
ACM Student Research Competition

Validating Emergent Behaviors in
Systems-of-Systems through Model Transformations

Valdemar Vicente Graciano Neto
University of São Paulo, São Carlos, Brazil

IRISA-UMR CNRS/Université de Bretagne-Sud, Vannes, France
Universidade Federal de Goiás, Goiânia, Brazil

valdemarneto@usp.br

Abstract
Systems-of-Systems (SoS) are formed by independent systems
termed as constituents. SoS exhibit dynamic properties called
emergent behaviors, which are a global functionality that appears
as a result of the interoperability among constituents. However,
software architecture descriptions of SoS are often static. In turn,
dynamic models such as simulation models (also adopted to spec-
ify SoS) do not use to preserve software architecture details, which
can hamper the software quality. In this paper, we propose a model
transformation approach to harmonize software architecture de-
scriptions of SoS and simulation models to support validation of
emergent behaviors. We model a software architecture of SoS by
the adoption of SosADL, a novel architectural description lan-
guage (ADL) for SoS, and transform it to DEVS, a formalism
for simulation of SoS. Our approach offers a dynamic view to
architectural descriptions of SoS, preserving the architectural in-
tegrity of the SoS, and supporting the visualization and validation
of emergent behaviors. We evaluate our proposal through a case
study conducted within the context of a real SoS in operation for
flood monitoring in an urban area. Preliminary results show that the
transformation is feasible, generating functional simulation models
that support the validation of emergent behaviors.

Categories and Subject Descriptors Software and its engineering
[Software system models]: Model-driven software engineering

Keywords Systems-of-Systems, Emergent Behaviors, Model Trans-
formations, Software Architecture.

1. Motivation and Research Problem
Systems-of-Systems (SoS)1 are a set of independent, heteroge-
neous constituent systems that form a larger system in order to
accomplish a set of missions, that is, functional goals assigned to
the SoS as a whole (Maier 1998). They are likely to form the next
generation of software-intensive systems (Jamshidi 2008; Boehm

1 For sake of simplicity, SoS will be used interchangeably to express singu-
lar and plural.

2006), often supporting missions in critical domains, such as emer-
gency and crisis response in smart cities (ROAD2SOS 2013).

One remarkable feature of SoS is its software architecture.
Software architectures play a fundamental role in software qual-
ity (Nakagawa et al. 2013). Thus, it is prevalent to adopt models
that capture precisely such software architectures (Nielsen et al.
2015). However, besides structure and individual systems behav-
iors, SoS exhibit a dynamic property called emergent behavior
(Maier 1998; Boardman and Sauser 2006; Cavalcante et al. 2014;
Mittal and Rainey 2015). This property emerges at runtime as a re-
sult of the interoperability of the constituent systems (Maier 1998).
However, this property has not been captured by modern archi-
tectural description languages (ADL) (Michael et al. 2009, 2011;
Guessi et al. 2015b). The operation and success of an SoS is intrin-
sically associated with the emergent behaviors and its underlying
software architecture. Thus, an approach to support validation of
emergent behaviors in SoS software architectures is prominent and
still an issue (Zave 1993; Sauser et al. 2010; Nielsen et al. 2015).

Under another perspective, the Systems Engineering (SE) com-
munity has developed approaches based on simulations to support
dynamic properties for SoS (Michael et al. 2009; Sauser et al. 2010;
Zeigler et al. 2012; Mittal and Rainey 2015; Wachholder and Stary
2015). However, SE approaches do not properly support software
architecture description (Guessi et al. 2015b). Their formalisms use
to rely on notations based on input/output events and state dia-
grams, which sacrifices the high-level of abstraction required for
SoS software architecture descriptions.

Then, we pose the following research question: How to vali-
date emergent behaviors in SoS preserving their software archi-
tectures? SofTware ARchitecture Team (START/ICMC-USP) and
ArchWare (IRISA/UBS) research groups have worked on support-
ing both specification and validation of SoS software architectures.
As a result, a new ADL called SosADL was proposed (Oquendo
and Legay 2015; Oquendo 2016a,b). However, SosADL is not sub-
ject to simulation, yet. In this direction, this paper proposes a trans-
formation approach from SosADL to DEVS (Discrete Event Sys-
tem Specification) (Zeigler et al. 2012), a simulation formalism.
Our approach harmonizes both the software architecture of the SoS
and a simulation perspective, supporting the validation of emergent
behaviors, while still preserving the SoS software architecture de-
scription. The remainder of this paper is structured as follows. Sec-
tion 2 describes foundations. Section 3 outlines the mapping from
SoSADL to DEVS. Section 4 discusses our preliminary results, and
Section 5 brings final remarks.

Validating Emergent Behaviors in SoS through Model Transformations 1 2016/12/9



2. Foundations
SoS share five well-defined characteristics postulated by Maier
(Maier 1998): (i) operational independence, since constituents op-
erate both autonomously and in the SoS context; (ii) managerial in-
dependence of constituents, that is, distinct stakeholders and insti-
tutions can own them; (iii) emergent behavior, a synergistic behav-
ior yielded by the constituents interoperability; (iv) evolutionary
development, once the SoS evolves as a result from the evolution
of its constituents; and (v) distribution, since their communication
relies on some network technology.

Emergent behavior is a singular characteristic of SoS. It is trig-
gered by the reception of stimulus and data exchanged between
the constituents, and between the SoS and the environment (Gra-
ham 2013). Such behaviors are a holistic phenomena manifested
after a certain number of interactions among the constituents that
produces a superior result that could not be delivered by any one
of them in isolation. Examples include a home security behavior
that could emerge from a set of individual systems installed in a
smart home. In short, an emergent behavior is classified, despite
further refinements, as Weak or Strong (Chalmers 2006; Mittal and
Rainey 2015). The former is reducible to a simulation, whilst the
latter can not be simulated by a computer (for example, life as a
result from the parts that constitute alive organisms). Even when
working on weak emergent behaviors, unexpected behaviors can
emerge, jeopardizing involved stakeholders, with potential to cause
hazards and losses (Chalmers 2006). Then, it is paramount vali-
dating such behaviors, that is, checking the conformance between
the pre-established missions and the respective emergent behaviors
that accomplish them.

Under another perspective, software architectures correspond
to the fundamental structure of a software system. They comprise
software elements, relations among them, and the rationale, prop-
erties, and principles governing their design and evolution (Bass
et al. 2012; iso 2011). In turn, a software architecture of an SoS
is its fundamental structure, including its constituents and connec-
tions between them, properties of the constituents and of the en-
vironment (Nielsen et al. 2015). Indeed, architectural descriptions
are the main work product that express a software architecture (iso
2011). They are often specified based on ADL (iso 2011).

Figure 1. An excerpt of the SosADL metamodel.

SosADL is a novel ADL conceived to support the specification
of architectural descriptions for software architecture of SoS. It has
been created to overcome the drawbacks exhibited by precedent
ones (Oquendo and Legay 2015; Oquendo 2016a,b), such as the
difficulties to specify multiple individual systems interoperating,

while still considering their software architecture, and to deal with
constituents that are known at design-time. SosADL is formally
founded on π-calculus for SoS (Oquendo 2016b), a novel formal-
ism to describe intercommunicating processes. Figure 1 shows an
excerpt of SosADL metamodel. In short, SosADL describes SoS,
which can be expressed as a combination of architectures, sys-
tems, and mediators declarations. Mediators are architectural ele-
ments concerned with establishing communication between two or
more constituents (Wiederhold 1992). An architecture has an in-
trinsic structure and behavior declaration (materialized as a coali-
tion), data types, and gates declarations. Gates are abstractions that
enable the establishment of connections. A connection can be es-
tablished to receive stimulus from or act on the environment, or
simply for a communication between constituents. Data types can
have inherent functions, and functions can have associated expres-
sions. Mediators and systems have gates, data types, and behaviors,
as well as the SoS architecture itself. Coalitions are an arrange-
ment of systems (constituents), and Systems are mediated by me-
diators (Oquendo and Legay 2015). SosADL supports specifying
weak emergent behavior by the idea of coalition, a temporary al-
liance for combined action among constituents connected by medi-
ators. Those behaviors are specified as part of the coalition behav-
ior, documenting how constituents should interact to accomplish a
given set of missions. Expressions and values are suppressed in this
representation2.

SosADL models are not executable yet. Hence, a dynamic view
for architectural descriptions based on SosADL is still required.
Model transformations are a well-accepted approach that aid soft-
ware engineers to establish correspondences between models (Sun
et al. 2008). In particular, Model-Driven Development techniques
have been investigated in the context of SoS (Graciano Neto et al.
2014; Graciano Neto et al. 2015). Besides, a broad set of tools is
available to achieve a proper level of automation using transfor-
mation tools, such as Xtend (Bettini 2013) and Acceleo (Eclipse
2012). Thus, a model transformation can be carried out between
SosADL models and a simulation model in order to preserve the
architectural descriptions and to achieve the dynamics required to
visualize and validate emergent behaviors.

A validation approach for emergent behaviors in SoS soft-
ware architectures requires a dynamic view that externalizes such
behaviors. Such an approach should allow software architects
to predict and validate desired emergent behaviors, and also
prevent unexpected behaviors by monitoring the SoS dynam-
ics. Currently, there are four major categories of techniques for
validating software architectures3: scenario-based, simulation-
based, mathematical/logical-based, and experience-/metric-based.
Considering the dynamic nature of SoS software architectures,
a simulation-based approach is undoubtedly the best choice4.
Nonetheless, known ADL for SoS are not subject to runtime exe-
cution or simulation. Thus, they do not provide a dynamic view for
SoS software architecture descriptions (Guessi et al. 2015a).

Simulation-based approaches have supported the validation of
dynamic properties for SoS (Nielsen et al. 2015; Mittal and Rainey
2015; Michael et al. 2009; Sauser et al. 2010; Zeigler et al. 2012;
Wachholder and Stary 2015) and have recently been investigated
in the context of software engineering (de França and Travassos
2016). Such approaches (Michael et al. 2011; de França and Travas-

2 More details about the syntax of architecture descriptions in SosADL and
its elements can be found in (Oquendo 2016a).
3 Dobrica and Niemela discuss further details about validation methods for
software architecture (Dobrica and Niemele 2002; Michael et al. 2009,
2011).
4 Nielsen et al. deeply discuss simulation approaches for SoS (Nielsen et al.
2015).

Validating Emergent Behaviors in SoS through Model Transformations 2 2016/12/9



Approach Support for Software Architectural
Description of SoS

Support for
Specification of

Emergent Behaviors

Support for Validation
of Emergent Behaviors

Bigraph (Wachholder and Stary 2015) 7 X 7

Cavalcante et al. (Cavalcante et al. 2014) 7 X 7

CML (Woodcock et al. 2012) X 7 7

DEVS (Zeigler et al. 2012) 7 X X
Michael et al. (Michael et al. 2011) 7 X 7

Systomics (Sauser et al. 2010) 7 X 7

SySML (OMG 2016a) X 7 7

UML (OMG 2016b) X 7 7

Xia et al. (Xia et al. 2013) 7 7 X
Our approach X X X

Table 1. Comparison between co-related approaches.

sos 2016; Wachholder and Stary 2015; Xia et al. 2013): (i) support
the validation of expected emergent behaviors, (ii) empower the
observation of unexpected emergent behaviors; (iii) enable the pre-
diction of errors, diagnosing them and permitting corrections; and
(iv) provide a visual and dynamic view, reproducing stimuli that the
system can receive from the environment.

Figure 2. DEVS simplified metamodel for DEVSNL, adapted
from (Cetinkaya et al. 2012).

DEVS is an option to support SoS simulation (Zeigler et al.
2012). It corresponds to a modeling formalism for SoS based on
atomic and coupled models. Atomic models represent individual
entities in the SoS (for instance, systems), while coupled models
represent a combination of atomic models. Figure 2 depicts DEVS
basic elements. Atomic models comprise the following elements:
(i) ports (input and output); (ii) a labeled state diagram that per-
forms transitions due to input or output events; (iii) functions that
can be used to process data; (iv) data types; and (v) events. In par-
ticular, a state diagram is a set of states and transitions, in which
a transition is necessarily from one state to another state. Cou-
pled models are expressed as a System Entity Structure (SES), that
is, a formal structure governed by a small number of axioms that
expresses how atomic models communicate between themselves
(Zeigler et al. 2012). We chose SosADL and DEVS to compose our
approach since SosADL suppresses the disadvantages of the other
ADL as aforementioned, and DEVS was conceived especially for
simulation of SoS. We adopted a DEVS dialect called DEVS Nat-
ural Language (DEVSNL) that enables programming atomic and
coupled models in a human-like format in tools such as MS4ME5.
The combination of SosADL and DEVS offers the necessary level

5 http://goo.gl/NmBBuu

of abstraction for architectural descriptions of SoS and the required
dynamic view for validation of emergent behaviors.
Related Work. Several initiatives have been proposed to address
the description of SoS software architectures, representation, and
validation of emergent behaviors of SoS. Table 1 shows a compar-
ison among related work and characteristics offered by them.

Bigraph-based modeling offers a solution for mathematically
representing emergent behaviors in SoS through a formalism based
on a special type of graphs (Wachholder and Stary 2015). However,
there is not a support for description of software architectures of
SoS, nor a validation approach.

Cavalcante et al. (Cavalcante et al. 2014) report a model trans-
formation approach that adopts π-ADL architectural models to
describe dynamic architectures, that is, software architectures in
which components and connectors can be created, interconnected,
and/or removed during system execution, transforming π-ADL
models in Go software code. Their work does not have focus on
the validation of SoS’ emergent behaviors, and Go is not a simu-
lation model. Although π-ADL provides architectural description
models for concurrent and communication processes, it does not
provide straightforward abstractions of some particular concepts of
SoS, such as mediator and coalition.

Xia et al. (Xia et al. 2013) perform evaluation of SoS architec-
tures documented in DoDAF (dod 2010) through a model-driven
approach that transforms system architecture models in executable
models described in Simulink6. More precisely, their approach is
concerned with the entire SoS, including hardware issues, while
our approach is focused only on software architecture. Moreover,
they focus their evaluation on technical aspects of the SoS, mea-
suring non-functional properties such as feasibility and efficiency.
Validation of the rationality and correctness of logic and behavior
of the architectural models are considered supported and a possi-
bility, but validation is not properly performed.

Another perspective involves bio-inspired initiatives, such as the
Systomics approach (Sauser et al. 2010), establishing analogies to
construct models to represent emergent behaviors in SoS. However,
it does not properly offer a validation for emergent behaviors. In
turn, Michael et al. (Michael et al. 2011) propose a mathematical
notation to deal with verification and validation of software archi-
tectures of SoS (as a whole). Simulation is mentioned, focusing
on verification of non-functional requirements, with no mention to
validation of emergent behaviors. Moreover, all of those notations
do not exhibit a suitable level of abstraction for the purposes of
software architecture description of SoS.

DEVS itself is an approach for SoS simulation and validation
of emergent behavior (Zeigler et al. 2012). However, it does not

6 www.mathworks.com/products/simulink/

Validating Emergent Behaviors in SoS through Model Transformations 3 2016/12/9



support a representation, relying on systems engineering concepts,
which can be unsuitable for software architects. Transformations
from distinct models to DEVS in order to make the former exe-
cutable have been proposed (Cetinkaya et al. 2012; Gonzalez et al.
2015; Hu et al. 2014). However, no focus on software architectural
descriptions of SoS in DEVS has been found.

In parallel, languages for specifying SoS architectures can
be identified (Guessi et al. 2015b): UML (OMG 2016b) (semi-
formal), SysML (OMG 2016a) (semi-formal), CML (Woodcock
et al. 2012) (formal). UML does not support a suitable specifica-
tion of software architectures of SoS (Guessi et al. 2015b). SysML
lacks specific structures for modeling some aspects of software
architecture of SoS and it is also a static specification, with no
support for validation of emergent behaviors (Guessi et al. 2015b).
CML is a formal language especially conceived for SoS formal
specification within the context of the Comprehensive Modelling
for Advanced Systems of Systems (COMPASS) alliance. However,
it focuses on the verification of emergent behaviors, not on their
validation (Fitzgerald et al. 2013).

3. A Transformation Approach to Support
Validation of Emergent Behaviors

We established a model-based transformation approach to map
SosADL models into SES/DEVS models. In our approach, we dis-
tinguish two main roles involved in SoS conception: Software Ar-
chitect and System Architect. From the software architect’s view-
point, a SoS is examined under a static perspective regarding the
software architecture itself without support for visualizing emer-
gent behaviors. From the systems architect’s viewpoint, the SoS is
analyzed from a dynamic perspective considering state diagrams,
constituents, inputs and outputs, with support for emergent behav-
ior validation but without an explicit software architecture. To over-
come the drawbacks exhibited, our approach merges the advantages
offered by systems and software architecture bridging both models
by means of a mapping between them, supporting both software
architecture and validation of emergent behaviors for SoS software
architecture, offering dynamic and static views.

Table 2 presents the correspondences between SosADL and
DEVS to establish the transformation.

Table 2. Mapping between SoSADL and SES/DEVS
SoSADL SES/DEVS
Architecture Coupled Model
Behavior State Diagram
Connection DEVS Port
Coalition Coupled Model
Data Type Data Type
Function DEVS Function
Mediator Atomic Model
SoS Coupled Model
System Atomic Model

System and Mediator. Both concepts become atomic models in
DEVS. They are represented as single entities in the simulation
model. They have their own behavior expressed as a state diagram.
Behavior Declaration. Behaviors in SosADL are specified by a
list of statements. These statements are similar to basic instruc-
tions available in programming languages, such as type declaration,
and sequences. Each statement becomes one or more transitions
in a a state diagram (automaton) in DEVS. Important operations
in SosADL include send and receive, that are translated into state

transitions that cause the emission of data to another system or tran-
sitions that are triggered by the reception of data, respectively.
Architecture, Coalition, and SoS. These structures are mapped
into coupled models, being converted in the specification of how
they promote the SoS operation.
Connections and Gates. In SosADL, connections are abstractions
of links between gates from different communicating entities that
establish a channel to transmit data. Multiple connections (input
and output), can be established on the same gate. Translating to
SES/DEVS, the gate concept is suppressed, and connections are
mapped into ports (input and output ports).
Data Types. Data types in SosADL become data types in DEVS.
They can be Abstract Data Types (ADT) or simple types, such as
integer. They can be exchanged in messages among systems.
Functions. Analogously, function declarations of SosADL are con-
verted in functions in DEVS. The discussion of their mapping is
beyond the scope of this paper.

During the transformation, a SoS architectural description writ-
ten in SosADL is verified against the abstract syntax of SosADL
described in Xtext7. If the SosADL code conforms to the Xtext
grammar, the code is submitted as input for an Xtend8 script that
materializes the code generator. A functional code written in DE-
VSNL is generated as output.

Listing 1. A transformation rule corresponding to
receive statement in SosADL, which becomes an
input transition in DEVSNL.

1 def String generationOfInputTransition () ’’’
2 passivate in s<<fromState >>!
3 when in s<<fromState >> and receive <<

dataReceived >> go to s<<toState >>!
4 ’’’

Listing 1 shows an excerpt of a transformation rule used to
map a statement receive written in SosADL in an input transition
specification in DEVS. This rule is in the context of an ADT
defined within the Xtend transformation code. This ADT is an
abstraction of a DEVS Transition and gives access to the states
involved in the transition (source and target), and to the data being
received. The automata is extracted using Xtend and constructed
according to the abstract syntax tree provided by Xtext/Xtend.
Then, these data are used to create a couple of lines of code in
DEVS. Line 2 in Listing 1 expresses that the execution waits in
the state sn (where n is the number that identifies an specific state)
until receiving a specific data. Then, Line 3 declares that when this
occurs, a transition to a second state occurs. Line 4 closes the scope
of the method specified in Xtend.

4. Preliminary Results
We adopted our approach in a practical case study: a Flood Mon-
itoring SoS (FMSoS), that is, an SoS composed of smart sensors
that use software to monitor the occurrences of floods in an ur-
ban area of the city of São Carlos in Brazil. Rivers cross the city
and, when the rains are intense, floods often occur, causing property
loss, damage, and serious danger to the population. The FMSoS is
used to illustrate the validation of a single emergent behavior: flood
alert. Constituents are smart sensors. They are spread on the river
edges at a regular distance with mediators between them. The data
is collected by sensors and transmitted until reaching the gateway.
When flooding occurs, the gateway emits an alarm for the public
authorities.

7 https://eclipse.org/Xtext/
8 xtend-lang.org/

Validating Emergent Behaviors in SoS through Model Transformations 4 2016/12/9



The transformation was successfully run and the atomic and
coupled models accordingly generated. A brief video demonstrat-
ing the generated simulation is available9. Some important points
must be highlighted about this specific transformations, as follows:

• Adaptations in source model. Specification of such a transfor-
mation helped in the improvement of the source model, since
some conflicting names of variables were diagnosed during
the transformation, good practices of specification for SosADL
models were discovered, and even incomplete specification be-
came evident when the transformation started to be executed,
aiding in the completion of the source code. Hence, a possible
conjecture is that the adoption of model transformations in our
approach may have helped in the improvement of the quality of
a source model of SoS, since this approach offers a visualization
of the resultant dynamics, and the consequences of decisions in
the specification of the source model;

• Maturity of the language. A model-driven approach for spec-
ification and execution of software architectures of SoS helped
even in the maturity of the SosADL language itself. Since the
ADL is quite novel and still subject to adaptations, some is-
sues about the possibility of multiple behaviors in a same con-
stituent were discussed and some points about the definition of
data types were also clarified, such as the convention of assign
the type Integer for any type of data that were specified as ab-
stract (such as a type Energy), but without an explicit attribute
type assigned to be effectively used.

• Stimuli Generator. It is important to highlight that there exist
atomic models in the functional example called stimuli genera-
tors. They consist of abstractions of systems that continuously
emit the stimuli necessary to trigger the SoS operation, such as
delivering the coordinates lps originally delivered by a GPS,
or the level of water collected by a sensor. Stimuli generator is
used to create the first two portions of code, sending lps coor-
dinates, powerLevel, and a first sense, that is, a data collected
by the sensor that will trigger systems behavior execution in all
of the systems. We also automatically derive it from the spec-
ification of the source models written in SosADL. This struc-
ture makes the simulation functional. More details about this
approach are found in (Graciano Neto et al. 2016).

• Transformations execution. Each transformation takes no
more than milliseconds to be run. They run without errors. Two
different types of transformations are executed. One to generate
atomic models, and another to generate coupled models. Hence,
we run the transformation four times: one to generate sensor,
another one to generate mediator, another one to generate gate-
way (all atomic models), and a last one to generate the coupled
model. This is necessary because the structures that model an
architecture in SosADL do not hold definitions about the data
types being transferred (essential for coupled models). Thus, it
is necessary to infer the type being transferred between atomic
models to generate it automatically in the coupled models. The
strategy adopted was: (i) generation of all the atomic models,
(ii) saving the definition of the connections in the SosADL
specification (format connection::gate;dataTypeName) in
a text file and (iii) reading it during the coupled model genera-
tion. Since the name of the pair connection::gate is unique
for the entire SoS, it is possible to infer the type of the data
being transferred.

9 https://goo.gl/cf6sef

5. Final Remarks
This paper presented preliminary results of a research being con-
ducted to answer this question: How to validate emergent behaviors
in SoS preserving their software architectures? We proposed a so-
lution to transform a software architecture description written in
SosADL to a simulation model in DEVS, harmonizing both for-
malisms by means of a mapping between them. Our approach con-
tributes by: (i) offering a solution as how to transform an software
architecture description of SoS into a simulation formalism, guar-
anteeing traceability between those models, high-level of abstrac-
tion in the SoS software architecture specification and automation;
(ii) supporting validation of weak emergent behaviors by analyzing
the conformance between SoS missions and emergent behaviors
manifested during SoS operation; and (iii) offering a visual and
dynamic view for SoS software architecture descriptions.
Uniqueness. Our approach is the only one reported that provides
a dynamic view for SoS software architectural descriptions and
validation support for emergent behaviors by means of a trans-
formation. SosADL supports representation of dynamic properties
such as emergent behaviors. Furthermore, as a consequence, model
transformations provide the operational semantics for SosADL
models, that is, the meaning of SosADL statements in terms of
execution, translating it in simulation models (Sun et al. 2008),
such as (Shakshuki et al. 2015).
Contributions. Specification of an SoS in SosADL is more ab-
stract and leads to programming in a language closer to software
architect’s current practices. Indeed, SosADL is the unique for-
mal current state of the art notation for describing software archi-
tectures of SoS that deals with emergent behaviors (Guessi et al.
2015b; Oquendo 2016a). Moreover, our approach provides some
contribution (directly or indirectly) to some of the topics of interest
for the MODELS community, such as:

• Development and use of models: providing an operational se-
mantics by means of a model transformation is a quite novel ap-
proach. Moreover, we establish this for an ADL that describes
software architectures of SoS. As far as we know, we do not
know other initiatives in this direction;

• Integration of modeling languages and tools (hybrid multi-
modeling approaches): Our approach harmonizes distinct
paradigms of model-based engineering (software engineering
and systems engineering) by means of transformation. It is not
a new trend (Sun et al. 2008; Shakshuki et al. 2015), but com-
bining a software architecture model for SoS and a simulation
model is unique and a novel approach.

• Modeling with, and for, new and emerging systems and
paradigms: Software-intensive SoS is an emergent domain. A
recent systematic literature review revealed that about 75% of
the publications addressing SoS appeared in the last five years
and approximately 90% in the last 10 years (Guessi et al. 2015b;
Oquendo and Legay 2015), whilst most of those studies com-
municates open issues on SoS software architecture and engi-
neering. Software Engineering of SoS (SESoS), in turn, is even
more recent and subject to investigation. Hence, we believe our
solution represents an advance towards a more accurate treat-
ment of emergent behaviors in SoS software architectures;

Future works include (i) further case studies and experiments,
(ii) the extension of our approach to validate multiple concurrent
emergent behaviors, and (iii) a deeper investigation on the emer-
gence of unpredicted behaviors, establishing techniques to prevent
them.

Validating Emergent Behaviors in SoS through Model Transformations 5 2016/12/9



Acknowledgments
The author thanks CNPq (grant:201230/2015-1/SWE) and FAPESP
(grant: 2013/20317-9) for the financial support.

References
The DoDAF Architecture Framework Version 2.02. US. Department of

Defense, Aug. 2010.

ISO/IEC/IEEE Systems and software engineering – Architecture descrip-
tion. ISO/IEC/IEEE 42010:2011, pages 1–46, Dec 2011.

L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison-Wesley Professional, 3rd edition, 2012.

L. Bettini. Implementing Domain-Specific Languages with Xtext and Xtend.
Packt Publishing, 2013.

J. Boardman and B. Sauser. System of systems - the meaning of of. In
SOSE, pages 6 pp.–, Los Angeles, California, USA, April 2006.

B. Boehm. A view of 20th and 21st century software engineering. In Pro-
ceedings of the 28th International Conference on Software Engineering,
ICSE ’06, pages 12–29, New York, NY, USA, 2006. ACM.

E. Cavalcante, F. Oquendo, and T. V. Batista. Architecture-Based Code
Generation: From π-ADL Architecture Descriptions to Implementations
in the Go Language. In ECSA, pages 130–145, Vienna, Austria, 2014.

D. Cetinkaya, A. Verbraeck, and M. D. Seck. Model Transformation from
BPMN to DEVS in the MDD4MS Framework. In STMS, pages 1–6,
Orlando, USA, 2012.

D. J. Chalmers. Strong and weak emergence. In P. Davies and P. Clay-
ton, editors, The Re-Emergence of Emergence. Oxford University Press,
2006.

B. B. N. de França and G. H. Travassos. Experimentation with dy-
namic simulation models in software engineering: planning and re-
porting guidelines. Empirical Software Engineering, 21(3):1302–1345,
2016.

L. Dobrica and E. Niemele. A survey on software architecture analysis
methods. IEEE Trans. Softw. Eng., 28(7):638–653, July 2002.

Eclipse. Acceleo, 2012. URL http://www.eclipse.org/acceleo/.

J. Fitzgerald, S. Foster, C. Ingram, P. G. Larsen, and J. Woodcock. Model-
based Engineering for Systems of Systems: the COMPASS Manifesto.
Technical Report Manifesto Version 1.0, COMPASS Interest Group, Oc-
tober 2013. URL http://www.compass-research.eu/Project/
Publications/MBESoS.pdf.

A. Gonzalez, C. Luna, M. Daniele, R. Cuello, and M. Perez. Towards an
automatic model transformation mechanism from UML state machines
to DEVS models. CLEI Electron. J., 18(2), 2015.

V. V. Graciano Neto, M. Guessi, L. B. R. Oliveira, F. Oquendo, and E. Y.
Nakagawa. Investigating the model-driven development for systems-of-
systems. ECSAW ’14, pages 22:1–22:8, New York, NY, USA, 2014.
ACM.

V. V. Graciano Neto, M. Guessi, L. B. R. de Oliveira, F. Oquendo, L. Garcs,
and E. Y. Nakagawa. A conceptual map of model-driven development
for systems-of-systems. WDES’ 15, pages 89–92, Belo Horizonte,
Brazil, 2015. SBC.

V. V. Graciano Neto, C. E. B. Paes, F. Oquendo, and E. Y. Nakagawa.
Supporting simulation of systems-of-systems software architectures by
a model-driven derivation of a stimulus generator. WDES’ 16, pages
1–10, Maringá, Brazil, 2016. SBC.

B. Graham. Nature’s Patterns - Exploring Her Tangled Web. FreshVista,
2013.

M. Guessi, E. Cavalcante, and L. B. R. Oliveira. Characterizing architecture
description languages for software-intensive systems-of-systems. In 3rd
SESoS, pages 12–18, Florence, Italy, May 2015a. IEEE.

M. Guessi, V. V. Graciano Neto, T. Bianchi, K. R. Felizardo, F. Oquendo,
and E. Y. Nakagawa. A systematic literature review on the description
of software architectures for systems of systems. In SAC, pages 1433–
1440, Salamanca, Spain, April 2015b.

J. Hu, L. Huang, B. Cao, and X. Chang. Extended DEVSML as a Model
Transformation Intermediary to Make UML Diagrams Executable. In
SEKE, 2014.

M. Jamshidi. System of systems - innovations for 21st century. In 2008
IEEE Region 10 and the Third international Conference on Industrial
and Information Systems, pages 6–7, Dec 2008.

M. W. Maier. Architecting principles for systems-of-systems. Systems
Engineering, 1(4):267–284, 1998.

J. B. Michael, R. Riehle, and M. T. Shing. The verification and validation
of software architecture for systems of systems. In SoSE, pages 1–6,
Albuquerque, NM, USA, May 2009.

J. B. Michael, D. Drusinsky, T. W. Otani, and M.-T. Shing. Verification
and validation for trustworthy software systems. IEEE Software, 28(6):
86–92, 2011.

S. Mittal and L. Rainey. Harnessing Emergence: The Control and Design
of Emergent Behavior in System of Systems Engineering. In SCS, pages
1–10, San Diego, CA, USA, 2015. SCSI.

E. Y. Nakagawa, M. Gonçalves, M. Guessi, L. B. R. Oliveira, and
F. Oquendo. The state of the art and future perspectives in systems of
systems software architectures. SESoS ’13, pages 13–20, New York,
NY, USA, 2013. ACM.

C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Peleska.
Systems of Systems Engineering: Basic Concepts, Model-Based Tech-
niques, and Research Directions. ACM Comput. Surv., 48(2):18:1–
18:41, Sept. 2015.

OMG. SysML Open Source Specification Project, 2016a. Available in:
http://sysml.org/. Last Access: June 2016.

OMG. UML: Unified Modeling Language, 2016b.
http://www.omg.org/spec/UML. April 2016.

F. Oquendo. Formally Describing the Software Architecture of Systems-of-
Systems with SosADL. In SOSE, pages 1–6, Kongsberg, Norway, June
2016a. IEEE.

F. Oquendo. π-Calculus for SoS: A Foundation for Formally Describing
Software-intensive Systems-of-Systems. In SOSE, pages 7–12, Kongs-
berg, Norway, June 2016b. IEEE.

F. Oquendo and A. Legay. Formal Architecture Description of Trustworthy
Systems-of-Systems with SosADL. ERCIM News, (102), 2015.

ROAD2SOS. Road2SoS Project - Roadmaps for Systems-of-Systems
Engineering, 2013. http://road2sos-project.eu/cms/front_
content.php. Last Access: July 2016.

B. Sauser, J. Boardman, and D. Verma. Systomics: Toward a Biology of
System of Systems. IEEE Trans. on Systems, Man, and Cybernetics, 40
(4):803–814, 2010.

E. Shakshuki, S. Galland, A.-U.-H. Yasar, N. Messaoudi, A. Chaoui, and
M. Bettaz. An operational semantics for uml 2 sequence diagrams
supported by model transformations. Procedia Computer Science, 56:
604 – 611, 2015.

Y. Sun, Z. Demirezen, T. Lukman, M. Mernik, and J. Gray. Model Transfor-
mations Require Formal Semantics. In J. Lawall and L. Réveillère, edi-
tors, Domain-Specific Program Development, page 5, Nashville, United
States, 2008.

D. Wachholder and C. Stary. Enabling emergent behavior in systems-of-
systems through bigraph-based modeling. In SOSE, pages 334–339, San
Antonio, TX, USA, May 2015. IEEE.

G. Wiederhold. Mediators in the architecture of future information systems.
Computer, 25(3):38–49, March 1992.

J. Woodcock, A. Cavalcanti, J. Fitzgerald, P. Larsen, A. Miyazawa, and
S. Perry. Features of CML: A formal modelling language for Systems
of Systems. In SOSE, pages 1–6, Genova, Italy, July 2012.

X. Xia, J. Wu, C. Liu, and L. Xu. A model-driven approach for evaluating
system of systems. In ICECCS, pages 56–64, Singapore, July 2013.

P. Zave. Feature interactions and formal specifications in telecommunica-
tions. Computer, 26(8):20–29, Aug. 1993.

B. P. Zeigler, H. S. Sarjoughian, R. Duboz, and J.-C. Souli. Guide to
Modeling and Simulation of Systems of Systems. Springer, 2012.

Validating Emergent Behaviors in SoS through Model Transformations 6 2016/12/9


