all other pro-
cesses, but byzantine faulty processes may behave non-symmetrically, i.e. they
may maliciously send corrupted messages only to a subset of processes in or-
der to fool them. In this case, it is not sufficient just to count the number of
processes having sent a message. This problem may be overcome by introduc-
ing some form of abstraction (see below, or see the interval abstractions of [20]
for another solution); abstractions, however, may cause spurious behavior, so in
principle there is no guarantee that counters formalizations may work when they
are combined with such abstractions. Otherwise said, abstractions produce just
simulations, in the formal sense explained above.

On the other hand, in order for array-based model-checkers to be able to
perform in a natural way arithmetic reasoning about the cardinalityﬂ of the
set of processes satisfying certain properties, an integrated framework (combin-
ing cardinality constraints and array-like specifications) would be desirable. The
problem is not that of changing the formal model (array-based systems are ap-
propriate), but to enrich the logic supported to reason about such formal model.
The enrichment should be appropriately designed to combine expressivity with
computational efficiency (see [1] for recent promising results in this direction).

2.2 The tools

Whereas for array specifications the Model Checker Modulo Theories (MCMT)
|18] is our reference tool, for counter specifications, it is possible to use also other
SMT-based model-checkers (we choose uZ [19] and nuXmv [6]) because counter
specifications only involve integer variables. In detail:

- MCMT is an SMT-based model checker able to verify the properties of infinite-
state reactive parameterized systems. Although specifically designed for array-

LThis is required, for example, to express resilience properties, i.e., assumptions of
the kind “at most k processes will fail”, where k is a symbolic constant (see below for
a more detailed discussion on this).



based systems, it can handle counter specifications too. MCMT exploits
Yices [15] as the underlying SMT-solver. It has suitable options for abstrac-
tion/refinement search; however, MCMT abstraction is tailored to array-
based systems and so MCMT abstraction is too peculiar to be really op-
erative in case of pure counter specifications. On the other hand, MCMT
implements also some form of acceleration; by using acceleration the tool
may become competitive for counter specifications, because it is able to de-
scribe in one shot the effect of executing some loops any finite number of
times.

- pZ is the Z3 module operating with Horn clauses specifications; the formal-
ism of Horn clauses is becoming a common specification language for model
checkers. Using this formalism, we can specify the safety problems addressed
in the counter specifications of this paper. As a search mechanism, uZ em-
ploys an IC3-based algorithm - a sophisticated abstraction/refinement search
driven by the property to be checked.

- nuXmv is the evolution for infinite-state systems of the symbolic model checker
NuSMV; it uses MathSat as the underlying SMT-solver and implements
state-of-the-art abstraction/refinement algorithms like IC3.

Of course, a comparison of the different tools is not easy and is not our
main goal. Our aim is more modest: we just want to show that, by introducing
rather natural and simple modeling techniques, current SMT-technology can
successfully deal with our benchmarks.

3 Considered Class of Problems

In this section, we discuss the modeling of fault-tolerant distributed algorithms
using counter systems. We consider four algorithms, namely, the reliable broad-
cast algorithms for crash (CBA), send-omission (SOBA), or general-omission
(GOBA) failures described in [7], and the algorithm for a broadcast primitive
with byzantine failures (BBP) described in [25]. We discuss just the relevant as-
pects of modelization; interested readers may find the complete models at|http:

//users.mat.unimi.it/users/orsini/dbaMC_experiments.html.In
the next section, we report some performance evaluation.

3.1 CBA, SOBA, and GOBA algorithms

Let G be a group of cooperating processes. The Reliable Broadcast problem
requires that, when a process in G sends a message m, either all the correct
processes in G deliver m to their users, or none of them delivers m, in spite of
failures. In CBA, processes may prematurely stop performing any action; the
halt may occur in the middle of a broadcast. In SOBA, processes may either
crash, or transiently omit to send some messages requested by the algorithm. In
GOBA, processes in addition may transiently omit to receive some messages. A
correct process is a process that does not fail in any way for the whole algorithm
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Algorithm 1 Pseudo-code for CBA and SOBA

Initialization:
if (p is the sender)
then estimatelp] < m; coord_id[p] < 0;
else estimate[p] < L; coord_id[p] < —1;
state[p] < undecided;
End Initialization

for ¢+ 1,2,...,N do // Process ¢ becomes coordinator for four rounds
1. Round 1:

2 All undecided processes p send request(estimate[p], coord_id[p]) to c;
3 if (¢ does not receive any request) then it skips rounds 2 to 4;

4. else estimate|c] < estimate[p] with largest coord_id[p];

5. Round 2:
6

7

8

¢ multicasts estimate|c];

All undecided processes p that receive estimate[c] do
. estimate[p] < estimate[c] and coord_id[p] + c¢;
9. Round 3:

10. All undecided processes p that do not receive estimate[c] send(NACK) to ¢;
11. Round 4:

12. if (¢ does not receive any NACK) then ¢ multicasts Decide; else ¢ HALTS;
13. All undecided processes p that receive Decide do

14. decision[p] < estimate[p);

15. state[p] <— DECIDED;

end for

run. More formally, an algorithm correctly solves the Reliable Broadcast problem
if it satisfies the Agreement property:

Agreement: If a correct process decides to deliver a message m, then all correct
processes decide to deliver m.

To guarantee the algorithm correctness, up to ¢ processes may fail (resilience),
with ¢ < N — 1 for CBA and SOBA, and t < (N — 1)/2 for GOBA. The system
must be synchronous, in the sense that both the time for a message to arrive
to its destination, and the time for a process to execute an algorithm step, are
upper bounded. Hence, the algorithms evolve in rounds whose length is finite.
For the sake of space, in this work we focus on the modelization of SOBA through
counter systems; similar mechanisms are used for GOBA, while CBA is a special
case. The pseudo-code for both CBA and SOBA is reported by Algorithm [I} by
ignoring the underlined instructions, CBA is obtained; for SOBA, consider all
the instructions in the pseudocode regardless of the fact that they are underlined
or not. In [2], the discussion of how to model both CBA and SOBA using the
array-based method is reported.

The counters modelization uses only global variables that count how many
processes are in a certain state. In particular, we count (¢) the number of either



correct or faulty undecided processes owning or not the message m to be reliably
broadcast to the group of processes (undC/F(m/ J_))E| (4) the number of either
correct or faulty processes that have decided (decC/F(m/ 1)), (iii) the round
number, and (iv) the number of either requests or NACKs received by the current
coordinator. Initially, the round number is 1, no process has undertaken any
action, and only the sender — which is also the first coordinator — owns m. This
is described by initializing (undC(m) + undF(m)) = 1. The unsafe formula to
be refuted, negating the Agreement property, is expressed as: ¢ = (decC(m) >
0AdecC(L) > 0).

In Round 1, every type and number of undecided processes may send a re-
quest, and the steps are freely interleaved. As an example, the guard enabling
the transition of undecided correct processes with no message is:

// prototype of a state update transition
if (round =1) then
1: undC(Ll) < undC(L) —1;
2: req(Ll) « req(L)+1;
3: doneC(Ll) < doneC(L) +1;
The support variables doneC/F(m/ 1) are used to count the number of un-
decided processes that perform a transition, and to restore the appropriate ini-
tial values when switching to the successive round, with updates of the form
undX (y) + doneX(y), while the done variables are reset to 0. The round is
incremented when all processes are moved to done, that is, when undC(m) +
undF(m) + undC (L) + undF(L) = 0.

An interesting aspect is the modeling of send-omission failures. When
using array theory, MCMT implicitly adopts the crash failure model [2], in that
transitions describe the actions of alive processes. The behavior of faulty pro-
cesses only omitting to send messages is fully described, whereas faulty crashed
processes do nothing since their crashing (and if transitions do not cover all
the possible cases, then the processes falling into the unspecified cases are con-
sidered crashed). The above solution is based on an (implicit) quantifiers rela-
tivization technology, which is not available anymore when counter abstractions
are adopted; so in counter systems, we have to maintain the accounting of all
the processes. To this purpose, in every round we added transitions similar to
the prototype above but without line 2: a faulty process may omit to send the
request but it is counted among the triggered processes. Processes that crash are
modeled as processes that — from the failure on — only perform those transitions.

Many kinds of transitions may be accelerated by changing the state of d
processes (rather than 1) at a time, for any d greater than 0 and not greater
than the global number of processes involved in the transition. In this case, the
prototype above would be:

// prototype of an accelerated state update transition
if (round =1A3d,0 <d <undC(L)) then
1: undC(Ll) < undC (L) —d;

2 Thus e.g. undC(m) counts the number of undecided correct processes owning m,
whereas undF (L) counts the number of undecided faulty processes not owning m, etc.



2: req(Ll) « req(L) +d;

3: doneC(Ll) « doneC(L) +d;
As an important heuristics, some model checkers (like MCMT) are supposed to
produce by themselves the above accelerated form in order to prevent divergence
and to speed up the verification for all possible values of the variable d in the
indicated range, thus reproducing all cases of subsets of processes sending their
requests and subsets of processes failing to do this. This acceleration does not
introduce spurious traces.

A critical aspect of counter modelization is the determination of the most
recently distributed estimate (lines 4, 8 of Algorithm . We describe the
solution we adopted in our simulating model. If the coordinator receives just one
type of requests (i.e., either req(m) = 0 or req(_L) = 0), then that value is taken
as the estimate e. Otherwise, two global variables lastE and flagC are used. The
former is set to e every time the current coordinator succeeds in sending its
estimate to at least one process. The latter is initialized to 0 and set to 1 the
first time a coordinator reaches a correct process, which will report the estimate
to all the successive coordinators. In the successive phases, if flagC' > 0 then
the coordinator takes lastFE as its estimate; otherwise, the algorithm behavior is
nondeterministic: both e = m and e = L are allowed.

Differently from the array-based implementation, there is no memory about
what processes are or have already taken the role as a coordinator: this is an
example of an abstraction we are forced to make because of the adoption of
counters formalization (this abstraction, fortunately, does not introduce spuri-
ous behavior). In Round 2, both cases of a correct and a faulty coordinator
are explored, depending on whether the corresponding sets of processes are not
empty. The two branches are distinguished by properly setting a global flag
correct_coordinator. In the case of a correct coordinator, all undecided
processes adopt its estimate in one transition, and Round 3 is skipped, accord-
ing to the following code (where e is supposed equal to m):

if (e=m A correct_coordinator) then
undC(m) < undC(m) + undC(L); undF(m) < undF(m) +undF(L);
In the case of a faulty coordinator, transitions adopt the schema of the prototype
above, so that processes are allowed to update their estimate — and their state
and associated counter is changed accordingly — or alternatively to move to done
thus simulating the send-omission failure of the coordinator. Moreover, at any
time a transition allows to move to the successive round (describing the case
where no further messages are sent by the coordinator). The residual number
of undecided processes not yet triggered is the number of processes enabled to
send a NACK. This is modeled similarly to Round 1, with the simplification that
it is sufficient one process sending the NACK to switch to the successive round.
Round 4 (diffusion of the Decide by the coordinator) is modeled after Round 2.

3.2 Byzantine broadcast primitive

In [25], an algorithm implementing a broadcast primitive for byzantine failures
(BBP) is proposed, aiming at substituting authentication obtained by unforge-



Algorithm 2 Byzantine broadcast primitive

Initialization: k + round number when p broadcasts m ;
Round k:
Phase (2k-1): process p sends Init(p,m,k);
Phase 2k: ¥V process does:
if (received Init(p, m, k) from p in Phase 2k — 1) then send Echo(p, m, k) to all;
if (received Echo(p, m, k) from > N — ¢ distinct processes in Phase 2k)
then Accept(p, m, k);
Round r > k+1:
V Phase (2r — 1), 2r: V process does
if (received Echo(p, m, k) from > N — 2t distinct processes in previous phases
A not sent echo yet) then send Echo(p, m, k) to all;
if (received Echo(p, m, k) from > N — ¢ distinct processes in this and previous
phases) then Accept(p, m, k);

able signatures. Byzantine failures allow faulty processes to behave arbitrarily,
i.e. omitting to send and/or receive messages, sending messages with a wrong
content, or even coalescing to fool correct processes. The resilience in this case is
t < (N—1)/3. The algorithm attempts to achieve its goal through the re-diffusion
of a message m sent by a source p, on behalf of the receiving processes, trying to
aggregate a majority of correct processes supporting the acceptance of m. The
pseudo-code is supplied by Algorithm [2] The algorithm aims at guaranteeing the
following properties:

Correctness: If a correct process p broadcasts (p,m,k) in round k, then every
correct process accepts (p,m,k) in the same round.

Relay: If a correct process accepts (p,m,k) in round r > k then every other
correct process accepts (p,m,k) in round r + 1 or earlier.

Unforgeability: If process p is correct and does not broadcast (p,m,k), then no
correct process ever accepts (p,m,k).

This algorithm significantly differs from those in sec[3:1] All algorithms are
synchronous. Yet, in the previous algorithms, for each round a different kind
of message is exchanged, and all messages of that type must arrive within that
round. By contrast, in BBP just one type of message is exchanged, i.e. the Echo
messages, and processes consider the cumulative number of Echo’s received so
far. This is the reason why in our model we abstract from the round value, and
just differentiate two phases: () initialization, depending on the property to be
validated, and executed just once; (i¢) actions undertaken by correct processes
depending on the number of Echo’s each one of them received so far. The evolu-
tion of correct processes is reproduced by continuously triggering the transitions
of phase (i1).

In our model, we consider different process states depending on the received
messages. For correct processes, four states are possible: the initial state (IT),
the receivedInit (RI) state, the sentEcho (SE) state and the Accepted (AC) state.



Fig. 1| represents the state transitions: arcs are labeled with a pair (triggering
event, performed action) — with one of the two elements possibly empty — and
describe all the possible interleavings of events. In our counter specification, four

received > N-t Echo’s; send Echo

received > N-t Echo’s; send Echo

" received init; - ¢0 » -—-;send Echo &

/

received > N-2t Echo's; send Echo

Fig. 1: State transitions for a correct process in BBP.

global variables named after the states are used to count the number of processes
in each state. According to Algorithm [2] and to the number of received Echo’s,
correct processes move from one state to the other as shown in Fig. [Il These
transitions are modeled simply by updating the number of processes in the four
states, and accumulating the number of newly generated messages, which will
be counted by the processes successively (phase (ii)).

The behavior of faulty processes is modeled indirectly through a global vari-
able F' counting the number of Echo’s generated by faulty processes and received
by the correct process taking the next transition. F' is updated by two transi-
tions that may freely interleave with the others, which respectively increment
or decrement F' while always guaranteeing that 0 < F' < ¢t. The decrement is
the abstraction we introduce to describe the possibility that a faulty process
does not send its messages to all the correct processes (the abstraction consists
in the fact that in this way we allow messages to be in a sense “withdrawn”).
In our experiments, this abstraction does not introduce spurious behavior (for
a different abstraction, using interval abstract domains, see [20]). It is worth to
notice that correct processes are unable to distinguish whether an Echo was gen-
erated by either a correct or a faulty process. Hence, in the transitions modeling
correct behavior, just the cumulative value (SE + F) is considered.

As far as the validation is concerned, we produced one model for every prop-
erty to be validated; all models include the same transitions and they differ just
in the initialization. Unforgeability is a safety property, while both Correctness
and Relay are liveness properties. Yet, most of the available infinite-state model
checkers are not able to verify liveness properties. In order to deal with this
problem, we change liveness properties into safety properties by exploiting the
round indication in the assertion: since the round where the ’good event’ (i.e.
the event mentioned in the liveness property) has to take place is known, the
problem can be reformulated as a safety property (even better, as a bounded
model checking property). In the following, for each property we supply both
the corresponding unsafe formula, and the initial state:

— Correctness: the unsafe formula is: ¢ := ((SE+F) < (N—t)AN(IT+RI) =
0). Initially all correct processes are in RI state.




— Unforgeability: the unsafe formula is: ¢y := (AC > 0). Initially all correct
processes are in IT state.

— Relay: to refute acceptance on behalf of the correct processes, it must be
the case that either (¢) there are still processes in IT but the Echo messages
are not sufficient to move them to either SE or AC state; or (ii) there are
still processes in SE state but the Echo messages are not enough to move
them to AC state. The two conditions above are described by the following
unsafe formulas, which are checked separately:

Yr, =((SE+F)<(t+1)ANIT >0ARI=0)

¢ry = (AC < (N —t) A(IT+ RI) =0 A (SE + F) < (N —t)).

For both Relays and Relaypg, initially the number of Echo’s sent by correct
processes equals SE + AC and processes may be in whatever of the four
states, but it must be AC > 0.

4 Performance Evaluation

We implemented the models described in the previous section in MCMT; the
MCMT models have been automatically translated into equivalent formaliza-
tions in either pZ and nuXmv, in order to gain some understanding of the be-
havior of the analyzed approaches. The translators we developed yield a twofold
advantage: they allow to model an algorithm only once, and they allow to per-
form a fair comparison amongst tools. It should be noticed that verifying counter
specifications is undecidable in general, thus there is no guarantee that our
tools converge. To achieve convergence in practical cases, one needs sophisti-
cated methods: these include acceleration (in the case of MCMT) or IC3-like
abstraction/refinement (in the case of pZ and nuXmv). All measures have been
conducted on an Intel Core i5-2500 CPU @ 3.30GHz with 8 GB RAM, running
Debian GNU/Linux stretch/sid x86_64. The experiments have been conducted
with MCMT version 2.5.2 leveraging Yices 1.0.40, puZ version 4.4.2, and nuXmv
version 1.0.1E]

Table|[I|reports the results obtained with the best combination of parameters
for each tool, which we supply in our website. The Model column identifies the
considered algorithm and property to be validated, and the failure model in
which the validation was performed. The Result column reports the outputs of
the model checkers: for all tests all the model checkers supplied the same output.
For MCMT, we also report the maximum Depth of the explored tree, and the
number of Nodes (formulae describing system states) composing the explored
tree, as an indication of the computation overhead in the various cases.

The results show that all the considered tools solve the algorithms efficiently.
MCMT is not as engineered as the other two tools, but its performance is
nonetheless comparable although not as good. Results lead to the conclusions

3 After the submission of this paper, a new version 1.1.0 of nuXmv was released; we
repeated the experiments with the new release without noticing substantial differences.



MODEL REsuLT MCMT nZ nuXmy
) DePTH[NODES| TIME TIME TIME
CBA - Agreement (crash failures) SAFE 8 39 [0.38 s.][0.66 s. || 0.41 s.
CBA - Agreement (send-om.) UNSAFE 6 33 |0.14s.{/0.14 s. || 0.16 s.
SOBA - Agreement (send-om.) SAFE 21 1772 | 77 s. || 628 s. 19 s.
SOBA - Agreement (general-om.) UNSAFE 8 76 ]0.28 s.]| 0.26 s. || 0.48 s.
GOBA - Agreement (general-om.) SAFE 42 [10102{6308 s.[|> 24 h.|| > 24 h.
GOBA - Agreement (¢ > (N —1)/2) |[UNSAFE|| 22 | 6953 [2523 s.|| 953 s. 25 s.
BBP - Unforgeability (byzantine) SAFE 7 51 [0.48 s.[[ 0.20 s. [| 0.03 s.
BBP - Unforgeability (¢t > (N — 1)/3)|UNSAFE 4 24 |0.10s.|/0.05s. || 0.14 s.
BBP - Correctness (byzantine) SAFE 7 131 [2.55s.(|2.54 s. || 0.21 s.
BBP - Correctness (t > (N —1)/3) |UNSAFE 4 37 |0.24s.{/0.10 s. || 0.30 s.
BBP - Relaya (byzantine) SAFE 6 38 |0.22s.{/0.04 s. || 0.08s.
BBP - Relaya (t > (N —1)/3) UNSAFE 1 2 10.01s.([0.03s. || 0.12 s.
BBP - Relayp (byzantine) SAFE 8 185 [4.97 5.1/ 0.08 s. || 0.17 s
BBP - Relayp (t > (N —1)/3) UNSAFE|| 1 2 10.02s.][0.05s. || 0.11 s

Table 1. Performance evaluation

that pure SMT is a technology suitable to perform the automatic verification
of fault-tolerant distributed algorithms, without the need of transforming those
systems into finite-state systems.

One word about heuristics needed to prevent divergence: as we already men-
tioned, MCMT can only use acceleration for counters systems, whereas pZ and
nuXmv use sophisticated forms of abstraction/refinement. Since acceleration is
just a preprocessing technique, one can manually include accelerated transitions
in the specification files for ©Z and nuXmv too; however, we did not notice
significant improvement doing that in the above benchmarks (but the overhead
is also modest). On the other hand, the most difficult benchmark (namely the
counters formalization of GOBA) has been solved only by MCMT, thus showing
that plain acceleration without abstraction may also be the winning choice in
some cases.

5 Conclusions and Related Work

In this paper, we showed how Satisfiability Modulo Theories may be effectively
used to perform automated formal verification of fault-tolerant distributed al-
gorithms. Algorithms for the Reliable Broadcast problem have been modeled
using the counter specification paradigm. This paradigm is well-known [13], but
to the best of our knowledge, this is the first modelization of algorithms for crash,
send-omission and general omission failures using this paradigm. In all cases, the
verification converged and promising performances have been obtained, showing
that SMT is a formalism powerful enough to manipulate this sort of problems.

A series of papers related to ours is [20,22,/23]; in these papers, abstractions
leading to counters formalizations are introduced for a large set of fault-tolerant
distributed algorithms (including those from Subsection [3.2]above). An interest-
ing specification formalism, namely threshold automata, is introduced. Roughly
speaking, threshold automata are counter automata in which integer variables
are divided into two groups: the variables in the first group measure the number



of processes in each location, whereas the variables in the second group (called
‘shared variables’) measure the progress of the system and, as such, cannot be
decremented. It is assumed that in each cycle of the control flow of the au-
tomaton, shared variables cannot increase either; under these assumptions, it is
proved in [22] that the system diameter is finite, thus allowing bounded model
checking to be complete for verification. Optimizations in the trace enumerations
are designed in [23]; once relevant traces are identified, the whole verification
task can be discharged by an SMT-solver checking the actual feasibility of such
traces. Overall, this approach seems to be quite powerful and scalable, whenever
abstractions needed for encoding algorithms and problems into the proposed
formalism are available (it is not clear for instance, whether our examples from
Subsection [3.1] can fit this framework).

As a future work, we plan to model the whole algorithm for Reliable Broad-
cast in the presence of byzantine failures. The idea is to come back to array-based
systems like in [2], but using recent achievements from [1] in order to be able to
capture some advantages of counter formalizations inside the framework of array-
based systems. The challenge is that of keeping the efficiency of counter systems
documented in this paper in a more expressive and more flexible context, allowing
direct formalizations and avoiding ad hoc simulations/abstractions. This would
be in some sense similar to the approach taken in the forthcoming paper [5],
where array specifications with cardinality constraints are joined to the machin-
ery of Horn clauses solving (the difference is that we plan to use complete [1]
or at least more aggressive decision procedures for generating and discharging
proof obbligations involving counting quantifiers fragments).

The algorithms considered in this paper work for certain values of resilience,
which have been inferred in the literature only through informal, verbal proofs.
Another interesting aspect would be to use model checkers in order to automati-
cally discover resilience thresholds in the verification process, as those thresholds
that separate safe and unsafe executions.
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