
On the bisimulation hierarchy of
state-to-function transition systems

Marino Miculan and Marco Peressotti

Dept. of Mathematics, Computer Science and Physics, University of Udine, Italy
marino.miculan@uniud.it marco.peressotti@uniud.it

Abstract Weighted labelled transition systems (WLTSs) are an estab-
lished (meta-)model aiming to provide general results and tools for a wide
range of systems such as non-deterministic, stochastic, and probabilistic
systems. In order to encompass processes combining several quantitative
aspects, extensions of the WLTS framework have been further proposed,
state-to-function transition systems (FuTSs) and uniform labelled transi-
tion systems (ULTraSs) being two prominent examples. In this paper we
show that this hierarchy of meta-models collapses when studied under
the lens of bisimulation-coherent encodings.

1 Introduction

Weighted labelled transition systems (WLTSs) [10] is a meta-model for systems
with quantitative aspects: transitions P a,w−−→ Q are labelled with weights w, taken
from a given monoidal weight structure. Many computational aspects can be
captured just by changing the underlying weight structure: weights can model
probabilities, resource costs, stochastic rates, etc.; as such, WLTSs are a general-
isation of labelled transition systems (LTSs), probabilistic systems (PLTSs) [6],
stochastic systems [9], among others. Definitions and results developed in this
setting instantiate to existing models, thus recovering known results and discov-
ering new ones. In particular, the notion of weighted bisimulation [10] in WLTSs
coincides with strong bisimulation for all the aforementioned models.

In the wake of these encouraging results, other meta-models have been pro-
posed aiming to cover an even wider range of computational models and con-
cepts. Uniform labelled transition systems (ULTraSs) [2] are systems whose tran-
sitions have the form P

a−→ φ, where φ is a weight function assigning weights
to states; hence, ULTraSs can be seen both as a non-deterministic extension of
WLTSs and as a generalisation of Segala’s probabilistic systems [18] (NPLTSs).
In [14,15] a (coalgebraically derived) notion of bisimulation for ULTraSs is pre-
sented and shown to precisely capture bisimulations for weighted and Segala

Copyright c© by the paper’s authors. Copying permitted for private and academic pur-
poses.
V. Biló, A. Caruso (Eds.): ICTCS 2016, Proceedings of the 17th Italian Conference
on Theoretical Computer Science, 73100 Lecce, Italy, September 7–9 2016, pp. 88–102
published in CEUR Workshop Proceedins Vol-1720 at http://ceur-ws.org/Vol-1720

http://ceur-ws.org/Vol-1720

On the bisimulation hierarchy of state-to-function transition systems 89

systems. Function-to-state transition systems (FuTSs) were introduced in [5] as
a generalisation of the above, of IMC [8], and other models. Later, [11] defines a
(coalgebraically derived) notion of bisimulation for FuTSs which instantiates to
known bisimulations for the aforementioned models.

Given all these meta-models, it is natural to wonder about their expressiveness.
We should consider not only the class of systems these frameworks can represent,
but also whether these representations are faithful with respect to the properties
we are interested in. Intuitively, a meta-model M is subsumed by M′ according to
a property P if any system S which is an instance of M with the property P , is
also an instance of M′ preserving P .

In this paper, we aim to classify meta-models according their ability to cor-
rectly express strong bisimulation. Therefore, in our contest a meta-model M is
subsumed by M′ if any system S which is an instance of M, is also an instance of
M′ preserving strong bisimulation.

FuTS

ULTraS

WLTSNPLTS

LTS PLTS.

Previous work [2, 10, 11, 14, 15] have shown that,
according to this order, each of the meta-models men-
tioned above subsumes the previous ones, thus form-
ing the hierarchy shown aside. Still, an important
question is open: is any of these meta-models strictly
more expressive than others? In this work we address
this question, proving that this is not the case: the
black part of the hierarchy collapses!

In order to formally capture the notion of “expressiveness order between
system classes with respect to (strong) bisimulation”, we introduce the notion
of reduction between classes of systems. Although the driving motivation is
the study of the FuTSs hierarchy under the lens of bisimulation, the notion of
reduction is more general and, as defined in this work, can be used to study any
class of state-based transition systems. In fact, all the constructions and results
are developed abstracting from the “shape” of computation under scrutiny.
Synopsis Section 2 recalls an abstract and uniform account of transition systems
on discrete state spaces, akin to [17]. Section 3 presents a general construction for
extending equivalence relations over sets of states to sets of behaviours. Building
on this relational extension, Section 4 provides a characterisation of (strong)
bisimulations in a modular fashion. The notion of reduction is introduced in Sec-
tion 5, along with general reductions. In Section 6 we provide a reduction from
the category of FuTSs to the category of WLTSs together with intermediate re-
ductions for special cases of FuTSs such as ULTraSs, nested FuTSs, and combined
FUTSs. Final remarks are in Section 7 and omitted proofs in Appendix A.

2 Discrete transition systems

For an alphabet A and set of states X, the function space XA is understood
as the set of all possible behaviours characterising deterministic input over A.
In this context, a transition system exposing this computational behaviour is
precisely described by a function α : X → XA mapping each state x ∈ X to

90 Marino Miculan and Marco Peressotti

some element in XA. For a function f : X → Y and φ ∈ XA, the assignment
φ 7→ f ◦ φ defines a function (f)A : XA → Y A that extends the action of f from
state spaces X and Y to behaviours defined over them in a coherent way. A
function f : X → Y between the state spaces of systems (say, α : X → XA and
β : Y → Y A) preserves and reflect their structure whenever fA ◦α = β ◦ f . Since
they preserve and reflect the transition structure of systems, these functions are
called homomorphisms (which are functional bisimulations, cf. [17, Thm. 2.5]).

All the structures and observations described in the above example stem from
a single information: the “type” of the behaviour under scrutiny. This is well
understood as an endofunctor over the category of state spaces [17] — in this
context, the category of sets and functions.

Non-deterministic transitions are captured by the powerset endofunctor P
mapping each set X its powerset PX and function f to its inverse image Pf i.e.
the function given by the assignment Z 7→ {f(z) | z ∈ Z}. Since subsets are func-
tions weighting elements over the monoid B = ({tt, ff},∨, ff), the above readily
extends to quantitative aspects (such as probability distributions, stochastic rates,
delays, etc.) by simply considering other a non-trivial abelian monoids1 [10,12,15].
This yields the endofunctor FM which assigns
– to each set X the set {φ : X →M | |{x | φ(x) 6= 0}| ∈ N};
– to each function f : X → Y the map (FMf)(φ) = λy ∈ Y.

∑
x:f(x)=y φ(x).

(summation is well defined because φ is finitely supported, by above).
Probabilistic computations are a special case of the above where weight functions
are distributions (cf. [10]) and are captured by the endofunctor D given on each
set X as DX = {φ ∈ F[0,∞)X |

∑
φ(x) = 1} and on each function f as F[0,∞)f .

From this perspective, D can be thought as a sort of “subtype” of F[0,∞).
This situation is formalised by means of (component-wise) injective natural
transformations (herein injective transformations). Composition and products
of natural transformations are component-wise and the class of injective ones is
closed under such operations. In general, for an injective transformation µ and
a n endofunctor T , µT is again injective but Tµ may not be so. The latter is
injective given that T preserves injective maps i.e. Tf is injective whenever f is
injective. All the examples listed in this paper meet this mild assumption.

Lemma 1. Any composition and product of Id, P, FM preserve injections.

Example 1. The endofunctor PFM models the alternation of non-deterministic
steps with quantitative aspects captured by (M,+, 0). There is an injective
transformation η : Id→ P whose components are given by the mapping x 7→ {x}
and hence, by composition, ηFM

: FM → PFM is an injective transformation. ut

Definition 1. For an endofunctor T over Set, a transition system of type T (T -
system) is a pair (X,α) where X is the set of states (carrier) and α : X → TX is
the transition map. For (X,α) and (Y, β) T -systems, a T -homomorphism from
the former to the latter is a function f : X → Y s.t. Tf ◦ α = f ◦ β.

1 An abelian monoid is a set M equipped with an associative and commutative binary
operation + and a unit 0 for +; such structure is called trivial when M is a singleton.

On the bisimulation hierarchy of state-to-function transition systems 91

Since system homomorphism composition is defined in terms of composition
of the underlying functions on carriers it is immediate to check that the operation
is associative and has identities. Therefore, any class of systems together with
their homomorphisms defines a category.

We adopt the following notational conventions. A transition system (X,α)
is referred by its transition map only; in this case its carrier is written car(α).
Homomorphisms are denoted by their underlying function. Categories of systems
are written using sans serif font with Sys(T) being the category of all T -systems
and T -homomorphisms and C|T its subcategory of systems in the category C.

Example 2 (LTSs). For a set A of labels, labelled transition systems are (P−)A-
systems, and image finite LTSs (Pf−)A-systems [17]. Hereafter let LTS denote
the category of all image-finite labelled transition systems and let LTS(A) ,
Sys((Pf−)A) be its subcategory of systems labelled over A. ut

Example 3 (WLTSs). For a set of labels A and an abelian monoid M , weighted
labelled transition systems are characterised by the endofunctor (FM−)A [10] and
hence form the category WLTS(A,M) , Sys((FM−)A) i.e. the (A,M)-indexed
component of WLTS, the category of all WLTSs. When the monoid B of boolean
values under disjunction is considered, WLTS(A,B) is LTS(A). ut

Example 4 (ULTraSs). We adopt the presentation of ULTraSs given in [14, 15].
For a set of labels A and an abelian monoid M , uniform labelled transition
systems are characterised by the endofunctor (PFM−)A; image finite ULTraSs
by (PfFM−)A. We denote by ULTraS the category of all image-finite ULTraSs
and by ULTraS(A,M) its subcategory of systems with labels in A and weights
in M . WLTSs can be cast to ULTraSs by means of the injective transformation
(ηFM

)A described in Example 1. These ULTraSs are called in [2] functional. ut

Example 5 (FuTSs). FuTSs are T -systems for T generated by the grammar

T ::= (S−)A | T × (S−)A S ::= FM | FM ◦ S

where A and M range over (non-empty) sets of labels and (non-trivial) abelian
monoids, respectively. Any such endofunctor is equivalently described by:

(F ~Mf) ~A ,
∏n
i=0(F ~Mi

f)Ai and (F ~Mi
f)Ai , (FMi,0 . . .FMi,mi

f)Ai

for ~A = 〈A0, . . . , An〉 a sequence of non-empty sets, ~Mi = 〈Mi,0, . . . ,Mi,mi
〉 a

sequence of non-trivial abelian monoids, and ~M = 〈 ~M0, . . . , ~Mn〉 [12,15]. For any
~A and ~M as above define FuTS(~A, ~M) as Sys((F ~M−) ~A). Clearly, FuTS(〈A〉, 〈M〉)
and FuTS(〈A〉, 〈B,M〉) coincide with WLTS(A,M) and ULTraS(A,M), respec-
tively. Then, LTS, WLTS, and ULTraS are subcategories of FuTS, the category of
all FuTSs. For ~M = 〈〈M0,0, . . . ,M0,m0〉, . . . , 〈Mn,0 . . .Mn,mn

〉〉 as above, recall
from [12] that a FuTS over ~M is called: nested if n = 0, combined if mi = 0 for
each i ∈ {0, . . . , n}, and simple if it is both combined and nested. ut

92 Marino Miculan and Marco Peressotti

3 Equivalence extensions

Several definitions of bisimulation found in literature use (more or less explicitly)
some sort of extension of equivalence relations from state spaces to behaviours
over these spaces. For instance, in [18] two probability distributions are considered
equivalent with respect to an equivalence relation R on their domain if they assign
the same probability to any equivalence class induced by R:

φ ≡R ψ
4⇐⇒ ∀C ∈ X/R

(∑
x∈C φ(x) =

∑
x∈C ψ(x)

)
.

This section defines equivalence extensions for arbitrary endofunctors (over Set)
and studies how constructs such as composition or products reflect on these
extensions, providing some degree of modularity.

Definition 2. For an equivalence relation R on X its T -extension is the equiv-
alence relation RT on TX such that φ RT ψ

4⇐⇒ (Tκ)(φ) = (Tκ)(ψ) where
κ : X → X/R is the canonical projection to the quotient induced by R.

As an example, let us consider the endofunctor (−)A describing deterministic
inputs on A: the resulting extension for an equivalence relation R relates functions
mapping the same inputs to states related by R. Formally:

φ R(−)A

ψ ⇐⇒ κ ◦ φ = κ ◦ ψ ⇐⇒ ∀a ∈ A (φ(a) R ψ(a)).

Extensions for P are precisely “subset closure” of relations (cf. [15]) and relate all
and only those subsets for which the given relation is a correspondence. Formally:

Y RP Z ⇐⇒ {κ(y) | y ∈ Y } = {κ(z) | z ∈ Z}
⇐⇒ (∀y ∈ Y ∃z ∈ Z(y R z)) ∧ (∀z ∈ Z∃y ∈ Y (y R z))

Extension for FM are generalise the subset closure to multisets and relate only
weight functions assigning the same cumulative weight to each equivalence class
induced by R: φ RFM ψ ⇐⇒ ∀C ∈ X/R

(∑
x∈C φ(x) =

∑
x∈C ψ(x)

)
In partic-

ular, RD is precisely Segala’s equivalence ≡R [18].
Consider extensions for the endofunctor (P−)A describing LTSs:

φ R(P−)A

ψ ⇐⇒ ∀a ∈ A
(

(∀y ∈ φ(a)∃z ∈ ψ(a) (y R z))∧
(∀z ∈ ψ(a)∃y ∈ φ(a) (y R z))

)
Clearly, RP(−)A can be equivalently written as

φ RP(−)A

ψ ⇐⇒ ∀a ∈ A(φ(a) RP ψ(a))

which suggests some degree of modularity in the definition of extensions to
composite endofunctors. In general, this kind of reformulations is not possible
since for arbitrary endofunctors T ans S, it holds only that φ

(
RS
)T

ψ =⇒
φ RT◦S ψ. The converse implication holds whenever T preserves injections.

On the bisimulation hierarchy of state-to-function transition systems 93

Lemma 2.
(
RS
)T ⊆ RT◦S and

(
RS
)T ⊇ RT◦S, given T preserves injections.

Endofunctors modelling inputs, such as (−)A and (Pf−)A, can be seen as
products (in these cases as powers) of endofunctors indexed over the input space
A. As suggested by the above examples, for product endofunctors it holds that:

φ R(
∏

Ti) ψ ⇐⇒ ∀i ∈ I(πi(φ) RTi πi(ψ))

where πi :
∏
TiX → TiX is the projection on the i-th component of the product.

Lemma 3. For I 6= ∅ and {Ti}i∈I , R
(∏

i∈I
Ti

)
∼=
∏
i∈I R

Ti .

FuTSs offer an instance of the above result: the endofunctor (F ~M−) ~A mod-
elling FuTSs over ~M = 〈 ~M0, . . . , ~Mn〉 and ~A = 〈A0; . . . ;An〉 is a product indexed
over {(i, a) | i ≤ n ∧ a ∈ Ai}. Thus, the extension R(F ~M−) ~A is described by:

φ R(F ~M−) ~A

ψ ⇐⇒ ∀i ≤ n∀a ∈ Ai(φi(a) RF ~Mi ψi(a)).

For an equivalence relation R define its restriction to X as the equivalence
relation R|X , R ∩ (X ×X). Both (R|X)T and RT |TX are equivalence relations
over the set of T -behaviours for X and, in general, the former is finer than the
latter, unless T preserves injections—in such case, the two coincide.

Lemma 4. For R and equivalence relation on Y and X ⊆ Y , (R|X)T ⊆ RT |TX ,
and, provided T preserves injections, (R|X)T ⊇ RT |TX .

Intuitively, this result allows us to encode multiple steps sharing the same
computational aspects as single steps at the expense of bigger state spaces. In
fact, it follows that (R|X)Tn+1 = RT |TnX , assuming T preserves injections.

Lemma 5. Let µ : T → S be an injective natural transformation. For R an
equivalence relation on X, φ RT ψ ⇐⇒ µX(φ) RS µX(ψ).

4 Bisimulations

In this section we give a general definition of bisimulation based on the notion
of equivalence relation extension introduced above. This approach is somehow
modular, as the definition reflects the structure of the endofunctors characterising
systems under scrutiny. This allows to extend results developed in Section 3 to
bisimulation and, in Section 5, to reductions.

Definition 3. An equivalence relation R is a strong T -bisimulation (herein,
bisimulation) for a T -system α iff x R x′ =⇒ α(x) RT α(x′). We denote by
bis(α) the set of all bisimulations for the system α.

The notion of bisimulations as per Definition 3 coincides with Aczel-Mendler’s
notion of precongruence [1].

94 Marino Miculan and Marco Peressotti

Definition 4. An equivalence relation R on X is a (Aczel-Mendler) precon-
gruence for α : X → TX iff, for any two functions f, f ′ : X → Y such that
x R x′ =⇒ f(x) = f ′(x′) it holds that x R x′ =⇒ (Tf ◦ α)(x) = (Tf ′ ◦ α)(x′).

Theorem 1. For α a T -system, every strong T -bisimulation for α is an AM-
precongruence and vice versa.

Bisimulations for systems considered in this paper are known to be kernel
bisimulations (cf. [10,12,15,17]) i.e. kernels of functions carrying homomorphisms
from systems under scrutiny [19]. These can be intuitively thought as defining
refinement systems over the equivalence classes they induce.

Definition 5. A relation R on X is a kernel bisimulation for α : X → TX iff
there is β : Y → TY and f : α→ β s.t. R is the kernel of the map underlying f .

In general, Definition 3 is stricter than Definition 5 but the two coincide for
endofunctors preserving (enough) injections—e.g. any example from this paper.

Corollary 1. For α : X → TX, the following are true:
– A bisimulation for α is a kernel bisimulation for α.
– If T preserves injections, a kernel bisimulation for α is a bisimulation for α.

From Corollary 1 and Lemma 1 it follows that Definition 3 captures strong
bisimulation for LTSs [16], for WLTSs [10], for Segala systems [18], for ULTraSs
[15], and for FuTSs [12], since these are all instances of kernel bisimulations.

Lemma 6. For T =
∏
i∈I Ti and α ∈ Sys(T), bis(α) =

⋂
i∈I bis(πi ◦ α).

A special but well known instance of Lemma 6 is given by definitions of
bisimulations found in the literature for LTSs, WLTSs and in general FuTSs.
In fact, all these bisimulation contain a universal quantification over the set of
labels. For instance, a R is a bisimulation for an LTS α : X → (PX)A iff:

x R x′ =⇒ ∀a ∈ A
(

(∀y ∈ φ(a)∃z ∈ ψ(a) (y R z))∧
(∀z ∈ ψ(a)∃y ∈ φ(a) (y R z))

)
that is, iff R is the intersection of an A-indexed family composed by a bisimulation
for each transition system αa : X → PX projection of α on a ∈ A.

Lemma 7. For n ∈ N and α ∈ Sys(Tn+1), there is α ∈ Sys(T) such that:
– R ∈ bis(α) =⇒ ∃R′ ∈ bis(α)(R = R′|car(α)),
– R ∈ bis(α) =⇒ R|car(α) ∈ bis(α).

Proof. Let X be
∐n
i=0 T

iX and α : X → T (X) be [Tιnα0, T ι0α1 . . . , T ιn−2αn−1]
where ιi : T iX → X is the i-th coproduct injection, α0 : X → T (TnX) is α, and
αi+1 : T i+1X → T (T iX) is given by the identity for T i+1X. If R ∈ bis(α), then:

x R|X x′ =⇒ x R x′
(i)=⇒ α(x) RT α(x′) (ii)⇐⇒ α(x) RT |Tn+1X α(x′)

(iii)⇐⇒ α(x) (R|X)T
n+1

α(x′)

On the bisimulation hierarchy of state-to-function transition systems 95

where (i) follows by R ∈ bis(α); (ii) follows by noting that α acts as α on X and
hence both α(x) = α(x) and α(y) = α(y) are elements of Tn+1X; (iii) follows
by inductively applying Lemmas 2 and 4. Therefore, R|X ∈ bis(α).

Assume R ∈ bis(α) and define R =
∐n
i=0 R

T i . By construction of R, x R x′

implies that x, x′ ∈ T iX for some i ∈ {0, . . . , n} meaning that the proof can be
carried out by cases on each RT i composing R. Assume x, x′ ∈ T 0X = X, then:

x R x′ ⇐⇒ x R x′
(i)=⇒ α(x) RT

n+1
α(x′) (ii)⇐⇒ α(x) (RT

n

)T α(x′)
⇐⇒ α(x) RT α(x′)

where (i) and (ii) follow by R ∈ bis(α) and Lemma 2, respectively. Assume
x, x′ ∈ T i+1X, we have that:

x R x′ ⇐⇒ x RT
i+1

x′
(i)⇐⇒ x (RT

i

)T x′ (ii)⇐⇒ α(x) (RT
i

)T α(x′)
⇐⇒ α(x) RT α(x′)

where (i) and (ii) follow by Lemma 2 and by definition of α on T i+1X. Therefore,
R ∈ bis(α) and clearly R|X = R. ut

Lemma 7 and its proof provide us with an encoding from systems whose steps
are composed by multiple substeps to systems of substeps while preserving and
reflecting their semantics in term of bisimulations. The trade-off of the encoding
is a bigger statespace due to the explicit account of intermediate steps.

Lemma 8. For µ : T → S injective and α ∈ Sys(T), bis(α) = bis(µcar(α) ◦ α).

By applying the Lemma 8 to Example 1 we conclude that that bisimulations for
ULTraSs coincide with bisimulations for WLTSs when these are seen as functional
ULTraS as shown in [14,15].

5 Reductions

In this section we formalize the intuition that a behaviour “shape” is (at least)
as expressive as another whenever systems and homomorphisms of the latter can
be “encoded” as systems and homomorphisms of the former, provided that their
semantically relevant structures are preserved and reflected.

Definition 6. For systems α and β, a (system) reduction σ : α → β is given
by a function σc : car(α) → car(β) and a correspondence σb ⊆ bis(α) × bis(β)
s.t. σc carries a relation homomorphism for any pair of bisimulations in σb, i.e.:

R σb R′ =⇒ (x R x′ ⇐⇒ σc(x) R′ σc(x′)).

A system reduction σ : α→ β is called full if σc : car(α)→ car(β) is surjective.

96 Marino Miculan and Marco Peressotti

For σ : α→ β a reduction, σc is always injective: the identity relation is always
a bisimulation and hence condition (6) forces all x,x′ such that σc(x) = σc(x′) to
be equal in the beginning. Therefore the correspondence σb is always left-unique
hence a surjection from bis(β) to bis(α). This is indeed stronger than requiring
preservation of bisimilarity since it entails that any bisimulation for α can be
recovered by restricting some bisimulation for β to the image of car(α) in car(β)
through the map σc. Fullness implies σc and σb are isomorphism.

Remark 1. Condition (6) can be relaxed in two ways:
(a) R σb R′ =⇒ (x R x′ =⇒ σc(x) R′ σc(x′)),
(b) R σb R′ =⇒ (x R x′ ⇐= σc(x) R′ σc(x′)).
The condition (a) requires every bisimulation for α to be contained in some
bisimulation for β whereas (b) requires every bisimulation for α to contain some
bisimulation for β. Hence the two can be thought as completeness and soundness
conditions for the reduction σ, respectively. ut

System reductions can be extended to whole categories of systems provided
they respect the structure of homomorphisms. Formally:

Definition 7. For C and D categories of system, a reduction σ from C to D,
written σ : C→ D, is a mapping that
1. assigns to any transition system α in C a system σ(α) in D and a system

reduction σα : α→ σ(α);
2. assigns to any f : α → β in C an homomorphism σ(f) : σ(α) → σ(β) s.t.:

(a) σcβ ◦ f = σ(f) ◦ σcα; (b) σ(idα) = idσ(α); (c) σ(g ◦ f) = σ(g) ◦ σ(f).
A reduction σ : C → D is called full if, and only if, every system reduction σα
is full. A category C is said to reduce (resp. fully reduce) to D, if there is a
reduction (resp. full reduction) from the C to D.

Reductions can be easily composed at the level of their defining assignments.
In particular, for reductions σ : C→ D and τ : D→ E, their composite reduction
τ ◦ σ : C→ E is a mapping that assigns to each system α the system (τ ◦ σ)(α)
and the reduction given by (τ ◦σ)cα , τ cσ(α) ◦σ

c
α and (τ ◦σ)bα , τ bσ(α) ◦σ

b
α; and to

each f : α→ α′ the homorphism (τ ◦σ)(f). Reduction composition is associative
and admits identities which are given on every C as the identity assignments
for systems and homomorphisms. Any reduction restricts to a reduction from a
subcategory of its domain and extends to a reduction to a super-category of its
codomain. Moreover, fullness is preserved by the above operations.

For products, reductions can be given component-wise by suitable families of
reductions that are “well-behaved” on homomorphisms. Formally:

Definition 8. A family of reductions {σi : Ci → Di}i∈I is called coherent iff the
following conditions hold for any i, j ∈ I:
1. if a function f extends to fi ∈ Ci then there is fj ∈ Cj s.t. f extends to fj;
2. σi(fi) and σj(fj) share their underlying function whenever fi and fj do.

Theorem 2. A coherent family of (full) reductions {σi : Sys(Ti)→ Sys(Si)}i∈I
defines a (full) reduction σ : Sys(

∏
i∈I Ti)→ Sys(

∏
i∈I Si).

On the bisimulation hierarchy of state-to-function transition systems 97

Proof. Assume {σi}i∈I as above. For α ∈ Sys(
∏
Ti) let αi = πi ◦ α and define

σ(α) , 〈. . . , σi(αi), . . . 〉 σcα , σci,αi
σbα ,

⋂
i∈I σ

b
i,αi

The assignment extends to all systems in Sys(
∏
i∈I Ti) and is well-defined by

coherency and Lemma 6 since R σbα R
′ ⇐⇒ ∀i ∈ I(R σbi,αi

R′) and for all i ∈ I,
σcα = σci,αi

. For any i ∈ I, f : α → β defines an homomorphism fi : αi → βi in
Sys(Ti) sharing its underlying function. Define σ(f) as the homomorphism arising
from the function underlying σi(fi). By coherency, the mapping is well-defined
and satisfies all the necessary conditions since all σi are reductions. ut

Correspondences for bisimulations presented in Lemmas 7 and 8 extend to
reductions: injective transformations define full reductions and homogeneous
systems reduce to systems for the base endofunctor, as formalised below.

Theorem 3. For µ : T → S an injective transformation, there is a full reduction
µ̂ : Sys(T)→ Sys(S) given, on each α and each f : α→ β as µ̂(α) , µcar(α) ◦ α,
µ̂cα , idcar(α), µ̂bα , idbis(α), and µ̂(f) , f .

This theorem allows us to formalise the hierarchy shown in Section 1. For
instance, the transformation described in Example 1 defines a full reduction from
WLTSs to ULTraSs. Probabilistic systems are covered by the transformation
induced by the inclusion DX ⊆ F[0,∞)X whereas the remaining cases are trivial.

Theorem 4. If T preserves injections then Sys(Tn+1) reduces to Sys(T).

Proof. Recall from Lemma 7 the construction of α : X → TX for any α : X →
Tn+1X and let ι0 : X → X denote the obvious injection. Define σ : Sys(Tn+1)→
Sys(T) as the reduction given on each transition system α in Sys(Tn+1) as

σ(α) , α σcα , ι0 σbα , {(R,R) | R = R|X , R ∈ bis(α), R ∈ bis(α)}

and on each homomorphism f : α → β in Sys(Tn+1) as σ(f) ,
∐n
i=0 T

if . By
Lemma 7, σbα is a correspondence and by construction σ respects homomorphism
composition and identities. Thus, σ is a reduction from Sys(Tn+1) to Sys(T). ut

6 Application: reducing FuTSs to WLTSs

In this section we apply the theory presented in the previous sections to prove
that (categories of) FuTSs reduce to (categories of) simple FuTSs, i.e. WLTSs.
The reduction is given in stages reflecting the endofunctors structure.

Definition 9. A monoid sequence ~M is called homogeneous if its elements are
the same. FuTSs on ~M are called homogeneous if ~M is homogeneous.

Lemma 9. The FuTSs category fully reduces to that of homogeneous FuTSs.

98 Marino Miculan and Marco Peressotti

Proof. For a sequence of monoids ~M = 〈M0, . . . ,Mn〉 let N denote the product
monoid

∏n
i=0 Mi. Let 0j denote the unit of Mj . For each i ∈ {0, . . . , n}, the

assignment x 7→ 〈00, . . . , 0i−1, x, 0i+1, . . . 0n〉 extends to an injective monoid
homomorphism mi : Mi → N . The assignment φ 7→ mi ◦ φ defines an injective
natural transformation FMi

→ FN which extends to an injective transformation
F ~M → F~N . We conclude by Theorems 2 and 3. ut

Lemma 10. The nested FuTSs category reduces to that of simple FuTSs.

Proof. By Lemma 9 and Theorems 2 and 4. ut

Lemma 11. The FuTSs category reduces to that of combined FuTSs.

Proof. By Theorem 2 and Lemma 10. ut

Lemma 12. The combined FuTSs category fully reduces to that of simple FuTSs.

Proof. For a sequences ~A = 〈A0, . . . , An〉 and ~M = 〈M0, . . . ,Mn〉 let B and N
denote the cartesian product

∏n
i=0 Ai and the product monoid

∏n
i=0 Mi, respec-

tively. The mapping 〈φ0, . . . , φn〉 7→ λ〈a0, . . . , an〉.λx.〈φ0(a0)(x), . . . , φn(an)(x)〉
extends to an injective natural transformation from (F ~M−) ~A =

∏n
i=0 (FMi−)Ai

to (FN−)B . We conclude by Theorem 3. ut

Theorem 5. The FuTSs category reduces to that of simple FuTSs i.e. WLTSs.

Proof. By Lemmas 11 and 12. ut

For instance, consider an ULTraS α : X → (PfFMX)A. By Lemma 9 it fully
reduces to a homogeneous nested FuTS (X,α′) for the sequences of labels and
monoids 〈A〉 and 〈〈B×M,B×M〉〉, respectively and such that:

α′(x)(a)(φ) ,
{
〈tt, 0〉 given ψ ∈ α(x)(a) s.t. φ(y) = 〈ψ(y), 0〉 for all y ∈ X
〈ff, 0〉 otherwise

By Lemma 10, α′ reduces to the WLTS (X + FB×MX,α′) with labels from A,
weights from B×M , and such that:

α′(y)(a)(y′) ,

y(y′) if y ∈ FB×MX and y′ ∈ X
α′(y)(a)(y′) if y ∈ X and y′ ∈ FB×MX
〈ff, 0〉 otherwise

As exemplified by the above reduction for ULTraSs, FuTSs can be reduced to
WLTSs by extending the original state space with weight functions and splitting
steps accordingly. From this perspective, weight functions are hidden states in
the original systems which the proposed reduction renders explicit. This obser-
vation highlights a trade-off between state and behaviour complexity of these
semantically equivalent meta-models.

On the bisimulation hierarchy of state-to-function transition systems 99

7 Conclusions

In this paper we have introduced a notion of reduction for categories of discrete
state transition systems, and some general results for deriving reductions from the
shape of computational aspects. As an application of this theory we have shown
that FuTSs reduce to WLTSs, thus collapsing the upper part of the hierarchy
in Section 1. Besides the classification interest, this result offers a solid bridge
for porting existing and new results from WLTSs to FuTSs. For instance, SOS
specifications formats presented in [10, 15] can cope now with FuTSs, and any
abstract GSOS for these systems admits a specification in the format presented
in [15]. Likewise, developing an HML style logic for bisimulation on WLTSs would
readily yield a logic capturing bisimulation on FuTSs.

It remains an open question whether the hierarchy can be further collapsed,
especially when other notion of reduction are considered. In fact, requiring a cor-
respondence between bisimulations for the original and reduced systems may be
too restrictive in some applications like bisimilarity-based verification techniques.
This suggests to investigate laxer notions of reductions, such as those indicated
in Remark 1. Another direction is to consider different behavioural equivalences,
like trace equivalence or weak bisimulation. We remark that, as shown in [3,4,7],
in order to deal with these and similar equivalences, endofunctors need to be
endowed with a monad (sub)structure; although WLTSs are covered in [3, 13],
an analogous account of FuTSs is still an open problem.

References

1. P. Aczel and N. Mendler. A final coalgebra theorem. In Proc. CTCS, volume 389
of LNCS, pages 357–365. Springer, 1989.

2. M. Bernardo, R. De Nicola, and M. Loreti. A uniform framework for modeling
nondeterministic, probabilistic, stochastic, or mixed processes and their behavioral
equivalences. Inf. Comput., 225:29–82, 2013.

3. T. Brengos, M. Miculan, and M. Peressotti. Behavioural equivalences for coalgebras
with unobservable moves. JLAMP, 84(6):826–852, 2015.

4. T. Brengos and M. Peressotti. A Uniform Framework for Timed Automata. In
Proc. CONCUR, volume 59 of LIPIcs, pages 26:1–26:15, 2016.

5. R. De Nicola, D. Latella, M. Loreti, and M. Massink. A uniform definition of
stochastic process calculi. ACM Computing Surveys, 46(1):5, 2013.

6. R. van Glabbeek, S. A. Smolka, and B. Steffen. Reactive, generative and stratified
models of probabilistic processes. Inf. Comput., 121:130–141, 1990.

7. I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via coinduction.
LMCS, 3(4), 2007.

8. H. Hermanns. Interactive Markov Chains: The Quest for Quantified Quality, volume
2428 of LNCS. Springer, 2002.

9. J. Hillston. A compositional approach to performance modelling. Cambridge, 1996.
10. B. Klin and V. Sassone. Structural operational semantics for stochastic and weighted

transition systems. Inf. Comput., 227:58–83, 2013.
11. D. Latella, M. Massink, and E. de Vink. Bisimulation of labelled state-to-function

transition systems coalgebraically. LMCS, 11(4), 2015.

100 Marino Miculan and Marco Peressotti

12. D. Latella, M. Massink, and E. de Vink. A definition scheme for quantitative
bisimulation. In QAPL, volume 194 of EPTCS, pages 63–78, 2015.

13. M. Miculan and M. Peressotti. Weak bisimulations for labelled transition systems
weighted over semirings. CoRR, abs/1310.4106, 2013.

14. M. Miculan and M. Peressotti. GSOS for non-deterministic processes with quanti-
tative aspects. In Proc. QAPL, volume 154 of EPTCS, pages 17–33, 2014.

15. M. Miculan and M. Peressotti. Structural operational semantics for non-determin-
istic processes with quantitative aspects. To appear in TCS, 2016.

16. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
17. J. J. M. M. Rutten. Universal coalgebra: a theory of systems. TCS, 249(1):3–80,

2000.
18. R. Segala and N. A. Lynch. Probabilistic simulations for probabilistic processes.

Nord. J. Comput., 2(2):250–273, 1995.
19. S. Staton. Relating coalgebraic notions of bisimulation. LMCS, 7(1), 2011.

On the bisimulation hierarchy of state-to-function transition systems 101

A Omitted proofs

Proof of Lemma 1 For f injective, the assignments

ψ 7→ f ◦ ψ Z 7→ {f(z) | z ∈ Z} φ 7→ λy.
∑
x:f(x)=y φ(x)

describe injective functions. ut

Proof of Lemma 2 Let κS : SX → SX/RS be the canonical projection to the
quotient induced by the equivalence relation RS . Since, by definition, κS(ρ) =
κS(θ) implies (Sκ)(ρ) = (Sκ)(θ) there is a (unique) function qS : SX/RS →
S(X/R) such that Sκ = qS ◦ κS . From TSκ = TqS ◦ TκS and the definition of
RTS and

(
RS
)T , it follows that: φ

(
RS
)T

ψ =⇒ (TSκ)(φ) = (TSκ)(ψ) =⇒
φ RTS ψ proving first part of the thesis. Since ρ RS θ ⇐⇒ κS(ρ) = κS(θ)
we conclude that qS is an injection and, by hypothesis, TqS is an injection too.
Therefore:

φ RTS ψ =⇒ (TSκ)(φ) = (TSκ)(ψ) =⇒ (TκS)(φ) = (TκS)(ψ)

=⇒ φ
(
RS
)T

ψ

completing the proof. ut

Proof of Lemma 3 Write T for
∏
i∈I Ti and recall that

(∏
i∈I Ti

)
X is

∏
i∈I TiX.

Then:

φ RT ψ ⇐⇒ (
∏
Tiκ)(φ) = (

∏
Tiκ)(ψ) ⇐⇒

∏
(Tiκ)(φi) =

∏
(Tiκ)(ψi)

⇐⇒ φ
∏
RTi ψ

where κ : X → X/R is the canonical projection to the quotient induced by R
and πi :

∏
i∈I TiX → TiX is the i-th projection. ut

Proof of Lemma 4 Let κ : Y → Y/R and κ′ : X → X/R|X be the canonical projec-
tions induced by R and R|X , respectively. Since the latter is given by restriction
of the former to X ⊆ Y , there is a unique and injective map q : X/R|X → Y/R
such that κ = q ◦ κ. The first part of the thesis follows by:

φ (R|X)T ψ =⇒ (Tκ′)(φ) = (Tκ′)(ψ) =⇒ (Tκ)(φ) = (Tκ)(ψ)
=⇒ φ RT ψ since Tκ = Tq ◦ Tκ′.

On the other hand, by hypothesis on T , Tq is injective and hence

φ RT |TX ψ =⇒ (Tκ)(φ) = (Tκ)(ψ) =⇒ (Tκ′)(φ) = (Tκ′)(ψ)

=⇒ φ (R|X)T ψ ut

102 Marino Miculan and Marco Peressotti

Proof of Lemma 5 It holds that

φ RT ψ ⇐⇒ Tκ(φ) = Tκ(ψ) (i)⇐⇒ (µX ◦ Tκ)(φ) = (µX ◦ Tκ)(ψ)
(ii)⇐⇒ (Sκ ◦ µX)(φ) = (Sκ ◦ µX)(ψ) ⇐⇒ µX(φ) RS µX(ψ)

where (i) and (ii) follow by µX being injective and by µ being a natural trans-
formation, respectively. ut

Proof of Theorem 1 Assume R is a bisimulation for α : X → TX. For f, f ′ : X →
Y s.t. x R x′ =⇒ f(x) = f ′(x′) we have that:

x R x =⇒ α(x) RT α(x′) ⇐⇒ (Tκ ◦ α)(x) = (Tκ ◦ α)(x′)
(i)=⇒ (Tf ◦ α)(x) = (Tf ′ ◦ α)(x′)

where (i) follows by noting that, since κ : X → X/R is a canonical projection and
x R x′ =⇒ f(x) = f ′(x′), there is (a unique) q : X/R→ Y s.t. f = q ◦ κ = f ′.

Assume R is a precongruence for α, we have that:

x R x
(i)⇐⇒ κ(x) = κ(x′) (ii)=⇒ (Tκ ◦ α)(x) = (Tκ ◦ α)(x′)

(iii)⇐⇒ α(x) RT α(x′)

where (i) follows by definition of κ : X → X/R, (ii) by R being a precongruence,
and (iii) by definition of RT . ut

Proof of Corollary 1 By Theorem 1 and [19, Thm. 4.1]. ut

Proof of Lemma 6 By Theorem 2, α(x) RT α(x′) ⇐⇒ α(x)
(∏

i∈I R
Ti
)
α(x′)

and hence α(x) RT α(x′) ⇐⇒ ∀i ∈ I (πiα)(x) RTi (πiα)(x′). ut

Proof of Lemma 8 For a relation R, R ∈ bis(α) iff x R y =⇒ α(x) RT α(y)
and R ∈ bis(µX ◦ α) iff x R y =⇒ (µX ◦ α)(x) RS (µX ◦ α)(y). We conclude by
Lemma 5. ut

Proof of Theorem 3 By Lemma 8. ut

	On the bisimulation hierarchy of state-to-function transition systems
	Introduction
	Discrete transition systems
	Equivalence extensions
	Bisimulations
	Reductions
	Application: reducing FuTSs to WLTSs
	Conclusions
	Omitted proofs

