
Compiling functional code for system-level environment

Miroslav Kratochvíl1∗

Department of Software Engineering, Charles University in Prague
kratochvil@ksi.mff.cuni.cz

Abstract: Compilation of programming languages based
on λ–calculus to standalone, low-level machine code in-
volves a challenge of removing automatic memory man-
agement that is usually required for supporting implicit al-
locations produced by currently available compilers. We
propose a compilation approach that is able to convert
pure, lazily-evaluated functional code to machine code
suitable for running on bare hardware with no run-time
support, and describe a Haskell-like programming lan-
guage that demonstrates feasibility of the new method. Us-
ing the proposed approach, the missing ability to directly
control the hardware and memory allocation may be added
to purely functional languages, which otherwise have sev-
eral advantages over traditional procedural languages, in-
cluding easier verification and parallelization.

1 Introduction

Ideas from functional programming have always been in-
fluencing more traditional imperative programming lan-
guages. Apparent simplicity and expressiveness of
λ–based constructions is reflected both in new features of
some languages (notably the new functionality of C++11)
or in whole new languages (Clojure, Rust, partially also in
Swift or Nim). Functional languages, on the other hand,
are being improved to acquire the benefits of languages
with more direct control of resulting machine code, which
may be required for reaching performance, efficiency, or
binary compatibility goals — there has been much re-
search aiming to make the high-level constructions more
efficient, concerning e.g. memory allocation efficiency
[7], type unboxing for performance [18] and various in-
lining methods.

We push both of these developments to one of possible
meeting points — we demonstrate a language that satis-
fies the requirements from the system-level languages by
having similar (mostly compatible) resulting code, execu-
tion and memory management model as C or C++, while
supporting functional programming paradigms, type sys-
tems, syntax, and many practical programming construc-
tions from Haskell and similar languages.

Major challenges. Such combination may easily lead to a
direct contradiction, as the phenomena common in func-
tional languages imply the need either for garbage collec-
tion or for other, possibly even more complicated run-time
processing:

∗This work was supported by the grant 11562/2016 of the Charles
University Grant Agency.

• Variables of recursive types (like lists and trees), that
form a highly valued building block of functional
programming, are quite difficult to be implemented
efficiently without some kind of automatic dealloca-
tion decision. Common example of such decision
may be seen in automatic handling of two singly-
linked list objects that share a common ‘tail’.

• A quite common technique in functional program-
ming — generating functions on runtime by partial
application and passing them around as first-class
objects — is impossible in minimalist system-level
conditions, as any code generator (or, equivalently, a
compiler) can not be a part of the language runtime.
Similar problem arises with code that implies need
for lazy evaluation, which, if it can not be removed
by inlining at compile time, is usually supported by
run-time allocation of thunks in automatically man-
aged memory.

• Arbitrarily deep recursion, a common method to run
loops in functional programming, is usually sup-
ported by unbounded automatic allocation of a stack-
like structure. In system-level programming, the pro-
grams and all recursion must fit into a standard, lim-
ited and unmanaged program stack segment.

Viability of a new language. The main motivation for cre-
ating a new language is to explore the possibilities that
arise from the expressive power of a purely functional lan-
guage applied to a full stack1 of code that runs on bare
hardware. The benefits may include easier high-level op-
timization and simplified static analysis.

In particular, performing partial evaluation of the func-
tional code is a computationally easy, well developed and
very effective method of optimization [20]. The lack of
side effects (or correct embedding of side effects in a tan-
gible construction) also simplifies derivation of semantic
meaning of the code by reducing amount of variables that
affect how the code is run.

Moreover, functional languages do not reflect any of
the traditional paradigms that the system-level program-
ming languages inherited: They are not designed specif-
ically for register-based machines, nor uniprocessors, nor
for sequential code execution2, not even for preservation

1We indirectly refer to the valuable property of C-like languages,
that all dependencies of C (esp. the standard library) can again be written
only in C.

2Any code that touches a common system-level primitive directly is
almost necessarily sequential.

ITAT 2016 Proceedings, CEUR Workshop Proceedings Vol. 1649, pp. 3–10
http://ceur-ws.org/Vol-1649, Series ISSN 1613-0073, c© 2016 M. Kratochvíl



of call conventions and code structures shared by program
parts. We consider lack of those properties a crucial ben-
efit for simplification of automatic code processing, sig-
nificant both for further elimination of variables affect-
ing derivation of high-level optimization possibilities and,
more notably, for automatic parallelization of code, as the
compiler is not forced to perform a potentially sub-optimal
decomposition of sequentially written code into paralelliz-
able fibers.

Explicitly specified procedures and calls in block-
structured code often represent some semantic value (like
an API for module separation) that is unimportant or even
harmful for resulting program structure — non-existence
of any explicit code-structuring syntax leaves the choice of
the call convention and separation of the code into subrou-
tines on the compiler, which may produce better program
while leaving the source semantically clean and readable.

We are further motivated by the recent high-
performance results achieved by the language-centric
functional programming approach, most notably the
cache-oblivious memory allocation [2] or the generative
approach to code parallelization [22].

1.1 Related research

We highlight several compilers that target a similar set of
goals:

PreScheme — a language by Kelsey [15] is based on
a compiler that transforms a simplified version of
Scheme language to machine code. The approach
chosen by authors is to completely replace all re-
cursive types in the runtime with vectors, and to
forcibly inline all code, so that no code-generating
β–reductions present at runtime. As in other Scheme
implementations, all evaluation is always eager and
sequential structure of code is preserved.

Habit — a project of Portland State university HASP
group [10] that states a need for similar system-
programming language. Most recent publications
from the project discuss the language features and
provide a clear specification for implementation. To
the best of our knowledge, no implementation of
Habit is available yet.

Rust — a relatively new language that exploits tech-
niques similar to linear types to stay both very effi-
cient with memory allocations and safe against pro-
grammer errors. Compilation method and execution
model chosen by Rust is similar to ours, with the ex-
ception of the imperative Rust syntax and the fact that
the Rust runtime needs a garbage collector to work
with recursive types from its standard library.

Swift — a recent product of Apple shows corpo-
rate interest in small, fast languages that re-
duce the memory-management overhead and include

functional-programming improvements (notably pat-
tern matching and a shifted view on classes, repre-
sented e.g. by Swift protocols and improved enumer-
ated types).

Important theoretical result about evaluation methods,
the fact that pure and eager functional languages can be
shown inferior in terms of performance to languages that
are either lazily evaluated or allow side-effects, was dis-
cussed by Bird, Jones and De Moor [1]. The low-level
target environment of our language can not support lazy
evaluation directly (although, in the code, the programmer
can use lazy evaluation for any construction); we therefore
must allow some well-contained amount of side effects.

We make extensive use of the knowledge that was gath-
ered during the GHC development. Discussed compilation
and optimization methods are usually based on the meth-
ods used to compile Haskell, as described for example in
GHC Internals [13].

1.2 Approach

As a main goal we construct a simple language to demon-
strate that there is no technical obstacle that would make
system-level programming in a purely functional language
impossible. To solve the aforementioned problems with
run-time dependency on automatic memory management,
we make following design choices:

• Recursive types are replaced by pointed types. We
discuss the reasons and effects of this removal in sec-
tion 2.3. As in C, management of all memory ex-
cept the stack is done by programmer (directly or in-
directly using library code) through pointed types or
constructions based on them.

• Deep functional recursion is allowed, but it is re-
placed with tail recursion at all tail-call positions.
Such trivial approach is used successfully in many
compilers, including the GHC. See section 2.4 for de-
tails.

• Our main contribution is the method to run lazy eval-
uation without heap allocation of thunks. We store
the thunks in program stack and apply them to func-
tion bodies that were modified at compile time to ex-
pect them as arguments, passed to them by a standard
calling convention. We describe a fast, determinis-
tic inference-based algorithm that converts functional
code to such equivalently-behaving non-lazy form in
section 2.2. Note that our solution works without any
partial evaluation technique that is usually exploited
for this purpose, but maintains the code in a form that
is still able to be optimized and transformed by stan-
dard inlining algorithms.

For demonstration purposes, we only provide a sim-
ple type system (Hindley-Milner with several extensions)

4 M. Kratochvíl



and rely on the LLVM compiler framework to generate
platform-specific code. Results are presented in section 3.

Although there is currently no guarantee that resulting
programming language will be practical, we believe that
low-level programming languages with high levels of ab-
straction are currently very favorable3 and current devel-
opment is producing a lot of small languages inspired by
functional programming that target low-level goals (e.g.
the Nim language), in which our resulting language could
fit easily. Still, its main purpose is to serve as a future test-
bed for optimization and automatic parallelization tech-
niques.

2 Language internals

The language is constructed similarly as other pure func-
tional languages. We tightly follow the standard defini-
tion structure and functional syntax known from Haskell,
with some simplifications (e.g. the syntax for type classes
and related constructions is unnecessary for our purpose).
Upon compilation, source code is type-checked, rewrit-
ten to non-polymorphic non-lazy equivalent, functions are
lifted to form top-level blocks, and partially evaluated to
certain extent for optimization.

The testing compiler finally emits a pack of LLVM in-
termediate code with several functions (e.g. main) ex-
ported to serve as entry points. LLVM framework is then
used to compile the almost-machine LLVM code to an
object file (or executable) of the target platform. Using
LLVM as “assembly” allows us to simplify the compiler
in three ways: We do not have to care about register al-
location, spilling and raw stack operations, program can
be easily linked with any code the LLVM bytecode is able
to link with (notably any library that follows the C call-
ing conventions, including the C standard library), and we
can use the vast library of already-available low-level op-
timizations that can be run on LLVM bytecode.

2.1 Evaluation

In our case, the compilation of function evaluation is prin-
cipally similar to that used in GHC — the function defini-
tions that were optimized and lifted to top-level are com-
piled to form code blocks that obey a machine-level calling
convention, and the machine code is generated for them.
In contrast to GHC, our resulting code can only use a set of
primitives applicable to system-level environment, notably
it can not implicitly access any memory other than on the
program stack. The two cases when GHC uses such allo-
cation are the handling of boxed or recursive types (which
we disallowed) and allocation of thunks for lazy evalua-
tion, which must be worked around.

3This knowledge was gained by looking at the statistical distribu-
tion of programming languages used in software packages installed on
an average Debian Linux system. [19]

Lazy evaluation Instead of thunk allocation in the STG4

data structure, we will use a structure that is of predictable
size and stored completely on stack. The only problem-
atic part of such static thunk is its “meaning”, or, techni-
cally, a description of the function that will evaluate the
thunk. As the concept of function objects has no straight-
forward assembly-level representation, we replace it by a
code address of a previously-prepared compiled function
(or simply a “function pointer” to code generated at com-
pile time) that is able to compute the actual result of the
thunk. Rest of the static thunk consists of a tuple of the
argument values that are expected by the pointed function
on evaluation.

In resulting situation, the compiler must solve following
new tasks:

• It has to ensure that the code is ready for passing the
thunks around as function arguments or return values
instead of simple values.

• It has to prepare thunk-evaluating functions for all oc-
currences of thunks in the code.

For example, consider this simple functional code:

f a = (+) a

g a b = a b

h a = g (f a) a

We will ignore the fact that any reasonable compiler would
choose inlining with a far better result, and generate static
thunks for demonstration. We progress as follows:

1. We will first derive the types of the code. Given ini-
tial basis Γ ∋ (+ : N→ N→ N), usual type infer-
ence would output following type assignments for the
code: f : N → N → N, g : N → N → N → N and
h : N→ N.

Instead, we reflect the need to see which functions
must be called lazily and modify the type system to
allow such expression. Specifically, the typing in-
ferred for f is f : N→ thunk({N},N→ N).

The type expression means that f returns a thunk that
can be used as a function of type N→ N and already
carries one argument of type N that will be passed to
evaluating function. We will show how to derive such
information later.

2. From that, the compiler sees that f must be called
lazily, and creates an eagerly evaluable function that
can be referenced from the thunk:

f_eager t1 t2 = (+) t1 t2

3. It correspondingly translates the “inner” call
(f a) in h to a thunk represented as a tuple(
address_of(f_eager),a

)
.

4Spineless Tagless G-Machine, the structure used to store all implic-
itly allocated data of programs compiled by GHC.

Compiling Functional Code for System-Level Environment 5



4. To translate the outer call, a new version of g, called
g_eager that accepts a tuple in the above form as a
second argument, is generated, and h is rewritten:

g_eager (fptr,a) t3 = fptr a t3

h a = g_eager (f_eager,a) a

Resulting code now does not contain any lazy evalu-
ation.

Overhead of static thunks. Compared to code inlining that
would trivially solve the aforementioned example, static
thunks may potentially present significant runtime over-
head arising from the necessity to transfer function point-
ers and (possibly bulky) thunk data through the stack struc-
tures (such behavior may manifest as appearance of func-
tions with surprisingly many arguments), and from the
possibility that the thunk may get evaluated more than
once. In our view, the first case is a counterweight to a
similar situation present with inlining process — inlining
may produce a program that runs faster, but usually for the
price of code size. Allocating thunks produces possibly
smaller code (because the compiler is not forced to inline
all partial applications), but the required data transfers and
indirections add overhead and reduce execution efficiency.

Compared to thunks allocated on heap, our approach
profits from the simplicity of stack allocation, which is
usually handled by one-instruction modification of a CPU
register. General-purpose heap allocators may require
hundreds of instructions and possibly produce several
CPU cache misses.

Strictness. Strict method of evaluation is a common opti-
mization in compilers of lazy functional languages, as it is
usually cheaper to actually evaluate the result than to allo-
cate the thunk and possibly re-evaluate it on each usage5.
There are practical methods that automatically determine
which results should be evaluated strictly, including the
one from Haskell [12] or OCaml [24].

Our approach is simpler — because the need to pro-
duce specialized code with additional data transfers may
impose significant performance overhead, we consider all
calls strict by default, allowing lazy evaluation only when
needed (i.e. where inlining was unable to remove it) or on
programmer’s choice.

Effect of strict evaluation on correctness. The common ar-
gument against strict evaluation — that it may prevent the
program from halting — holds here. Moreover, our work
with pointed types may cause a program crash if the state-
ments are not evaluated in exact order (e.g. a null-pointer
check followed by a dereference is a common construc-
tion, but may get evaluated in a reverse order if both parts
were arguments of one function). We argue that our envi-
ronment is not affected by those kinds of errors — all po-
tentially harmful side effects (especially the out-of-stack

5With the exception of popular counterexamples, including long lists
that get only first few items instantiated.

x : σ ∈ Γ
Γ ⊢ x : σ

Var

Γ ⊢ e : τ σ ∈ instancesΓ(τ)

Γ ⊢ e : σ
Inst

Γ ⊢ e : τ Γ,x : close(τ) ⊢ y : σ

Γ ⊢ let x = e in y : σ
Let

Γ,x1,2,...,n : σ1,2,...,n ⊢ e : τ

Γ ⊢ (λx1,2,...,n.e) : thunk({},σ1→ σ2→ ·· · → σn→ τ)
Abs

Γ ⊢ e : thunk(Φ,σ → ρ) Γ ⊢ x : σ

Γ ⊢ (e x) : thunk(Φ ‖ σ ,ρ)
App

Γ ⊢ e : thunk(Φ,ρ) ρ ∈R

Γ ⊢ e : ρ
Eval

Figure 1: Type inference rules based on Hindley-Milner
type system. The original abstraction and application rules
are modified to augment the simple function types with
information about all possible thunk-evaluating functions.

memory operations) are contained in a monad environ-
ment, and we provide syntax for marking lazy code that
the programmer can use to avoid possible infinite loops of
eager evaluation.

2.2 Type system

The language is typed statically by a Hindley-Milner-style
type inference as described by Damas and Milner [5].
While we use several non-trivial practical extensions (no-
tably the statically defined overloading in a manner similar
to that of Kaes [14] and support for recursion without ex-
plicit handling of the fixpoint operator) we only describe
the minimal extension of the system that informs the com-
piler about the requirements for removing lazy evaluation.
See Figure 1 for the modified inference rules.

In the figure, the functions instances and close are
used exactly for the purposes of the original system —
close introduces the ∀-polymorphism (to create a poly-
type), and instancesΓ removes it, by describing a set of
new possible monotype instances with fresh type variables
free in the basis Γ.

The information stored in a thunk covers

• the actual type of the function the thunk represents at
current place

• one list of argument types for each thunk-evaluating
function that must be able to get arguments required
for its evaluation from this thunk.

Syntactically, the situation is described as follows. The
structure:

thunk
(
{(τ1,τ2, . . . ,τn),(σ1, . . .), . . .},ρ

)

6 M. Kratochvíl



describes a thunk that returns (possibly functional) type
ρ , and stores enough arguments to be evaluated either by
function of type τ1→ τ2→·· ·→ τn→ ρ , or σ1→·· ·→ ρ ,
etc. Argument lists can be empty, in that case we write
them as . Operation Φ ‖ σ in the figure produces a new
set of argument lists, containing all lists from Φ with σ
appended on the end.

Such set-based construction is necessary to overcome
the possible incompatibility of thunks that can arise from
a code similar to this:

succ :: N -> N

if :: Boolean -> a -> a -> a

f = succ

g x = (+) x

h a b = if a f (g b)

Because underlying code can not prepare the result of h
for evaluation by derived thunk-evaluating functions of ei-
ther f or g, it is necessary for the thunk to be universal. Its
universal type is decided as thunk({,(N)},N→ N). Con-
secutive application of a value of type N to the result of h
produces thunk({(N),(N,N)},N), which can be readily
evaluated — the argument lists exactly correspond to the
argument lists of succ and (+). Note that it is not nec-
essary to mark which argument list is going to be used on
evaluation, as that information is also (implicitly) present
in the code of the associated pointed function.

Unification of the thunk descriptions, required for the
inference system to work, is done structurally in the type
part, and by set union in the argument list. In our im-
plementation, set union is handled by working with the
set contents as with an separate object external to actual
unification process, storing only a variable-like reference.
Technical details are omitted.

There is a chance for non-determinism introduced in
rules Abs and Eval, as it is not clear for the compiler
whether e.g. the thunk should be evaluated on spot
or passed down unmodified; or whether successive λ -
abstractions should be converted to a single thunk or mul-
tiple smaller thunks that would eventually get evaluated
successively. For our purpose, we use early evaluation of
every thunk in the Eval case by completely disallowing
already-evaluable thunks, and the all-at-once thunk con-
struction in the Abs case. Such approach satisfies our re-
quirements on the compiler; other alternatives were not
considered as they bring “additional laziness” of the eval-
uation and measurement of their effect is not in the scope
of this paper.

Thunk storage. Given a deterministic storage method,
the size required for thunk structure can be computed at
compile-time for any thunk type. Thunks can therefore
be passed around as traditional function arguments and re-
turn values without any need for dynamic memory man-
agement.

Exact order in which the arguments are stored in the
thunk is completely arbitrary, as long as the basic opera-

tions (addition of a new argument, set unification and ex-
traction of any complete argument list) stay deterministic.

An easily implementable example is a tuple with just
enough fields of every type so that each argument list can
fit in, stored in tail-aligned order to allow easy addition of
a newly applied argument to list tails.

Function specialization. After inference, function bodies
specialized for thunk processing are created by a very grat-
ifying side effect of the overloading resolution algorithm:
In the same way in which e.g. an arithmetic function is
specialized to support both integer and floating-point ar-
guments, it can also be specialized to support thunks val-
ues. The difference in the code is then created on the place
of the “invisible” application operator, instead of the more
traditional place of an arithmetical operator.

2.3 Recursive types

Recursive types, such as auto-allocated lists and trees,
form a basic building block of many current functional
languages. Their removal in our language is justified by
the addition of pointed (“reference”) types that, like in
other languages, are able to replicate the functionality to
a practical extent. While other solutions for replacing the
need for automatic deallocation exist (like the linear type
systems), our choice is supported by following considera-
tions:

• Almost all primitives used by a system-programming
language require some computation with memory ad-
dresses (e.g. the system calls).

• Usage of first-class references is a fairly standard
method to define complicated data structures.6

• Inclusion of pointers does not prohibit the possibility
of future addition of automatic memory management
by the programmer, just as with garbage collectors
for C/C++ [3].

• All memory operations can be contained in a monad
to produce a pure language. This can be further ex-
ploited to provide some automatic safety of memory
operations, but forces the programmer to use compli-
cated syntax for trivially-looking tasks.

As we are not aware of any officially recognized
syntax that would allow to directly use pointers in
a purely functional language, we reuse the sizeOf,
peek and poke primitives from Haskell FFI library
[4], that shares a similar set of goals. Allocation and
deallocation functions are linked from standard C li-
brary, having type signatures alloc :: IO (Ptr a) and
free :: Ptr a -> IO ().7

6Moreover, naive data structure implementations in pure languages
suffer from a fatal inefficiency resulting from the need to constantly re-
allocate immutable data. In those cases, non-trivial constructions such as
the zipper [11] are required to produce effective code.

7alloc can decide about allocation size from previous type infer-
ence.

Compiling Functional Code for System-Level Environment 7



2.4 Recursion

The common model for transforming functional recursion
to loops using tail calls fits our scheme with one excep-
tion — unbounded, non-tail recursion along a data struc-
ture will cause stack overflow much earlier than in a com-
mon functional language, where the “stack” structure is
allocated dynamically on heap and the actual system stack
holds only rarely-expanding structures. In case of Haskell,
infinite non-tail recursion will cause a regular memory de-
pletion error, stack overflows can happen only on evalua-
tion of deeply-nested thunk values.8

The risk of unwanted stack overflows can be mitigated
syntactically: Whenever the compiler would emit code
that calls some function recursively using a non-tail call,
i.e. when there is a loop in call graph that contains at least
one non-tail call edge, it may abort the compilation and
require the programmer to syntactically acknowledge the
acceptance of the risk (or existence of some functionality
that alleviates it) with a keyword at call site.

3 Implementation and results

Our demonstrational compiler is implemented as an ex-
pansion of the tlc compiler written in C++ [17]. We
measure its performance in two ways: First, to measure
the general performance of our approach, we compare the
speed of simple implementations of two algorithms that
solve relatively common problems with other compilers.
Next, performance overhead of a synthetic case of static
thunk usage is tested on a small program that runs an
equivalent of standard Haskell foldl function on a list
structure.

The exact test problems for first comparison are:

• Insertion of 220 pseudo-random elements into a bi-
nary search tree, and

• 228 rounds of TEA cipher [23].

We have created simple implementations of both test al-
gorithms in C, Haskell and in our testing language, and
compared the execution speed of the code produced by
each compiler. The measurements are shown in the fig-
ure 2. Results show almost identical running times for C
and our language, and some overhead for the code pro-
duced by Haskell compiler. The tiny speedup over C++ in
one case was determined to be a product of complete in-
lining of the functional code; it was no longer measurable
after forcibly inlining the C++ code by hand to a form with
similar structure as the assembly produced by tlc

Next, thunk overhead was measured on the foldl func-
tion used to sum elements in a prepared linked-list struc-
ture with pseudo-random numbers. The function was run

8The nice example given on Haskell Wiki [9] exploits the properties
of lazy implementation of scanl: Code print $ last $ scanl (+)

[0..1000000] is killed in older GHC implementations as the stack gets
filled by the back-references to unevaluated list elements.

0 0.5 1 1.5

B
in

T
re

e
T

E
A

0.56

0.61

0.58

0.56

1.48

1.38

tlc C Haskell

Figure 2: Performance results for the test programs, lower
is better. Values are average run time in seconds over 100
runs.

repeatedly on a list that fitted in the CPU L3 cache. Fully
inlined, specialized foldl was able to process one list ele-
ment on average in around 4.152ns, foldl that was passed
a thunk that contained the adding function took 4.548ns.
Several (less than 10) extra 8-byte arguments passed with
the thunk increased the processing time of one element by
around 0.1ns each.

We consider the overhead of indirection less than 10%
in a pathological stress-test a good result, and do not ex-
pect real applications to suffer serious performance prob-
lems. Overhead of passing reasonably-sized thunk con-
tents around seems similarly inconsequential.

All tests were measured on Intel R©CoreTMi5-4200M
CPU at 2.50GHz, used C compiler was standard Debian
GCC of version 5.3.1-19, Haskell compiler was GHC ver-
sion 7.10.3.

3.1 Drawbacks and unsolved problems

The main drawbacks of the new language originate in the
new combination of system-level problems with purely
functional syntax. Suitable solutions for some problems
listed below are not yet established, and are slightly more
interesting as a question of language design than of actual
compiler functionality. We present the most interesting
problems as open questions:

Destructors. Finding a good spot for automatic release
of resources held by local variables is not very straightfor-
ward in a functional language, as the concept of imperative
code blocks that correspond to variable validity in C-like
languages is not extensible to the monad environment.

A related approach that merely prevents the program-
mer from forgetting to deallocate a structure (thus creating
a memory leak) is the bracketing pattern, known for exam-
ple from Python as the with construction, or as bracket
from Haskell Control.Exception library. For our pur-
pose, bracketing is composable with monads [8] to form an
illusion of variable-holding program-blocks that resemble
well-accepted syntax from procedural programming.

Similar problems arise with temporary data structures
required for sub-results of certain operations: For instance,

8 M. Kratochvíl



the multiplication of 3 matrix objects (a*b*c) usually im-
plicitly allocates space for sub-result (a*b). In a func-
tional environment, * has to be replaced by some monadic
construction to allow access to impure primitives (e.g.
heap memory operations) required to allocate the space for
sub-results.

Pointers to stack. A common method to allocate and deal-
locate a small structure needed for communication with a
system- or a library-call is to allocate it dynamically on
the stack and only pass a pointer; a great example of such
structure is struct timeval. In a functional language,
careless usage of such pointer may lead to a program crash
— because the stack management does not necessarily
correspond to variable scope as in C-like languages, no
dependency that would hold the structure in place until is
implicitly materialized and the pointer may easily become
dangling.

List processing. Easy list traversal and recursive struc-
ture comprehension is one of the main features of the
functional programming languages. Similar functional-
ity may also exist in a low-level language that forbids
the (required) recursive types: Pattern matching on list
structures, as known from Haskell, can be also applied
to pointers. Common functional allocation of list struc-
tures (e.g. the well-known function pattern that returns list
tail with a new prepended head) can be either replaced by
allocation-free generators similar to Data.Traversable,
or redesigned to work on STL-like list structures that are
implicitly allocated by well-hidden language construction.

4 Conclusion

We have presented a new method to compile a pure func-
tional language to low-level code suitable for system-
programming. Main improvement, described in section
2.2, is the inference algorithm that allows to transform
lazily-evaluated functional code to a form that does not
require automatic memory management for run-time allo-
cation of thunks. Resulting compiler is comparably sim-
ple, fast, and produces code that does not require any run-
time support, shows no significant performance drawbacks
when compared to code generated by current C compilers,
and allows basic usage of high-level constructions known
from current functional languages.

While the language is not yet very pleasant to work
with, mainly because of the drawbacks that are mentioned
in section 3.1 and lack of well-developed standard library,
the code of the test programs is concise, shows no unnec-
essary complexity, are is readily comprehensible by any
functional-aware programmer. Moreover, as described in
section 2, the language allows direct linking with many ex-
isting libraries through standardized calling conventions,
which may be easily exploited for further applications.

4.1 Future research

Apart from the demonstration of the original goal, the new
language opens possibilities to apply high-level optimiza-
tion methods to programs that intend to run on bare hard-
ware, possibly yielding better results than the optimizers
of Haskell that are encased in a pre-defined scheme of
memory management, or the optimizers of C++ which are
constrained by aliasing problems arising from impurity of
the language.

An example of approaches that aggressively modify and
restructure the subroutine structure of the program is the
work of Danvy and Schultz [6] that shows beneficial im-
pact of possibly non-deterministic combination of argu-
ment dropping, lifting and inlining. Similarly, purity of
the code allows for a more efficient elimination of com-
mon sub-expressions and repeated code. Practical impact
of both techniques is yet to be measured.

Newly added program control possibilities, mainly the
memory-related primitives described in section 2.3, create
many new chances for programmer errors. While current
type checkers can discover many errors on compilation,
more complicated type systems or verification approaches
could be able to check e.g. actual memory safety or related
constraint satisfaction. We hope to implement and test the
ideas from the Sage language [16] that allows automatic
addition of runtime checks for constraints that the com-
piler was not able to satisfy by static checking; or some
of the work of Roorda [21], which allows to use a quite
powerful concept of pure type systems in a practical envi-
ronment.

References

[1] Richard Bird, Geraint Jones, and Oege De Moor. More
haste, less speed: lazy versus eager evaluation. Journal of
Functional Programming, 7(05):541–547, 1997.

[2] Guy E Blelloch and Robert Harper. Cache efficient func-
tional algorithms. Communications of the ACM, 58(7):101–
108, 2015.

[3] Hans Boehm, Alan Demers, and Mark Weiser. A garbage
collector for C and C++, 2002.

[4] Manuel MT Chakravarty, Sigbjorn Finne, F Henderson,
Marcin Kowalczyk, Daan Leijen, Simon Marlow, Erik Mei-
jer, Sven Panne, S Peyton Jones, Alastair Reid, et al. The
Haskell 98 foreign function interface 1.0, 2002. Available
onlin e: http://www. cse. unsw. edu. au/ chak/haskell/ffi.

[5] Luis Damas and Robin Milner. Principal type-schemes
for functional programs. In Proceedings of the 9th ACM
SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 207–212. ACM, 1982.

[6] Olivier Danvy and Ulrik P Schultz. Lambda-dropping:
transforming recursive equations into programs with block
structure, volume 32. ACM, 1997.

[7] Damien Doligez and Xavier Leroy. A concurrent, genera-
tional garbage collector for a multithreaded implementation
of ML. In Proceedings of the 20th ACM SIGPLAN-SIGACT

Compiling Functional Code for System-Level Environment 9



symposium on Principles of programming languages, pages
113–123. ACM, 1993.

[8] Cale Gibbard. Bracket pattern. https://wiki.haskell.
org/Bracket_pattern, 2008. Accessed: 2016-05-10.

[9] Stack Overflow - Haskell Wiki. https://wiki.

haskell.org/Stack_overflow. Accessed: 2015-12-21.

[10] The High Assurance Systems Programming Project HASP.
The Habit Programming Language: The Revised Prelimi-
nary Report. Department of Computer Science, Portland
State University Portland, Oregon 97207, USA, November
2010.

[11] Gérard Huet. The zipper. Journal of functional program-
ming, 7(05):549–554, 1997.

[12] Kristian Damm Jensen, Peter Hjæresen, and Mads
Rosendahl. Efficient strictness analysis of Haskell. In Static
Analysis, pages 346–362. Springer, 1994.

[13] SL Peyton Jones, Cordy Hall, Kevin Hammond, Will Par-
tain, and Philip Wadler. The Glasgow Haskell compiler:
a technical overview. In Proc. UK Joint Framework for
Information Technology (JFIT) Technical Conference, vol-
ume 93, 1993.

[14] Stefan Kaes. Parametric overloading in polymorphic
programming languages. In ESOP’88, pages 131–144.
Springer, 1988.

[15] Richard A Kelsey. Pre-Scheme: A Scheme dialect for sys-
tems programming, 1997.

[16] Kenneth Knowles, Aaron Tomb, Jessica Gronski,
Stephen N Freund, and Cormac Flanagan. SAGE:
Unified hybrid checking for first-class types, general
refinement types, and dynamic (extended report), 2006.

[17] Miroslav Kratochvíl. Low-level functional programming
language. Master’s thesis, Charles University in Prague,
2015.

[18] Xavier Leroy. Unboxed objects and polymorphic typing. In
Proceedings of the 19th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pages 177–
188. ACM, 1992.

[19] Avery Pennarun, Bill Allombert, and Petter Reinholdtsen.
Debian popularity contest, 2012.

[20] Simon Peyton Jones and Simon Marlow. Secrets of the
glasgow haskell compiler inliner. Journal of Functional
Programming, 12(4-5):393–434, 2002.

[21] J-W Roorda and JT Jeuring. Pure type systems for func-
tional programming. 2007.

[22] Michel Steuwer, Christian Fensch, Sam Lindley, and
Christophe Dubach. Generating performance portable code
using rewrite rules. 2015.

[23] David J Wheeler and Roger M Needham. TEA, a tiny en-
cryption algorithm. In Fast Software Encryption, pages
363–366. Springer, 1994.

[24] Hirofumi Yokouchi. Strictness analysis algorithms based
on an inequality system for lazy types. In Functional and
Logic Programming, pages 255–271. Springer, 2008.

10 M. Kratochvíl


