
The QBF Solver AIGSolve

Christoph Scholl and Florian Pigorsch

Albert-Ludwigs-Universität Freiburg im Breisgau, Germany
{scholl,pigorsch}@informatik.uni-freiburg.de

Abstract. AIGSolve1 is a rewriting-based solver based on And-Inverter
Graphs (AIGs). In this approach, quantifiers are eliminated, starting
with the inner-most quantifiers. Intermediate results are represented
symbolically using AIGs [22, 23]. The basic method consists of cofactor-
based quantifier elimination which is combined with a multitude of
optimization approaches including a SAT- and BDD-based compaction of
the representations, methods for preprocessing QBF-formulas based on
incremental SAT, heuristics that exchange quantifiers of the same level,
heuristics that use BDD-based quantifier elimination as an alternative, as
well as structure extraction and structure exploitation for the processed
instances.

1 Introduction

Quantified Boolean Formulas (QBF) are a powerful generalization of proposi-
tional formulas (or SAT formulas). In contrast to SAT formulas, QBF allows
existentially as well as universally quantified variables, which potentially allows
for exponentially more compact representations of many problems compared to
SAT formulas, but comes at the price of raising the decision complexity from
NP-complete to PSPACE-complete.

Many real world problems from various application domains, such as formal
verification and artificial intelligence, can be compactly formulated as QBF, in-
cluding the verification of incomplete circuit designs [29, 12], conditional planning
[26], and nonmonotonic reasoning problems [9].

The importance of the problem has given rise to the development of a number
of powerful QBF-solvers which are able to tackle QBF problems originating from
practical applications. Such solvers include search-based approaches [11, 30, 17,
18] which apply an extension of the DPLL algorithm known from SAT [7], as
well as solvers based on eliminating variables by different methods. Concerning
variable elimination we can differentiate between a eager elimination by methods
like symbolic skolemization [2], resolution and expansion [1, 3], and symbolic
quantifier elimination using AIGs [22, 23] on the one hand and lazy, CEGAR-
based expansion as in [14, 13]. AIGSolve is based on eager variable elimination
using AIGs (And-Inverter Graphs) as the internal representation format.

The common format for QBF instances is the prenex conjunctive normal
form, which consists of a linear quantifier prefix and a propositional part in CNF

1 AIGSolve is available for download at [21].



format. General QBFs from the application domain are typically transformed to
the prenex format in a two staged process: first, quantifiers are pushed outwards
the formula, leaving an arbitrarily shaped propositional part. In a second step,
this propositional part is encoded as a CNF formula. Especially for our approach
it is beneficial to extract structural information from the CNF part of a prenex
QBF instance before the solving process. Irrespective of the question whether the
CNF part originally resulted from a structural circuit description or not – we
try to detect and extract clauses from the CNF part of a prenex QBF instance
which establish functional definitions of variables. Then we use these definitions
to generate a non-CNF QBF formula, and directly represent it by a symbolic
data-structure based on And-Inverter Graphs (AIGs) [16]. Finally, the actual
QBF solving process is performed by eliminating quantifiers using specialized
AIG operations and/or BDD operations.

2 And-Inverter Graphs

In our approach we are using And-Inverter Graphs (AIGs) [16], or more precisely
Functionally Reduced AIGs (FRAIGs) [20, 24], as a compact symbolic represen-
tation for propositional formulas. AIGs are boolean circuits composed solely of
two-input AND gates and inverters. In contrast to BDDs [4], they are not a
canonical representation for boolean functions – for each boolean function there
exist many structurally different AIGs. Actually an AIG may contain functionally
redundant nodes, i. e., nodes which are roots of structurally different subgraphs
representing the same functions. A restriction of general AIGs are FRAIGs, which
are ‘semi-canonical’ by prohibiting nodes which represent the same (or inverse)
boolean functions. This property is called ‘functional reduction property’. To
achieve this property several techniques like structural hashing, simulation and
SAT solving are used during FRAIG construction.

3 Preprocessing

As many other solvers AIGSolve starts with a preprocessing phase. In the main
loop of the preprocessing phase, unit propagation [6], subsumption checking [8],
for-all reduction [15, 28], and equivalence reduction [27] are applied until closure.

Then, a SAT-based constant detection [23] follows which is embedded into the
main preprocessing loop as depicted in Alg. 1. For a QBF ψ = Q1x1 . . .Qnxn.
φ(x1, . . . , xn) and a literal `i in the QBF, constant detection checks whether
φ(x1, . . . , xn) → `i. If this is the case, then ψ′ = Q1x1 . . .Qnxn.φ(x1, . . . , xn)∧ `i
is equivalent to ψ. Constant detection for all possible literals can be reduced
to a series of incremental SAT checks and can be improved by using satisfying
assignments for satisfied instances during this process [23]. The time the solver is
allowed to spend in constant detection is strictly limited. If the time for constant
detection is exceeded, constant detection is aborted and the set of constants
discovered until this point is returned.



Algorithm 1 Preprocessor for QBF Q.
repeat

Q′ := Q;
repeat

Q′′ := Q;
UnitPropagation(Q); Subsumption(Q);
ForAllReduction(Q); EquivalenceReduction(Q);

until Q′′ = Q;
C := ConstantDetection(Q);
Q := Q ∧

∧
c∈C c;

until Q′ = Q;
if Only few universal quantifiers in Q then

Q := ExpandUniversals(Q);
return SatSolve(Q);

else
TrivialSatisfiability(Q);

end if

return Q;

Moreover, AIGSolve’s pre-
processing routine performs a
complete expansion of the uni-
versal variables [1, 3] if only
a few universal variables are
remaining after preprocessing,
effectively turning the QBF
problem into a pure SAT in-
stance, which is then handed
over to a SAT-solver. Since ex-
pansion is only applied on in-
stances with few universal vari-
ables, the resulting formulas
are of moderate size and can
often be solved efficiently by SAT-solvers. If the QBF has not been fully expanded,
trivial SAT checks (omitting the quantifier prefix) are finally performed to check
whether the matrix of the formula is unsatisfiable or a tautology [5].

4 AIG-Based Solving with BDD Support

4.1 Structure Extraction and Moving Quantifiers

After preprocessing, AIGSolve scans the remaining QBF formula for clausal gate
definitions as it is done for example in SAT preprocessing [8] or by other QBF
preprocessors and solvers [3, 10] and finally eliminates the defined variables by
substituting them with their definitions. Unlike other approaches, AIGSolve does
not produce a flat CNF, which may blow up during this step, but generates a
compact non-CNF, circuit-like representation, which is later directly transformed
into an And-Inverter Graph (AIG) [16].

Furthermore, the linear quantifier prefix of the prenex QBF formula is dissolved
by pushing the quantifiers into the non-CNF matrix, producing a tree-shaped
QBF formula while minimizing the scope of quantifiers as also performed in
sKizzo [2].

Example 1. As an example, consider the following QBF:

∀a∃b∃c∀d∃e∃f.(a ∨ b) ∧ (a ∨ e) ∧ (c ∨ a) ∧ (c ∨ b)
∧(c ∨ a ∨ b) ∧ (c ∨ d ∨ f) ∧ (e ∨ b ∨ c) ∧ (c ∨ f)

We detect a definition for c: c↔ a ∧ b using the definition clauses (c ∨ a), (c ∨ b),
and (c ∨ a ∨ b). We remove the definition clauses and structurally replace c by
a ∧ b, leading to a representation as depicted in Fig. 1. The connections from c
to a ∧ b denote the association between the variable and its definition.

Then, moving the quantifiers for early quantification results in the (generalized)
quantifier tree with clauses and functional definitions as depicted in Fig. 2. Again,
the variable c is linked to its definition a ∧ b.



∀a∃b∀d∃e∃f.(a ∨ b) ∧ (a ∨ e)
∧(c ∨ d ∨ f) ∧ (e ∨ b ∨ c) ∧ (c ∨ f)

a ∧ b

Fig. 1. After structure extraction.

(a ∨ b)

(c ∨ d ∨ f)
(c ∨ f)

(a ∨ e)
(e ∨ b ∨ c)

∃b

∀d

∃f

∃e

a ∧ b

∀a

∧

Fig. 2. After quantifier tree construction.

4.2 Quantifier Elimination

AIGSolve then transforms the generalized quantifier tree (as in Ex. 1) into an
AIG representation and eliminates all quantifiers in a bottom-up fashion. The
basic operation consists in performing cofactoring on AIG cones (existential
quantification wrt. xi leads to a disjunction of positive and negative cofactors
wrt. xi, universal quantification to a corresponding conjunction), compressing
the individual results of quantifier elimination by BDD-sweeping [24], functional
reduction [20] and DAG-aware rewriting [19] of the AIG structure. Moreover, in
case of several quantifiers in series in a quantifier block, the quantifications can
be exchanged and are performed using the AIG-size based quantifier scheduling
heuristics from [24].

BDD-sweeping may compress the AIG representation of a function, if a BDD
of reasonably small size can be constructed for this function. If such a BDD is
found, a structurally equivalent AIG is built which replaces the original AIG, if
this version is smaller. If it is possible to build a small BDD for some AIG cone,
we allow an extended exploitation of good BDD representations as follows:

Given an AIG f and a variable x which is to be eliminated, we first try to
construct a BDD for the function represented by f . This BDD construction is
resource limited such that the procedure is aborted in case the BDD representation
blows up. If a BDD cannot be computed or the BDD is too large, we perform
normal cofactor based quantifier elimination, followed by AIG-rewriting and
functional reduction steps to compress the resulting AIG. If we were able to
compute a reasonably small BDD for f , we perform BDD-based quantifier
elimination. Here we try not only to quantify x, but also the other variables
from the same (existential or universal) quantifier block as x. The BDD based
quantification is performed with a size limit and it has the advantage that it can
eliminate several variables at once, if successful. If the BDD based method does
not fail, we transform the result back to an AIG representation, again performing
rewriting and functional reduction for compressing the result. If the quantifier
elimination was performed by AIG operations and the AIG did not grow too
much due to the elimination, we stick to AIG-based quantifier elimination for
the next steps and avoid computing BDDs.



5 Experiments

Experimental evaluations of AIGSolve can be found in the original papers [22, 23].
A more extensive and recent evaluation can be found at [25]. Instead of repeating
those results, we demonstrate the interaction between AIG- and BDD-based
quantifier elimination methods by looking into the solver’s behavior on two
benchmarks from QBF Evaluation 2008, see also [23].

Fig. 3. Quantifier Trees

The stmt21 4 354 instance initially
contains 3112 variables distributed
on two quantifier blocks, as well as
25780 clauses. AIGSolve’s preprocessor
slightly reduces the number of variables
by 5 and the number of clauses by 45.
In the remaining QBF formula, AIG-
Solve detects and extracts 2777 func-
tional definitions (2744 AND-gates and
33 XOR-gates), such that only a sin-
gle binary clause is left in the formula
and the innermost quantifier block is
reduced to only 70 existential variables.
The resulting structure of the QBF is
shown on the left hand side of Fig. 3.
Gray and white ellipses denote univer-
sal and existential quantifier blocks, an-
notated with the number of quantifiers.
If such an ellipse has more than one out-
going edge, then it represents also an
AND operation for all outgoing edges
before quantification. Sets of clauses
are presented as white boxes, and the
extracted gate structure is shown as a gray trapezoid.

0

10000

20000

30000

40000

50000

60000

70000

80000
C880.blif_0.10_1.00_0_0_inp_exact

AIG nodes during solving

AIG-based elimination of 
innermost quantifiers

BDD-based elimination of 
outermost quantifiers

Switch to BDD-based
quantifier elimination

Failed BDD computations

0

500

1000

1500

2000

2500
stmt21_4_354

AIG nodes during solving

AIG-based elimination of 
existential quantifiers

BDD-based elimination
of the remaining 67 
universal quantifiers

AIG-based elimination of 
universal quantifiers

Failed BDD computations

Fig. 4. Development of AIG node counts

After transforming the functional definitions (2277 gates) into an AIG rep-
resentation consisting of 2414 nodes, AIGSolve starts eliminating quantifiers in
a bottom-up manner. The development of AIG nodes is shown in Fig. 4 (left



hand side). AIGSolve first tries to compute a BDD for the AIG structure which
fails due to resource limits. Therefore the solver starts to eliminate the innermost
existential quantifiers using AIG-based quantifier elimination. Since the number
of AIG nodes is not increasing, the solver sticks to AIG-based quantification and
does not try to build BDDs for the remaining existential quantifiers. It can be
observed that AIG based quantifier elimination performs well for a large number
of steps. Although the AIG sizes may potentially double with each quantification
of a single variable in the worst case, the sizes remain small due to the compres-
sion techniques used. After performing all existential quantifications, the solver
then continues to eliminate the universal quantifiers, again using the AIG-based
method. Since the number of AIG nodes actually grows during some universal
quantifications, the solver tries to compute BDD representations which again
fails due to resource limits (Crosses in Fig. 4 mark failed BDD computations). At
the point where only 67 universal quantifiers are left, BDD computation finally
succeeds and the remaining quantifiers can be eliminated by BDD operations.

On the C880.blif 0.10 1.00 0 0 inp exact instance, which is hard according
to QBF Evaluation 20082, the solver’s behavior is completely different. Here, the
preprocessor reduces the number of variables from 1022 to 619 and the number of
clauses from 6007 to 4201. Then 533 functional definitions (527 AND-gates and
6 XOR-gates) are detected and extracted from the formula. The resulting QBF
structure after quantifier tree computation is shown in Fig. 3 (right hand side).
Again, the solver starts to eliminate quantifiers bottom-up, first trying to compute
a BDD representation, which fails, therefore AIG-based quantifier elimination is
used. Unfortunately, optimization techniques are not able to compress the AIG
representations such that the number of AIG nodes quickly grows. Due to the
growth, AIGSolve tries to compute BDDs for the intermediate AIGs, which fails
14 times, forcing the solver to continue AIG-based elimination for the innermost
14 quantifiers. Finally, after eliminating 14 quantifiers, the computation of a BDD
succeeds for an AIG containing 71287 nodes. The remaining quantifiers are all
eliminated by BDD operations.

These two examples with completely different characteristics illustrate that a
tight interaction between AIG and BDD based methods is indeed crucial for the
success of the method.

References

1. Ayari, A., Basin, D.A.: QUBOS: Deciding Quantified Boolean Logic Using Proposi-
tional Satisfiability Solvers. In: Proc. of FMCAD (2002)

2. Benedetti, M.: sKizzo: A Suite to Evaluate and Certify QBFs. In: Proc. of CADE
(2005)

3. Biere, A.: Resolve and Expand. In: Proc. of SAT (2004)

4. Bryant, R.: Graph - Based Algorithms for Boolean Function Manipulation. IEEE
Trans. on Comp. 35(8), 677–691 (1986)

2 This means that no solver taking part in the evaluation was able to solve these
instances within the timeout of 600 CPU seconds.



5. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate
quantified Boolean formulae. In: Journal of Automated Reasoning. pp. 262–267
(1998)

6. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal
of the ACM 7(3), 201–215 (1960)

7. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

8. Eén, N., Biere, A.: Effective Preprocessing in SAT Through Variable and Clause
Elimination. In: Proc. of SAT (2005)

9. Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving Advanced Reasoning Tasks
Using Quantified Boolean Formulas. In: Proc. of AAAI/IAAI (2000)

10. Giunchiglia, E., Marin, P., Narizzano, M.: sQueezBF: An Effective Preprocessor for
QBF. In: Proc. of QiCP (2008)

11. Giunchiglia, E., Narizzano, M., Tacchella, A.: QUBE: A System for Deciding
Quantified Boolean Formulas Satisfiability. In: Proc. of IJCAR (2001)

12. Herbstritt, M., Becker, B.: On Combining 01X-Logic and QBF. In: Proc. of EURO-
CAST (2007)

13. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with coun-
terexample guided refinement. In: Proc. of SAT. pp. 114–128 (2012)

14. Janota, M., Silva, J.P.M.: Abstraction-based algorithm for 2qbf. In: Proc. of SAT.
pp. 230–244 (2011)

15. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean
formulas. Inf. Comput. 117(1), 12–18 (1995)

16. Kuehlmann, A., Ganai, M.K., Paruthi, V.: Circuit-based Boolean Reasoning. In:
Proc. of DAC (2001)

17. Letz, R.: Lemma and model caching in decision procedures for quantified boolean
formulas. In: Proc. of TABLEAUX 2002. pp. 160–175 (2002)

18. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. Journal on
Satisfiability, Boolean Modelling and Computation 7(2-3), 71–76 (2010)

19. Mishchenko, A., Chatterjee, S., Brayton, R.: DAG-aware AIG rewriting a fresh
look at combinational logic synthesis. In: Proc. of DAC (2006)

20. Mishchenko, A., Chatterjee, S., Jiang, R., Brayton, R.K.: FRAIGs: A unifying
representation for logic synthesis and verification. Tech. rep., EECS Dept., UC
Berkeley (03 2005)

21. Pigorsch, F., Scholl, C.: AIGSolve, http://abs.informatik.uni-freiburg.de/

src/tools.php
22. Pigorsch, F., Scholl, C.: Exploiting structure in an AIG based QBF solver. In: Proc.

of DATE. pp. 1596–1601 (2009)
23. Pigorsch, F., Scholl, C.: An AIG-based QBF-solver using SAT for preprocessing.

In: Proc. of DAC. pp. 170–175 (2010)
24. Pigorsch, F., Scholl, C., Disch, S.: Advanced Unbounded Model Checking Based on

AIGs, BDD Sweeping, And Quantifier Scheduling. In: Proc. of FMCAD (2006)
25. Pulina, L.: QBF Evaluation 2016, http://www.qbflib.org/index_eval.php
26. Rintanen, J.: Constructing Conditional Plans by a Theorem-Prover. J. Artif. Intell.

Res. (JAIR) 10, 323–352 (1999)
27. Samulowitz, H., Bacchus, F.: Binary Clause Reasoning in QBF. In: Proc. of SAT

(2006)
28. Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Proc. of CP (2006)
29. Scholl, C., Becker, B.: Checking Equivalence for Partial Implementations. In: Proc.

of DAC (2001)
30. Zhang, L., Malik, S.: Towards Symmetric Treatment of Conflicts And Satisfaction

in Quantified Boolean Satisfiability Solver. In: Proc. of CP (2002)


