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ABSTRACT 
Citing proverbs and (famous) statements of other people can 
provide support, shed new perspective, and/or add humor to one’s 
arguments in writings or dialogs. Recommending quote for dialog 
or writing can be done by considering the various features of the 
current text called context. We present five new approaches to 
quote recommendation: 1) methods to adjust the matching 
granularity for better context matching, 2) random forest based 
approach that utilizes word discrimination, 3) convolutional 
neural network based approach that captures important local 
semantic features, 4) recurrent neural network based approach that 
reflects the ordering of sentences and words in the context, and 5) 
rank aggregation of these algorithms for maximum performance. 
We adopt as baseline state-of-the-arts in citation recommendation 
and quote recommendation. Experiments show that our rank 
aggregation method outperforms the best baseline by up to 46.7%. 
As candidate quotes, we use famous proverbs and famous 
statement of other person in dialogs and writings. The quotes and 
their contexts were extracted from Twitter, Project Gutenberg, and 
Web blog corpus. 
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1. INTRODUCTION 
Citing proverbs and (famous) statements of other people is an 

important part in conversation and writing. Such quotes or 
quotations can provide support, shed new perspective, and/or add 
humor to one’s arguments. However, it is not easy for a person to 
find from a large number of quotes an appropriate one for a given 
context since the words in quote are usually metaphorical.  

Quote recommendation in writing has been introduced in Tan, 
et al. [7]. Quote recommendation is a task of recommending a 
ranked list of quotes which are relevant to the current body of text 
which we call context. We separate context into pre-context and 
post-context, which refer to texts that appear before and after a 
quote within certain fixed length respectively. For dialogs, unlike 
for writings, we only use pre-contexts because post-contexts are 
usually unavailable for on-the-fly recommendation of quotes 
during a conversation in real world applications. We define query 
as a context for which the user desires a list of recommended 
quotes. Figure 1 shows an example of quote usage in our Twitter 
dataset. In this example, the block of text that appears before the 
quote ‘Strike while the iron is hot’ is the pre-context.  

 

On investigating our collected datasets, we found that various 
features of context, such as keywords, topic, n-grams, latent 
semantics, etc., can be exploited in the recommendation. For 
example, word matching-based algorithm such as ranking with 
cosine similarity between query and context of quote was able to 
find the correct quote in Figure 1, since many contexts of the 
same quote in training dataset mention the keywords such as 
casino and luck but the others do not. Also, some of the quotes are 
closely related to specific situations, topic or semantics behind 
query not to only keywords.  

In this paper, we present five new approaches for quote 
recommendation based on observations in our datasets: 1) 
methods to adjust matching granularity for better context 
matching, 2) Random Forest (RF) based approach that utilizes 
word discrimination, 3) convolutional neural network (CNN) 
based approach that captures important local semantic features, 4) 
recurrent neural network (RNN) based approach that reflects the 
ordering of sentences and words in the context, and 5) rank 
aggregation of these algorithms for maximum performance. As 
baseline, we adopt previous works on citation recommendation [1, 
3] and quote recommendation [7]. Experiments show that the 
proposed approaches significantly outperform baseline methods in 
real world datasets. 

2. RELATED WORKS 
Quote recommendation can be viewed as task of searching or 

recommending short texts which are appropriate to given current 
writing or dialog context. Most related works are citation 
recommendation for academic articles [1, 3], which recommends 
relevant reference articles for academic writing. For citation 
recommendation, rich information on paper such as title, abstract, 
full text and venue can be exploited. In contrast, in quote 
recommendation such rich information is not available. This 
makes quote recommendation more challenging. Tan, et al. [7] 
present a method for recommending quote for the first time. They 
apply learning-to-rank approach with several features which is 
quote-context, context-context (or context-query), and quote 
feature. In their experiments, they show that the algorithm heavily 
depends on context-context feature. However, we argue that 
enough exploration on the context-context features is not 
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Figure 1 An example of quote usage in Twitter thread 



conducted. For this, we focus on how to mine the semantics on 
contexts of quote for recommending quote. 

3. APPROCHES 
In this section, we describe four approaches and our rank 

aggregation method which combines the four approaches for 
quote recommendation. 

3.1 Matching Granularity Adjustment 
In this section we discuss methods to deal with the contexts of 

quotes when measuring relevance between query and a set of 
contexts of quotes, which we call matching granularity adjustment. 
As usage of words or words themselves in the quote are different 
from that in context, the state-of-the-arts in quote/citation 
recommendation [1, 3, 7] measures the relevance between query 
and contexts of a quote. More specifically, all of them attempt to 
examine individual context of a quote to the query. A drawback of 
this approach is that it suffers from sparsity problem that words in 
query do not match the individual context of the correct quote. In 
order to alleviate this sparsity problem, we propose methods to 
adjust the matching unit of contexts to the given query. We 
believe that more semantics can be exploited if the contexts of a 
quote are treated collectively. 

Firstly, we propose a method called context clustering, which 
group the context by context cluster which represent (latent) topic. 
In the collected dataset, we observed that there exist a number of 
quotes that can be used in different topic. For example, the quote 
‘All work and no play makes jack a dull boy’ can be used in very 
different situations such as ‘overworking in workplace’ or 
‘educating children’. Thus when dealing with query about 
specific topic, we need to consider the contexts related to it among 
different topics of quote. In the context clustering, we first clusters 
contexts of each quote. And we exploit the context clusters to 
measure the relevance of a quote. For context clustering, we adopt 
affinity propagation clustering algorithm, which is known to 
perform better than others in short text clustering [6]. Based on 
context clustering, we propose a scoring function given query ݍ: 

,ݍୡ୫ୟ୶ሺ݉݅ݏ ሻݐ ൌ max	ሺ݉݅ݏሺݍ, ௧ܥܥ	
ሺሻ)) 

where ܥܥ௧
ሺሻ is concatenated text in ݆th context cluster of quote t 

and ݉݅ݏ  is cosine similarity with their TF-IDF vector 
representation. 

In order to solve the sparsity problem, we present another 
method called context lumping to adjust the matching granularity. 
In context lumping, we simply concatenate all the context of each 
quote and make it a matching unit to the query. Then the lumped 
context of quote is compared to query with cosine similarity with 
TF-IDF vector representation. In both of context clustering and 
lumping, quotes are sorted by the proposed similarities in 
descending order respectively. 

3.2 Random Forest 
In the collected dataset, we observe that some simple rules such 

as checking whether the given context contains certain words are 
reliable cursors to its correct label. For example, in Twitter dataset, 
given that a context contains the keywords invite, join, come over 
or any of the morphemes, there is 40.2% probability that the 
context is labeled with the proverb ‘the more the merrier’. From 
this observation, we explore the possibility of adopting tree based 
classification algorithm into the quote recommendation task.  

Among various decision tree algorithms, RF [5] is an ensemble 
learning method that had notable success in various fields due to 

its resilience to over-fitting and tendency to exhibit low variance 
and bias. RF constructs ݊௧ decision trees by training each tree 
with samples of random subset of features. The method is able to 
populate each decision tree with the most discriminating quotes at 
each state and aggregate the results by voting. In the case of our 
dataset, we view contexts as ‘documents’ and use bag-of-words 
TF-IDF as features for each context. Then, we train the Random 
Forest classifier using the vectors of TF-IDFs and their correct 
labels i.e. quote. To the best of our knowledge, this is the first 
time RF classification has been used for quote recommendation. 

3.3 Convolutional Neural Network 
Word matching-based methods such as context-aware relevance 

model [1] and citation translation model [3] have difficulty in 
exploiting n-gram features because of sparsity problem, so they 
only use unigram-based features. But n-gram features are 
important because there are many phrases which are meaningful 
only when the terms in phrase stay together. For example, a 
phrasal verb give up loses the meaning when it is tokenized into 
give and up. Unlike matching-based methods, CNN based 
approach can exploit important n-gram features in the context by 
learning the parameters of fixed size filters for each n-grams. 
Generally, CNN is composed of several pairs of convolution layer 
and max-pooling layer which capture the local patterns from the 
training example and down-sample extracted features in order to 
prevent overfitting. When CNN is applied to natural language 
sentences, it captures the significant local semantics, i.e., n-gram.  

We adopted a single-layer CNN, mainly inspired by [4] which 
reports that simple CNN model shows similar performance to 
complex one with several convolutions-pooling layers in order to 
capture distinguished n-gram features in contexts of quotes. Our 
CNN model takes a context in the form of a list of word 
embedding vectors of the words in the context. Then the input 
matrix, a list of context vectors, are fed to the layer which is 
composed of single convolution layer and max-pooling layer. 
After that the output vector is fed to fully connected softmax layer 
in order to compute the probability of candidate quotes and rank 
the quotes. We use filter size of 3 and 500 hidden nodes in the 
hidden layer. We also exploit dropout method to prevent 
overfitting. 

3.4 Recurrent Neural Network 
We use RNN to tackle our quote recommendation problem in 

perspective of language modeling, which means that we treat each 
quote as a special token or word and compute the probability of it 
given context. While none of above approaches uses order 
information of words in the context, RNN based approach can 
model such sequence of words recursively. We use long short-
term memory unit (LSTM) [2] which is a recurrent neural network 
consists of three gates (forget, input, output) those control the 
networks to learn long-term dependencies without loss of 
information. The input vector of each time step passes through the 
three gates and updates latent vectors which LSTM is retaining. In 
our model we recurrently feed LSTM with a sequence of words in 
the context in the form of list of word embedding vectors. We use 
pre-trained word embedding for mapping each word to word 
vector. The output vector of LSTM layer is passed to fully 
connected layer and softmax layer in order to compute the 
probability of target quotes to be recommended. We also use 500 
dimension hidden vector in LSTM and also use dropout method. 

3.5 Rank Aggregation 
We observed that previously proposed algorithms show 

different recommendation results according to queries (we will 



discuss this in the experiment section). This suggests that instead 
of relying on the single best ranking algorithm, it is better to 
aggregate rank values of all of the single algorithms to produce 
accurate and robust ranking, called rank aggregation (RA). 

We propose two methods which can aggregate the individual 
ranking results of previously proposed algorithms. Traditional 
rank aggregation method Borda [8] assigns a score to candidate 
quote inversely proportional to its position in a ranked list of 
individual algorithm, and the scores of each quotes are added up 
to the final score. We observed that Borda cannot handle the case 
where one or two inaccurate rank of individual algorithms lowers 
accuracy of final aggregated rank. In order to cope with this issue, 
we propose a rank aggregation method called Rank Multiplication 
(RM) to multiply the ranks of each quotes submitted by individual 
algorithm. By using this method, we can get the effect that 
maintaining case that all of the individual ranker rank consistently 
high, it can give less weight to result of inaccurate ranking 
algorithm. Thus final score by using RM can be defined as 
follows: 

,ݍோெሺݏ ሻݐ ൌ 	
1

∏ ,ݍሺݎ ሻݐ
||


 

where ݎ୧ሺݍ,  ሻ is position in ranked list of ݅th individual rankingݐ
algorithm given query	ݍ and candidate quote ݐ. And ܣ is a set of 
each algorithm. The quotes are ordered by this score in 
descending order. 

We assume that high ranks of individual ranking algorithms are 
more dependable than lower ranks. From this assumption we 
propose second rank aggregation method called top-k Rank 
multiplication (top-k RM) that multiplies only k rank values of a 
quote from each of k single algorithms for a query. Thus the final 
score of the top-k RM is defined as follows: 

,ݍ_ோெሺ்ݏ ሻݐ ൌ 	
1

∏ ,ݍሺݎ ሻݐ
||
∈்

 

where ܶܭ is a set of k algorithms that yield the k highest rank 
positions given query q and quote t. 

4. EXPERIMENTS 

4.1 Data Construction 

We have collected 439,655 quotes from three sources: 
Wikiquote1, Oxford Concise Dictionary of Proverbs2, and Library 
of Quotes3. For the context data, we searched blocks of texts that 
contain these quotes from three different sets of corpus: 2 million 
tweet threads from Twitter (~2015.11.15), 20GB of electronic 
book from the Project Gutenberg Database 4 , and 190GB of 
ICWSM spinn3r 2009 blog dataset5. In the tweet corpus, in order 
to extract dialogs only, we selected threads where only two users 
are involved. Next, we chose the top 400 quote set from each 
corpus according to the number of contexts, in order to reflect the 
characteristics of the quotes that appeared frequently in different 
corpus. Finally, we generate three datasets: Twitter dataset, 
Gutenberg dataset, and Blog dataset.  

                                                                 
1 https://en.wikiquote.org/ 
2 Oxford University Press, 1998 
3 http://www.libraryofquotes.com/ 
4 http://www.gutenberg.org/ 
5 http://icwsm.cs.umbc.edu/data/icwsm2009/ 

Table 1 number of contexts for each quote in datasets 

Datasets Avg Std dev Max Min 

Twitter 556 971 10764 15 

Gutenberg 89 122  1366 14 

Blog 230 543  5923 24 

 

Table 1 shows the number of context for each quote in each 
datasets, which describes average, maximum, and minimum 
number of context for each quote and standard deviation of them. 
From Table 1, we see that the most frequently appeared quotes 
from each corpus cover large range of quotes of varying 
frequencies, helping us deal with the situation recommending 
quotes by using small number of contexts as well as large number 
of contexts. We divide dataset to the proportion of 8:1:1, as 
training set, validation set, and test set. We create test sets by 
hiding the quotes which the contexts are paired with. 

  

4.2 Evaluation Metric 
We consider a plausible application that recommends only a 

few number of quotes. In such application since the position of 
correct quote is not important, we use Recall@k as our evaluation 
metric. 

Recall@k: Since there is only one correct or hidden quote for 
each query in the original test set, Recall@k is the number of 
cases that the gold quote is recommended in the top-k result 
divided by number of total test cases. We set k as five. 

4.3 Baselines and Parameter Settings 

We compare our approaches with three state-of-the-art 
approaches in quote or citation recommendation domain. 
Learning-to-recommend quote (LRQ) [7] is an algorithm for 
recommending quote for wring. Context-aware relevance model 
(CRM) [1], citation translation model (CTM) [3] are algorithms 
for recommending citation for scientific paper. Also popularity-
based method (Popularity), and cosine similarity-based method 
(Cosine similarity) is adopted as baselines. The methods, 
Popularity and Cosine similarity methods are used in order to 
reveal the different levels of difficulties of the datasets. These 
methods are described in detail below. 

LRQ exploits an existing learning-to-rank framework for quote 
recommendation with quote-based features, quote-query similarity 
features, and context-query similarity features.  

CRM recommends quotes according to average of the squared 
cosine similarities between contexts of each quote and the query. 

CTM recommends quotes according the probability that the query 
context would be translated into the quote. 

Popularity ranks the quotes according to their frequency in 
contexts of training set.  

Cosine similarity ranks the quote by examining individual 
context of the quote with the given query using bag-of-words 
representation. 
 

We implement these methods and set the parameters to 
optimum as specified in the respective papers of the methods. 
Specifically, we truncate each half-context (pre-context or post-
context) of length longer than 150 characters for LRQ, 50 words 
for CRM and one sentence for CTM respectively as the respective 
authors suggested in the papers. For our approaches, we set length 
of half-context to its optimal value which shows best result in 



validation dataset: 1) 150 characters of pre-context and post-
context with word truncation for context clustering and context 
lumping, 2) 50 words for RF, and 3) 30 words of pre-context for 
CNN and RNN. As stated in the introduction, we used pre-context 
and post-context as query for Gutenberg and Blog dataset and pre-
context as query for Twitter dataset. Hyper parameters of single 
algorithms are set by using validation set. For rank aggregation, 
we used the proposed five algorithms (context clustering, context 
lumping, RF, CNN and RNN) and, top-k RM showed best results 
when k=3. 

4.4 Results and Discussions 
Results of experiments are listed in Table 2. Recall@5 and the 

improvement ratio of each algorithm over the best baseline in 
each dataset are denoted. The individual algorithms (context 
lumping and CNN), even without rank aggregation, outperform 
baselines in all of the datasets. Surprisingly, the simple method 
context lumping is the best performer in Gutenberg and Blog 
dataset, which beats LRQ up to 35%. Context clustering 
outperforms CRM and Cosine similarity which does not treat the 
context of quote collectively. These better results of context 
lumping and context clustering show the effectiveness of 
adjusting context matching granularity. One can observe that 
performance of the baseline Cosine similarity in Twitter dataset is 
worse than ones in Gutenberg and Blog dataset. This means that 
sparsity problem is more serious in Twitter where the tweet 
contains more infrequent words than others. In Twitter dataset, 
deep learning algorithms (CNN and RNN) outperform CTM by 
up to 43%.  From this result, we can see that deep learning 
algorithms are able to mitigate such serious sparsity problem 
because it is not based on word matching. Results of RF show that 
it is competitive to CTM algorithm. In fact, in our preliminary 
experiments on top 100 Twitter dataset, RF outperforms CNN. 
However, in large dataset, generalization of the algorithm is not 
made as expected; an area for future investigation. 

Although some of our single algorithm outperform others in 
specific datasets, there is no single algorithm that outperforms all 
the others. Also even in a dataset, there exists a portion of queries 
where each of single recommendation algorithms is exclusively 
correct. See Table 3. These justify our motivation of adopting 
rank aggregation, and as expected, improvement attained through 
rank aggregations (RM RA and top-k RM RA) are better than the 
best baseline algorithm on average 44.0% and 46.7% respectively.  

Table 2 Results of Recall@5 of different methods. 

   Context source 
Approaches 

Twitter Gutenberg Blog 

Context clustering 0.190  (-30%) 0.299  (- 1 %) 0.494  (   0 %) 

Context lumping 0.286* (+ 5%) 0.409* (+35%) 0.521* (+ 5 %) 

RF 0.244  (- 11%) 0.246  (-19 %) 0.470  (-  5 %) 

CNN 0.390* (+43%) 0.326* (+ 8 %) 0.506  (+ 2 %) 

RNN 0.389* (+42%) 0.294  (- 3 %) 0.473  (-  4 %) 

RM RA 0.424* (+55%) 0.445* (+47%) 0.640* (+30 %) 

top-k RM RA (k=3) 0.436* (+60%) 0.451* (+49%) 0.648* (+31 %) 

LRQ 0.196 0.302 0.494 

CRM 0.119 0.237 0.382 

CTM 0.273 0.257 0.441 

Popularity 0.156 0.111 0.223 

Cosine similarity 0.196 0.248 0.469 
(* indicates that each of our algorithms outperform the best baseline algorithm 
with statistically significant increase at p < 0.01 in two-tailed t-tests) 

Table 3 number of correct cases of single algorithms in 
Twitter dataset 

Approaches # correct case 
(A) 

#case exclusively correct 
(B) (B) / (A) 

Context lumping 6,031(0.286) 1,122 0.186 

RF 5,186(0.244) 493 0.095 

CNN 8,213(0.390) 935 0.114 

RNN 8,191(0.389) 1023 0.125 

 

In conclusion, although some of our single algorithms such as 
context clustering or RF do not outperform the baselines, there are 
cases where each single algorithm is able to exclusively answer 
correctly, which we believe we were able to exploit in our 
proposed rank aggregation method. 

5. CONCLUSIONS 
In this paper, we tackled quote recommendation by exploring 

four single recommendation approaches considering different 
aspects of the context. And we presented new rank aggregation 
methods for maximizing performance. Over our datasets, we 
showed that the proposed algorithm (top-k RM RA) outperforms 
the best baseline by up to 46.7%. In the future, we plan to extend 
our research to recommend common phrase which has wider 
applications in the real world.  
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