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Abstract—Improving a software system’s internal structure 

through regular refactoring is considered vital for its long and 

healthy life. However, despite its amenities, refactoring is not 

readily adopted by software development teams in industry 

mainly due to strict project deadlines and limited resources. 

Hence, they look for optimal refactoring recommendations that 

would incur minimal effort overhead while outputting decent 

benefits in terms of enhanced software quality. To this end, we 

propose an approach for identifying and prioritizing object-

oriented software classes in need of refactoring. Our approach 

first identifies the most refactoring-prone as well as 

architecturally relevant classes, and then generates class ranks 

based on the code smell information. In addition to locating 

classes with the most significant incremental refactoring 

opportunities, this work contributes through suggesting 

developers on estimating maximum code smell correction (paying 

off maximum technical debt) with minimum refactoring effort. 

We evaluated the proposed approach on a sample of 1621 classes 

and 2358 code smell instances, distributed over 28 versions of 

four open source java systems. 

Keywords—class prioritization; software refactoring; code 

smell; refactoring effort; technical debt 

I. INTRODUCTION  

Maintenance and evolution are lifelines for the success of a 
product in modern day software development. Evolving 
software requires its design and code to be optimized 
periodically in order to avoid any technical debt resulting from 
decaying of such artifacts [1]. The decision over a given 
software change is critical and requires expertise on the part of 
software developers. Software refactoring is a simple yet 
effective approach that enables developers improve the design 
structure of software while preserving its perceived external 
behavior [2]. In order to limit the maintenance cost and 
improve the quality of the software system, ideally software 
companies try to incorporate refactoring practices as an integral 
part of their development and maintenance processes [1]. 

However, the ground reality is somewhat different. Not 
only are the developers expected to regularly enhance the 
quality of software, they are also under a constant pressure to 
spend most of their person hours adding new features rather 
than refactoring the source code [4]. Some of the major hurdles 
in refactoring adoption in industrial projects include, getting 
management buy-in, deadline pressure, inadequate refactoring 
tool support, etc. [1]. Also, the entire process of refactoring 
comprises a number of distinct activities that make it a tedious 
and expensive phenomenon [3]. Consequently, various 
automated tools supporting different refactoring activities have 
been proposed, which help in reducing manual effort, time 
consumption and errors; thus bringing down the overall 

evolution complexity and cost. However, on the other hand, 
these automated tools have their own issues too. For instance, 
code smell detection tools yield numerous results which are 
quite hard to examine. This scenario demands a balanced 
approach from the refactoring research community to help 
developers introduce refactoring to the rest of stakeholders as a 
significant tool for continuous quality [4] without adversely 
affecting project deadlines and cost.  

This work looks for a solution in the Law of the Vital Few, 
which states - “only 20% of code contains 80% of errors” [5]. 
We propose a class prioritization approach that is capable of 
identifying, at the top of the generated class priority list, a set 
of most crucial (decided on architectural relevance alongwith 
code smell information) and refactoring-prone (decided on 
historical information) application classes in need of urgent 
refactoring. We further investigate whether prioritizing classes 
in need of refactoring using the proposed approach might help 
in achieving an affordable balance between the estimated 
refactoring effort savings (in terms of number of classes to be 
refactored) and amount of code smell correction (in terms of 
number of smell instances to be removed). 

II. RELATED WORK 

Palomba et al. [19] proposed approaches that involve 
examining the version history of software’s source code to 
identify the code smell instances in the current software 
version. Macia et al. [7] worked diligently to probe the relation 
between code anomalies and architectural problems. Oizumi et 
al. [8] carried this research further and introduced a new 
approach that explores the relationship between code anomaly 
agglomerations and architectural problems. 

Tsantalis et al. [9] proposed an approach for ranking the 
refactoring opportunities based on historical volatility. 
Meananeatra [10] presented a technique that generates an 
optimal refactoring sequence for improving software 
maintenance. Ouni et al. [11] described a search-based 
approach for identifying the most appropriate refactorings 
based on chemical reaction optimization. Steidl et al. [12] 
introduced a prioritization scheme for two code smells, Code 
Clones and Long Method, based on the expected low costs 
involved in the correction of these code smells. Vidal et al. [13] 
presented a semi-automated approach for prioritizing the code 
smells based on three different criteria: code smell relevance, 
past modifications and modifiability scenarios of the software.      

There is limited research work performed in the area 
pertaining to the prioritization of classes in need of urgent 
refactoring treatments. Zhao et al.[14] prioritized classes based 
on a weighted maintainability rank for each class containing 
bad smells, utilizing different class characteristics such as size, 
complexity, etc. In a data mining based study, Kosker et al. 
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[15] applied weighted Naïve Bayes (NB) algorithm to predict 
the classes in urgent need of refactoring. Malhotra et al. [16] 
prioritized the software classes based on Quality Depreciation 
Index Rule (QDIR) metric, which measures the quality of a 
class based on the number of bad smells present and a set of 
object-oriented design metrics values for each class. 

III. PROPOSED APPROACH 

Our class prioritization approach follows a three step 
process as explained next. 

A. Analysis of Versions (AV) 

We follow the hypothesis stated by Girba et al. [6] that the 
classes that were frequently refactored in the past are more 
likely to undergo refactoring in the future. These classes can be 
categorized as refactoring-prone classes. The remaining classes 
that did not experience refactoring in any of the previous 
versions are considered to be least harmful; so we filter out 
such classes at this step.  

B. Analysis of Architecturally relevant Classes (AC) 

Another major factor that should be considered when 
identifying candidates for refactoring is the extent to which 
they are harmful to the system’s architectural design. 
Architectural problems have more detrimental impact on the 
quality and lifecycle of the system than other traditional code 
smells. Therefore, we select those classes that contain code 
smells having a direct relationship with such architectural 
problems [8]. The current version of the software is analyzed to 
locate the architecturally-relevant classes as they are 
considered to be the pillar classes of the software design, and a 
delay in their improvement can cause deteriorating effects on 
the system’s quality. 

The data from the above two steps are combined and the 
common set of classes, which are both architecturally relevant 
as well as frequently refactored, are provided as input to the 
third step. The rest of the classes are discarded. 

C. Generation of Rank (GR) 

The resulting crucial and refactoring-prone classes are then 
ordered according to their impact on the system’s quality. The 
classes are ranked using class scores generated as follows: 

             Class Score = F ×S× ∑ (S(xi) × I(xi))           (1) 

Here, F is the frequency score of a class. Every time a class is 
found to be refactored at least once when comparing two 
subsequent software versions, its frequency score is 
incremented by 1. S is the severity score of a class. It measures 
the negative impact of a class on the quality attributes of the 
system. It is measured by exploiting several software metrics 
like size, cohesion, coupling, complexity, etc. [17]. S(xi) is the 
severity score of a particular code smell xi for a given class. 
Each code smell instance has a different effect on the system 
design. This score represents the relative negative impact of 
the code smell instances. I(xi) represents the number of 
instances of a code smell xi present in a class. Here, i identifies 
a particular code smell. 

Once the class scores are generated, all these classes are 
ranked in decreasing order of their scores. Hence larger the 
Class Score value, higher the rank of the class; signifying the 
need of refactoring for a class. A threshold value can be 

associated with the class ranks to leave out the lowest ranked 
classes present in the sorted list, thus further reducing the 
number of shortlisted classes. 

An example for the proposed approach and additional 
information regarding this work is publicly available

1
. 

IV. STUDY DESIGN 

We chose four open-source Java applications to perform 
our experiments. Table I provides the descriptive 
characteristics (number of classes, Kilo Lines Of Code 
(KLOC), and number of code smell instances) of the selected 
systems, namely HealthWatcher

2
, orDrumbox

3
, GanttProject

4
 

(Gantt for short) and JHotdraw
5
. 

A. Methodology 

The overall research methodology followed is shown in 
Fig. 2. The first step of the proposed approach involves 
analyzing different stable versions of a given input system. The 
classes (belonging to each current version), which have been 
refactored at least once in previous software versions, are 
recorded alongwith their frequency score values. For 
identifying the number of frequently refactored classes in each 
software system, Ref-Finder tool [18] is used. Classes that have 
never been refactored before are filtered out at this step, and the 
remaining classes are recorded. At the next step, the current 
version of the software system is analyzed with the help of 
Organic

6
 tool. For our analysis, we considered those classes as 

architecturally-relevant, which are identified by intra-boundary 
and cross-boundary topologies [8]. An intersection of the class 
sets obtained from the aforementioned analysis steps are used 
as input for the final step. 

In the final step, JSpIRIT
7
 is used to detect code smell 

instances in the current versions of the sample applications. 
Although JSpIRIT is generally used for prioritizing code 
smells, we exploited its detection features only (as it does not 
provide the code smell severity scores as desired for this 
study). It supports the identification of 10 code smells using a 
software metric-based detection strategy. This metric-based 
strategy dissolves our need to calculate the object-oriented 
metrics values separately for predicting smelly classes, as the 
classes will be automatically categorized as ‘smelly’ according 
to the presence of code anomalies. Thereafter, inFusion

8
 tool is 

used to calculate the severity index of classes and code smell 
instances. It supports the identification of 7 of the 10 code 
smells detected by JSpIRIT. Hence, we use only these 7 code 
smells

1 
in this work. 

B. Evaluation of Proposed Approach 

We utilize the approach evaluation parameters: Code smells 
Correction Ratio (CCR) [11] and Estimated Effort (EE) [16] to 
evaluate our proposed approach. CCR is defined as the total 
number of code smell instances to be removed by refactoring 
the prioritized classes, divided by the total number

                                                           
1
 http://www.pvsingh.com/a_choudhary 

2
 http://ptolemy.cs.iastate.edu/design-study/#healthwatcher 

3
 http://sourceforge.net/projects/ordrumbox 

4
 http://ganttproject.biz/index.php 

5
 http://jhotdraw.org 

6
 http://wnoizumi.github.io/organic/plugin 

7
 https://sites.google.com/site/santiagoavidal/projects/jspirit 

8
 http://www.intooitus.com/products/infusion [Last Accessed - Mar 10, 2016] 
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TABLE I. VERSION-WISE SIZE AND CODE SMELL CHARACTERISTICS OF SAMPLE APPLICATIONS 

App. ► HealthWatcher orDrumbox GanttProject JHotDraw 

Ver. no. 1 2 3 4 5 6 7 8 9 10 0.9.08 0.9.22 0.9.23 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6 2.7 2.7.1 2.7.2 7.1 7.2 7.3 7.4 7.5 7.6 

# Classes 88 92 104 107 108 112 116 120 132 135 195 206 217 499 500 504 507 510 511 517 518 521 528 699 717 718 753 753 

KLOC 8 8.5 9.1 9.3 9.6 9.7 9.8 9.9 10.5 11.5 32 34 35 64 65 65.5 66.7 67.3 68 69 69.4 69 93 123 125 126 133 135 

# Smell 
instances 

37 37 41 41 40 42 44 43 53 60 404 422 458 541 596 584 601 623 599 641 653 668 1003 855 947 986 1172 1172 

 

 

Fig.2.Methodology flow for the evaluation of the proposed approach 

of code smell instances present in the software. It is given by 
(2). 

    
                                           

                                                 
  (2) 

EE is defined as the total number of classes that needs to be 
refactored divided by the total number of classes present in the 
software. After calculating the total estimated effort for 
refactoring, the total reduction in refactoring effort can be 
deduced. EE is given by (3). 

   
                                  

                                    
                      (3) 

V. PRELIMINARY RESULTS AND ANALYSIS 

The evolution of sample applications is quantified with the 
help of three version specific characteristics mentioned in 
Table I. The percentage of refactored classes between any two 
subsequent versions is always greater than 0% across all 
applications, which is quite normal for real world software 
systems. On average, 30% of the total number of classes is 
architecturally relevant across all four sample applications. 
This indicates that 30% (avg.) of the classes stand critical to the 
respective architectures of the current versions of these 
applications, and hence need immediate refactoring. Further, it 
is inferred that, on average, out of those 30% classes, 21% 
classes are refactored more than once in the previous versions. 
Thus, these 21% classes are chosen as the most significant and 
refactoring-prone classes. 

Table II highlights three top ranked classes for each 
application, respectively. Note that in this table, the two 

penultimate columns are devoted to the total number of code 
smell instances in a class and average of code smells severity 
values, respectively. However, for the actual calculation of the 
class scores (when exercising the proposed approach), we 
considered the individual code smells alongwith their 
respective severity scores. It is conspicuous from Table II that 
the four class score parameters (Section III.C) contribute 
uniformly in generating balanced ranks for the classes. E.g. for 

orDrumbox, class ControlerProduct has higher severity score than 

classes OrTrack, Song, and Command; but due to low average 
number of code smell instances and frequency score, it records 
a low class score (and rank). Moreover, it is found that the 
classes having higher frequency scores have a higher number 
of code smell instances too. Thus it is revealed that despite of 
having been refactored in the earlier versions, such classes are 
still smelly and need further attention. 

The evaluation results are summarized in Table III. On 
average, nearly 40% (EE) of the total number of classes needs 
frequent refactoring treatments. At the same time, the CCR 
scores indicate that more than 75% of the code defects fall 
within these 40% classes. On applying refactoring treatments to 
these classes, a significant improvement in software quality is 
ensured as indicated by high CCR scores. At the next step 
(AC), we observed that almost half of the previously refactored 
classes do not pose any threat to the architectural degradation 
of the selected systems. For instance, for JHotdraw, 158 of 278 
classes (56%) are architecturally relevant. Consequently, EE 
score for JHotDraw dropped to 20% with a minimal decline in 
CCR score. Similar results are obtained for orDrumbox; a 
refactoring effort of 26% and smell correction of 73%. We 
gathered the results for those classes having ranks above a 
custom threshold value of 20. The developers can choose any 
threshold values that help them establish the desired balance 
between the amount of smell correction and estimated 
refactoring effort for their projects. 

The results revealed that the search space for refactoring 
opportunities (number of classes) is constantly shrinking with  

 

TABLE II. HIGH PRIORITY CLASSES OFSAMPLE APPLICATIONS 

Rank Class name F S Total 

I(xi) 

Avg. 

S(xi) 

Class 

Score 

HealthWatcher 

1 FoodComplaintStateClosed 5 32.4 7 7.1 7938.0 

2 Situation 4 28.0 5 4.4 2576.0 

3 ComplaintRepositoryRDB 3 30.0 2 4.0 1440.0 

OrDrumbox 

1 Command 2 70.0 38 6.8 8960.0 

2 Ortrack 2 49.6 32 5.6 8928.0 

3 Song 2 49.4 18 4.2 2568.8 

GanttProject 

1 Taskmanagerimpl 5 57.4 17 7.0 34153.0 

2 GanttProject 3 50.8 12 5.7 12649.2 

3 GanttOptions 4 35.2 12 7.1 11827.2 

JHotDraw 

1 SVGInputFormat 5 18.0 33 9.0 26730.0 

2 DefaultDrawingView 4 14.0 28 8.2 12096.0 

3 Bezier 2 11.2 22 7.6 4659.2 
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TABLE III: EVALUATION METRICS RESULTS FOR THE FOUR SYSTEMS STUDIED 

System Step EE CCR 

HealthWatcher AV 

AC 

GR 

42% (58|135) 

19% (26|135) 

16% (22|135) 

70% (42|60) 

65% (39|60) 

60% (36|60) 

OrDrumbox AV 

AC 

GR 

44% (97|217) 

26% (58|217) 

18% (39|217) 

76% (349|458) 

73% (336|458) 

63% (289|458) 

GanttProject AV 

AC 

GR 

35% (182|521) 

17%(99|521) 

15%(79|521) 

79%(528|668) 

75%(501|668) 

70%(470|668) 

JHotDraw AV 

AC 

GR 

37% (278|753) 

20% (158|753) 

17% (132|753) 

75% (885|1172) 

70% (827|1172) 

67% (789|1172) 

 
each step of the proposed approach. We observed that on 
average (across all sample applications) the refactoring effort 
required to remove 65% (avg. CCR) of code smells comes out 
to be 16% (avg. EE); hence saving an estimated refactoring 
effort up to 84%. For HealthWatcher, EE value shows a similar 
trend whereas its CCR value is slightly less as compared to that 
for other applications; but still acceptable. Overall results 
indicate that a major chunk of code anomalies could be 
targeted with a significant reduction in refactoring effort. This 
approach provides the developers with an option to choose any 
number of top ranked classes to refactor depending upon an 
affordable balance between the code smell corrections and 
estimated refactoring effort.  

VI. THREATS TO VALIDITY 
A construct validity threat concerns the possible errors (like 

some classes may be missed or may be identified as false 
positives) while identifying the refactored classes, 
architecturally relevant classes and code smell instances. To 
mitigate this threat, we considered widely known and fairly 
accurate code smell detection and refactoring detection tools 
that have been used in the relevant literature. While analyzing 
the software versions, we considered all those classes that have 
been refactored more than once. It would also include such 
classes that underwent a change just once during their 
evolution across various software versions. To mitigate this 
threat, we manually analyzed the classes, and decided whether 
they should be included or not. We analyzed four small and 
medium-sized open source java systems.  This could affect the 
generalization of our approach when applied to large-sized 
commercial systems as well as systems written in other 
programming languages. However, the variable-sized sample 
applications along with the consistency in the experimental 
results across those applications minimize this threat to some 
extent.  

VII. CONCLUSIONS AND FUTURE WORK 

In this study, we presented an approach for the 
prioritization of classes in need of refactoring. The proposed 
approach combines three different perspectives, i.e. historical 
data, architectural design, and severity of the class; and 
generates a prioritized list of classes. By prioritizing the classes 
based on our approach, up to 84% of refactoring effort was 
expected to be saved while also eradicating 65% (approx.) of 
the code smells for the four selected software applications. The 
proposed approach and the related findings can be useful for 
the development teams, which are short on project time and 
budget, to have refactoring processes on board. Also, such a 

prioritization of refactoring opportunities might help the 
developers in doing away with having to process large sets of 
refactoring recommendations. 

We intend to extend this work in a number of ways. Since 
our initial experimental study includes small and medium-sized 
projects, we plan to replicate our experiments to the large-sized 
systems and industrial projects in future. An important future 
work would be to aim more number of distinct code smells to 
further gain in terms of saved refactoring effort and increased 
code smell correction. We also aim to compare our results with 
previous class prioritization techniques targeting refactoring. 
Lastly, we intend to implement our approach in the form of an 
automated tool that provides a prioritized list of classes in need 
of refactoring, and let the developers opt for the right balance 
between the estimated refactoring effort savings and expected 
code smell corrections.  
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