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Abstract. We present our ongoing work on the problem of increasing
the information spread in a network by creating a limited amount of new
edges incident to a given initial set of active nodes. As a preliminary
result, we give a constant approximation algorithm for the case in which
the set of initial active nodes is a singleton. Our aim is to extend this
result to the general case. We outline some further research directions
which we are investigating.

1 Introduction

Studying the processes by which ideas and influence propagate through a network
has been one of the main goals in the field of social network analysis. The influence
problem is motivated by many applications in different fields: from marketing,
with the aim of maximizing the adoption of a new product [3], to epidemiology,
in order to limit the diffusion of a virus or disease [11], going through the analysis
of social networks to find influential users and to study how information flows
through the network [1].

Different models of information diffusion have been introduced in the liter-
ature [5], two widely studied models are: the Linear Threshold Model (LTM)
and the Independent Cascade Model (ICM). In both models, we can distinguish
between active, or infected, nodes, called seeds, which spread the information, and
inactive ones. Recursively, currently infected nodes can infect their neighbours
with some probability. After a certain number of such cascading cycles, a large
number of nodes becomes infected in the network. In LTM the idea is that a node
becomes active if a large part of its neighbours is active. More formally, each
node u has a threshold t chosen uniformly at random in the interval [0, 1]. The
threshold represents the fraction of neighbours of u that must become active in
order for u to become active. At the beginning of the process a small percentage
of nodes of the graph is set to active in order to let the information diffusion
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process start. In subsequent steps of the process a node becomes active if the
fraction of its active neighbours is greater than its threshold. In ICM, instead, a
seed u tries to influence one of its inactive neighbours but the success of node u
in activating the node v only depends on the propagation probability of the edge
from u to v (each edge has its own value). Regardless of its success, the same
node will never get another chance to activate the same inactive neighbour. The
process terminates when no further node gets activated.

An interesting question, in the analysis of the information spread through a
network, is how to shape a given diffusion process so as to maximize or minimize
the number of activated nodes at the end of the process by taking intervention
actions. Many intervention actions have been studied in the literature, the most
important one is: if we are allowed to add at most k seeds, which ones should
be selected so as to maximize the number of active nodes resulting from the
diffusion process [5]. Besides source selection, other intervention actions may be
used to facilitate or limit the diffusion processes, such as inserting or deleting
edges and adding or deleting nodes in the network.

To the best of our knowledge, under LTM, the problems that have been stud-
ied are the following: Khalil et al. [6] consider two types of actions, adding edges
to or deleting edges from the existing network and they show that this network
structure modification problem has a supermodular objective and therefore can
be solved by algorithms with provable approximation guarantees. Zhang et al. [15]
consider arbitrarily specified groups of nodes, and interventions that involve both
edge and node removal from the groups. They develop algorithms with rigorous
performance guarantees and good empirical performance. Kimura et al. [7] use a
greedy approach to delete edges under the LTM without any analysis of the super-
modularity of the objective, nor rigorous approximation guarantees. Kuhlman et
al. [9] propose heuristic algorithms for edge removal under a simpler deterministic
variant of LTM which is not only hard, but also has no approximation guarantee.
Papagelis [12] and Crescenzi et al. [4] study the problem of augmenting the graph
in order to increase the connectivity or the centrality of a node, respectively and
experimentally show that this increases the expected number of eventual active
nodes. Under ICM, the main results are the following: Wu et al. [14] consider
intervention actions other then edge addition, edge deletion and source selection,
such as increasing the probability that a node infects its neighbours. It can be
shown that optimizing the selection of such actions with a limited budget tends
to be NP-hard and is neither submodular nor supermodular. Sheldon et al. [13]
study the problem of node addition to maximize the spread of information, and
provide a counterexample showing that the objective function is not submodular.
Bogunovic [2] addresses the node deletion problem providing a greedy algorithm.
Kimura et al. [8] propose methods for efficiently finding good approximate solu-
tions on the basis of a greedy strategy for the edge deletion problem under the
ICM, but do not provide any approximation guarantees.

In this paper, we focus on the Independent Cascade Model and investigate
the problem of adding a small number of edges incident to an arbitrary seed
in order to increase the spreading of information in terms of number of nodes
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that become active. Thus, the problem we analyse differs from above mentioned
ones and, as far as we know, similar problems have never been studied for the
Independent Cascade Model.

The aim of this paper is reporting our ongoing research on which we wish to
get feedback so as to possibly include these results in future publications.

2 Preliminary results

In this section we will give all the necessary definitions, introduce the problem
that will be considered and show our preliminary results.

A social network is represented by a weighted directed graph G(V, âĂĚE, p)
where V represents the set of nodes, E represents set of relationships and p :
V × V → [0, 1] is the probability of an edge to propagate information. For each
node u, Nu denotes the set of neighbours of u, i.e. Nu = {v|(u, v) ∈ E}.

The Independent Cascade Model [5] is an information diffusion model where
the information flows over the network through cascade. Nodes can have two
states, active: it means the node is already influenced by the information in
diffusion, inactive: node is unaware of the information or not influenced. The
process runs in discrete steps. At the beginning of ICM process, few nodes
are given the information, they are known as seed nodes. Upon receiving the
information these nodes become active. In each discrete step, an active node
tries to influence one of its inactive neighbours. Regardless of its success, the
same node will never get another chance to activate the same inactive neighbour.
The success of node u in activating the node v depends on the propagation
probability of the edge (u, v) defined as puv, each edge has its own value. The
process terminates when no further node gets activated.

We define the influence of a set A ⊆ V in the graph G, denoted by σ(A,G),
to be the expected number of active nodes at the end of the process, given that
A is the initial set of seeds. Given a set S of edges not in E, we denote by G(S)
the graph augmented by adding the edges in S to G, i.e. G(S) = (V,E ∪ S).

Given a graph G = (V,E), a vertex set A ⊆ V and an integer k, the problem
we are studying consists in finding a set S of edges incident to the nodes in A not
in E (that is, S ⊆ {(a, v) : v ∈ V \Na, a ∈ A}) such that |S| ≤ k and σ(A,G(S))
is maximum.

In the paper we focus on the case A = {a}. We leave the case |A| > 1 as a
future work. It has been shown [10] that for a monotone submodular function
the following greedy algorithm provides a

(
1− 1

e

)
-approximation: start with the

empty set and repeatedly add an element that gives the maximal marginal gain.
The greedy algorithm can be extended to any monotone submodular objective
function thanks to the following result.

Theorem 1 ([10]). For a non-negative, monotone submodular function f , let S
be a set of size k obtained by selecting elements one at a time, each time choosing
an element that provides the largest marginal increase in the value of f . Then S
provides a

(
1− 1

e

)
-approximation.
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In this paper, we exploit this result by showing that σ(A,G(S)) is monotone
and submodular w.r.t. the possible set of edges incident to a.

Theorem 2. σ(A,G(S)) is a monotonically increasing submodular function of
the set S of edges to be added.

Proof (sketch). We will use the definition of live-edge graph X = (V,EX) which
is a directed graph where the set of nodes is equal to V and the set of edges is
a subset of E. EX is given by a edge selection process such that each edge is
either live or blocked according to its propagation probability. We can assume
that for each pair of neighbours in the graph, a coin of bias puv is flipped and
the edges for which the coin indicated an activation are live, the remaining are
blocked. It is easy to show that a diffusion model is equivalent to the reachability
problem in live-edge graphs: given any seed set A, the distribution of active node
sets after the diffusion process ends is the same as the distribution of node sets
reachable from A in a live-edge graph.

We denote with χ(G) the probability space in which each sample point spec-
ifies one possible set of outcomes for all the coin flips on the edges, it is the set
of all possible live-edge graphs. Let R(A,X) denote the set of all nodes that
can be reached from the nodes in A on a path consisting entirely on live edges:
R(A,X) =

⋃
a∈A R(a,X).

The main idea to prove that the function in monotonically increasing is that,
after an edge addition in G, the live-graph X has at least one more edge than the
original live-edge graph, hence, the number of reachable nodes can not decrease.
To prove submodularity, we note that the number of new reachable nodes from
the seed after the edge addition in G(T ) is smaller or equal than the number of
new reachable nodes in G(S) since most of the nodes are already reachable by
the edges in T \ S. We prove these conditions for all X ∈ χ(G). ut

Note that, in the problem we are studying, the greedy algorithm can not eval-
uate the influence function exactly since σ(A,G(S)) is the expected number of
activated nodes and it has been proven that evaluating this function is generally
#P -complete for ICM [3]. However, by simulating the diffusion process suffi-
ciently many times and sampling the resulting active sets, it is possible to obtain
arbitrarily good approximations to σ(A,G(S)) (see Prop 4.1 in [5] to bound the
number of samples needed to obtain a (1 + δ)-approximation). It is an extension
of the result of Nemhauser et al. [10] that by using (1±δ)-approximate values for
the function to be optimized where δ ≥ 0, we obtain

(
1− 1

e − ε
)
-approximation,

where ε depends on δ and goes to 0 as δ → 0.

Theorem 3. For the problem of adding a set S of edges, not in E, incident to
the node in A = {a} such that |S| ≤ k and σ(A,G(S)) is maximum, there is
a polynomial-time algorithm approximating the maximum influence to within a
factor of

(
1− 1

e − ε
)
where ε is any positive real number.
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3 Future research

In this paper, we presented our ongoing work on the problem of increasing the
information spread in a network considering the case in which the set of active
nodes A is a singleton. We have analysed the properties of the influence function
which is monotonically increasing and submodular and we propose a greedy
approximation algorithm for efficiently computing a set of edges that a seed can
decide to add to the graph in order to increase the expected number of influenced
nodes. As future works, we plan to extend our approach to |A| > 1 and consider
the insertion of edges incident to all the seeds in A. Moreover, we plan to analyse
a generalization of the problem considered in this paper by allowing the deletion
of edges incident to seeds. Finally, our intent is to study the same problem in a
generalization of ICM, which is the Decreasing Cascade Model. In this model the
probability of a node u to influence v is non-increasing as a function of the set
of nodes that have previously tried to influence v. From the experimental point
of view, our aim is to measure the efficiency of the greedy algorithm in term of
expected number of influenced nodes.
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